CPSC 340:
Machine Learning and Data Mining

The Normal Equations

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.



Admin

* a3 posted, due Feb 9
e Midterm Feb 14 in class

* New office hour on Wednesdays, per your feedback
— In general, check calendar regularly for updates



Gradient and Critical Points in d-Dimensions

* Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘W’ where the gradient vector equals the zero vector.

* Gradient is vector with partial derivative ‘j’ in position j’:
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Gradient and Critical Points in d-Dimensions

* Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘W’ where the gradient vector equals the zero vector.

* Gradient is vector with partial derivative ‘j’ in position j’:
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Least Squares in d-Dimensions

* The linear least squares model in d-dimensions minimizes:
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:

/

— We use ‘y’ as an “n times 1” vector containing target ‘y." in position ‘i".

— We use ‘x.” as a “d times 1” vector containing features ‘j” of example ‘’.

* We’re now going to be careful to make sure these are column vectors.

— So ‘X’ is a matrix with the x," in row ‘V’.
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:

— Our prediction for example ‘i’ is given by scalar w'x..

— The matrix-vector product Xw gives predictions for all ‘i’ (n times 1 vector).
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:

— Our prediction for example ‘i’ is given by scalar w'x..

— The matrix-vector product Xw gives predictions for all ‘i’ (n times 1 vector).

— The residual vector r gives w'x. minus y, for all ‘i’ (n times 1 vector).

— Least squares can be written as the squared L2-norm of the residual.
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Matrix Algebra Review (MEMORIZE/STUDY THIS)

* Review of linear algebra operations we’ll use:

— If ‘@’ and ‘b’ be vectors, and ‘A’ and ‘B’ be matrices then:

G\Tla = loTO\

I\al/Z:aTo\ S‘an’ﬂLy d\t L/(i

(A+B) =A"+ T ALWAYS CHECK THAT
(AR = g4 DI MENSTONS MATCH
(A+B)A4B)=pA+ oA +Agegg  OF 1o yon 18 someliog )

0\7AL — loTATG\
L v~

Vveddor vetor



Linear Least Squares
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Linear and Quadratic Gradients

* We've written as a d-dimensional quadratic:
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Linear and Quadratic Gradients

 We've written the least squares objective as a quadratic function:
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Normal Equations

* Set gradient equal to zero to find the least squares “critical points”:
T T
X Xw~Y Yy = 0

* We now move terms not involving ‘w’ to the other side:
ki — 1
X Xw=X Y

 This is a set of ‘d’ linear equations called the normal equations.
— This a linear system like “Ax = b” from Math 152.

* You can use Gaussian elimination to solve for ‘w’.

— In Python, numpy.linalg.solve can be used to solve linear systems.
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Incorrect Solutions to Least Squares Problem
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Least Squares Issues

* |ssues with least squares model:
— Solution might not be unique.
— It is sensitive to outliers.
— It always uses all features.
— Data can might so big we can’t store X'X.
— It might predict outside range of y, values.

X is nx/J
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— It assumes a linear relationship between x, and y..
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Least Squares cost

* Forming matrix XX costs O(nd?)

— because XX has d? elements and each is a sum of n numbers.
* Solving system X™Xw = X'y costs O(d?)

— because we are solving a d-by-d linear system.
e QOverall cost is O(nd? + d3)

— Which term dominates depends on how ‘n’ compares to ‘d’
— n>dis the standard case
— d > nis a bit trickier, solution not unique (“underdetermined” system)

e Put another way, we have ‘n’ equations and ‘d’ unknowns/variables
* Imagine our 2d plots with n<2 points... that would be just one point

— Remember it’s not correct to write O(nd?) + O(d?3)



Non-Uniqueness: Colinearity

Imagine have two features that are identical for all examples.
Then these features are called collinear.

| can increase weight on one feature, and decrease it on the other,
without changing predictions.

Thus the solution is not unique.
But, any ‘w’ where V f(w) = 0 is a global optimum, due to convexity.

We will revisit the uniqueness issue soon when we cover
regularization in a couple lectures.



Convexity of Linear Regression

* Consider linear regression objective with squared error:
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Summary

Normal equations: solution of least squares as a linear system.
— Solve (X™X)w = (XTy).

Solution might not be unique because of collinearity.

But any solution is optimal because of convexity.

Convex functions:
— Set of functions with property that V f(w) = 0 implies ‘W’ is a global min.
— Can (usually) be identified using a few simple rules.



Convexity, min, and argmin

* |If a function is convex, then all stationary points are global optima.

 However, convex functions don’t necessarily have stationary points:
— For example, f(x) = a*x, f(x) = exp(x), etc.

* Also, more than one X’ can achieve the global optimum:

— For example, f(x) = c is minimized by any ‘X’.



Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math.
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Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math:
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When does least squares have a unique solution?

We said that least squares solution is not unique if we have repeated
columns.

But there are other ways it could be non-unique:

— One column is a scaled version of another column.

— One column could be the sum of 2 other columns.

— One column could be three times one column minus four times another.

Least squares solution is unique if and only if all columns of X are
“linearly independent”.
— No column can be written as a “linear combination” of the others.

— Many equivalent conditions (see Strang’s linear algebra book):
* X has “full column rank”, X"™X is invertible, X"X has non-zero eigenvalues, det(X"X) > 0.

— Note that we cannot have independent columns if d > n.



