
CPSC	340:
Machine	Learning	and	Data	Mining

The	Normal	Equations

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart. 1



Admin
• a3	posted,	due	Feb	9
• Midterm	Feb	14	in	class
• New	office	hour	on	Wednesdays,	per	your	feedback
– In	general,	check	calendar	regularly	for	updates
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Gradient	and	Critical	Points	in	d-Dimensions
• Generalizing	“set	the	derivative	to	0	and	solve”	in	d-dimensions:
– Find	‘w’	where	the	gradient	vector equals	the	zero	vector.

• Gradient is	vector	with	partial	derivative	‘j’	in	position	‘j’:	
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Gradient	and	Critical	Points	in	d-Dimensions
• Generalizing	“set	the	derivative	to	0	and	solve”	in	d-dimensions:
– Find	‘w’	where	the	gradient	vector equals	the	zero	vector.

• Gradient is	vector	with	partial	derivative	‘j’	in	position	‘j’:	

http://msemac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml
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Least	Squares	in	d-Dimensions
• The	linear	least	squares	model	in	d-dimensions	minimizes:

• Computing	the	partial	derivative:
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Matrix/Norm	Notation	(MEMORIZE/STUDY	THIS)

• To	solve	the	d-dimensional	least	squares,	we	use	matrix	notation:
– We	use	‘y’	as	an	“n	times	1”	vector	containing	target	‘yi’	in	position	‘i’.
– We	use	‘xi’	as	a	“d	times	1”	vector	containing	features	‘j’	of	example	‘i’.

• We’re	now	going	to	be	careful	to	make	sure	these	are	column	vectors.

– So	‘X’	is	a	matrix	with	the	xiT in	row	‘i’.
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Matrix/Norm	Notation	(MEMORIZE/STUDY	THIS)

• To	solve	the	d-dimensional	least	squares,	we	use	matrix	notation:
– Our	prediction	for	example	‘i’	is	given	by	scalar	wTxi.
– The	matrix-vector	product	Xw gives	predictions	for	all	‘i’ (n	times	1	vector).
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Matrix/Norm	Notation	(MEMORIZE/STUDY	THIS)

• To	solve	the	d-dimensional	least	squares,	we	use	matrix	notation:
– Our	prediction	for	example	‘i’	is	given	by	scalar	wTxi.
– The	matrix-vector	product	Xw gives	predictions	for	all	‘i’ (n	times	1	vector).
– The	residual	vector	r	gives	wTxi minus	yi for	all	‘i’	(n	times	1	vector).
– Least	squares	can	be	written	as	the	squared	L2-norm	of	the	residual.
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Matrix	Algebra	Review	(MEMORIZE/STUDY	THIS)

• Review	of	linear	algebra	operations	we’ll	use:
– If	‘a’	and	‘b’	be	vectors,	and	‘A’	and	‘B’	be	matrices	then:
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Linear	Least	Squares
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Linear	and	Quadratic	Gradients
• We’ve	written	as	a	d-dimensional	quadratic:

• How	do	we	compute	gradient?
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Linear	and	Quadratic	Gradients
• We’ve	written	the	least	squares	objective	as	a	quadratic	function:

• Gradient	is	given	by:

• Using	definitions	of	‘A’	and	‘b’:			=

12



Normal	Equations
• Set	gradient	equal	to	zero	to	find	the	least	squares	“critical	points”:

• We	now	move	terms	not	involving	‘w’	to	the	other	side:

• This	is	a	set	of	‘d’	linear	equations called	the	normal	equations.
– This	a	linear	system	like	“Ax	=	b”	from	Math	152.

• You	can	use	Gaussian	elimination	to	solve	for	‘w’.

– In	Python,	numpy.linalg.solve can	be	used	to	solve	linear	systems.
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Incorrect	Solutions	to	Least	Squares	Problem
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Least	Squares	Issues
• Issues	with	least	squares	model:
– Solution	might	not	be	unique.
– It	is	sensitive	to	outliers.
– It	always	uses	all	features.
– Data	can	might	so	big	we	can’t	store	XTX.
– It	might	predict	outside	range	of	yi values.
– It	assumes	a	linear	relationship	between	xi and	yi.
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Least	Squares	cost
• Forming	matrix	XTX	costs	O(nd2)	
– because	XTX	has	d2	elements	and	each	is	a	sum	of	n	numbers.

• Solving	system	XTXw =	XTy costs	O(d3)	
– because	we	are	solving	a	d-by-d	linear	system.

• Overall	cost	is	O(nd2 +	d3)
– Which	term	dominates	depends	on	how	‘n’	compares	to	‘d’
– n >	d	is	the	standard	case	
– d	>	n	is	a	bit	trickier,	solution	not	unique	(“underdetermined”	system)

• Put	another	way,	we	have	‘n’	equations	and	‘d’	unknowns/variables
• Imagine	our	2d	plots	with	n<2	points… that	would	be	just	one	point

– Remember	it’s	not	correct	to	write	O(nd2)	+	O(d3) 16



Non-Uniqueness:	Colinearity
• Imagine	have	two	features	that	are	identical	for	all	examples.
• Then	these	features	are	called	collinear.
• I	can	increase	weight	on	one	feature,	and	decrease	it	on	the	other,
without	changing	predictions.

• Thus	the	solution	is	not	unique.

• But,	any	‘w’	where	∇	f(w)	=	0	is	a	global	optimum,	due	to	convexity.

• We	will	revisit	the	uniqueness	issue	soon	when	we	cover	
regularization	in	a	couple	lectures. 17



Convexity	of	Linear	Regression
• Consider	linear	regression	objective with	squared	error:

• This	is	a	convex	function	composed	with	linear:
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Summary
• Normal	equations:	solution	of	least	squares	as	a	linear	system.
– Solve	(XTX)w	=	(XTy).

• Solution	might	not	be	unique	because	of	collinearity.
• But	any	solution	is	optimal	because	of convexity.
• Convex	functions:
– Set	of	functions	with	property	that	∇	f(w)	=	0	implies	‘w’	is	a	global	min.
– Can	(usually)	be	identified	using	a	few	simple	rules.
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Convexity,	min,	and	argmin
• If	a	function	is	convex,	then	all	stationary	points	are	global	optima.

• However,	convex	functions	don’t	necessarily	have	stationary	points:
– For	example,	f(x)	=	a*x,	f(x)	=	exp(x),	etc.

• Also,	more	than	one	‘x’	can	achieve	the	global	optimum:
– For	example,	f(x)	=	c	is	minimized	by	any	‘x’.
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Bonus	Slide:	Householder(-ish)	Notation
• Househoulder notation:	set	of	(fairly-logical)	conventions	for	math.
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Bonus	Slide:	Householder(-ish)	Notation
• Househoulder notation:	set	of	(fairly-logical)	conventions	for	math:
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When	does	least	squares	have	a	unique	solution?
• We	said	that	least	squares	solution	is	not	unique	if	we	have	repeated	
columns.

• But	there	are	other	ways	it	could	be	non-unique:
– One	column	is	a	scaled	version	of	another	column.
– One	column	could	be	the	sum	of	2	other	columns.
– One	column	could	be	three	times	one	column	minus	four	times	another.

• Least	squares	solution	is	unique	if	and	only	if	all	columns	of	X	are	
“linearly	independent”.
– No	column	can	be	written	as	a	“linear	combination”	of	the	others.
– Many	equivalent	conditions	(see	Strang’s linear	algebra	book):

• X	has	“full	column	rank”,	XTX	is	invertible,	XTX	has	non-zero	eigenvalues,	det(XTX)	>	0.
– Note	that	we	cannot	have	independent	columns	if	d	>	n. 23


