CPSC 340: Machine Learning and Data Mining

Gradient Descent **BONUS SLIDES**

Beyond Gradient Descent

- There are many variations on gradient descent.
	- $-$ Methods employing a "line search" to choose the step-size.
	- "Conjugate" gradient and "accelerated" gradient methods.
	- $-$ Newton's method (which uses second derivatives).
	- Quasi-Newton and Hessian-free Newton methods.
	- $-$ Stochastic gradient (later in course).
- This course focuses on gradient descent and stochastic gradient:
	- $-$ They're simple and give reasonable solutions to most ML problems.
	- But the above can be faster for some applications.

Why use the negative gradient direction?

- For a twice-differentiable 'f', multivariable Taylor expansion gives: $f(w^{t+1}) = f(w^t) + \nabla f(w^t)^T(w^{t+1} - w^t) + \frac{1}{2}(w^{t+1} - w^t)\nabla^2 f(v)(w^{t+1} - w^t)$ for some 'v' between w^{t+1} and ret
- If gradient can't change arbitrarily quickly, Hessian is bounded and:
 $\int_{\alpha}^{\alpha} (u^{t+1})^2 F(u^t) + \nabla f(u^t)^T (u^{t+1} u^t) + \mathcal{O}(\|\mu^{t+1} u^t\|^2)$

becomes negigible as u^{t+1}
gets close to u^{t+1}

 $w^{t-1} = w^t - \alpha_t \nabla f(w^t)$ for some

- $-$ But which choice of w^{t+1} decreases 'f' the most?
	- As $\vert\,\vert$ w^{t+1}-w^t $\vert\,\vert$ gets close to zero, the value of w^{t+1} minimizing f(w^{t+1}) in this formula converges to $(w^{t+1} - w^t) = -\alpha^t \nabla f(w^t)$ for some scalar α^t
	- So if we're moving a small amount, the optimal w^{t+1} is:

Scalar dt.

Normalized Steps

Question from class: "can we use
$$
w^{t-1} = w^t - \frac{1}{\|\nabla f(\omega^t)\|} \nabla f(\omega^t)
$$
"
\nThis will work for a while, but notice that
\n
$$
\|w^{t+1} - w^t\| = \|\frac{1}{\|\nabla f(\omega^t)\|} \nabla f(\omega^t)\|
$$
\n
$$
= \frac{1}{\|\nabla f(\omega^t)\|} \|\nabla f(\omega^t)\|
$$
\n
$$
= \|\nabla v\| \text{ we have}
$$
\n
$$
= \frac{1}{\|\nabla f(\omega^t)\|} \|\nabla f(\omega^t)\|
$$

Log-Sum-Exp for Brittle Regression

• To use log-sum-exp for brittle regression:

$$
||\chi_{w} - \gamma||_{\infty} = \max_{i} \{ |w^{T}x_{i} - y_{i}| \}
$$

= $\max_{i} \{ \max_{i} \{ w^{T}x_{i} - y_{i} \} \} - w^{T}x_{i} \}$ Since $|z| = \max\{z_{i} - z\}$
= $|\log(\sum_{i=1}^{n} exp(w^{T}x_{i} - y_{i}) + \sum_{i=1}^{n} exp(y_{i} - w^{T}x_{i}))$ using $|\omega_{i} - sum_{i}e_{n}$
= $\max_{i=1}^{n} over an terms$

Log-Sum-Exp Numerical Trick

- Numerical problem with log-sum-exp is that $exp(z_i)$ might overflow. $-$ For example, exp(100) has more than 40 digits.
- Implementation 'trick': $Le^{t} \beta$ = max $\{z_i\}$

$$
log(\xi exp(z_i)) = log(\xi exp(z_i - \beta + \beta))
$$

= log(\xi exp(z_i - \beta)exp(\beta))
= log(e x \rho(\beta) \xi exp(z_i - \beta))
= log(exp(\beta)) + log(\xi exp(z_i - \beta))
= \beta + log(\xi exp(z_i - \beta)) \Rightarrow \leq log(PQ)

Gradient Descent for Non-Smooth?

- "You are unlikely to land on a non-smooth point, so gradient descent should work for non-smooth problems?"
	- $-$ Consider just trying to minimize the absolute value function:

- Norm(gradient) is constant when not at 0, so unless you are lucky enough to hit exactly 0, you will just bounce back and forth forever.
- We didn't have this problem for smooth functions, since the gradient gets smaller as you approach a minimizer.
- You could fix this problem by making the step-size slowly go to zero, but you need to do this carefully to make it work, and the algorithm gets much slower.

Gradient Descent for Non-Smooth?

• Counter-example from Bertsekas' "Nonlinear Programming" where gradient descent for a non-smooth convex problem does not converge to a minimum.

Figure 6.3.8. Contours and steepest ascent path for the function of Exercise 6.3.8.

Random Sample Consensus (RANSAC)

- In computer vision, a widely-used generic framework for robust fitting is random sample consensus (RANSAC).
- This is designed for the scenario where:
	- You have a large number of outliers.
	- Majority of points are "inliers": it's really easy to get low error on them.

Random Sample Consensus (RANSAC)

- RANSAC:
	- Sample a small number of training examples.
		- Minimum number needed to fit the model.
		- For linear regression with 1 feature, just 2 examples.
	- $-$ Fit the model based on the samples.
		- Fit a line to these 2 points.
		- With 'd' features, you'll need 'd' examples.
	- $-$ Test how many points are fit well based on the model.
	- Repeat until we find a model that fits at least the expected number of "inliers".
- You might then re-fit based on the estimated "inliers".

