CPSC 340:
Machine Learning and Data Mining

Gradient Descent
BONUS SLIDES



Beyond Gradient Descent

* There are many variations on gradient descent.
— Methods employing a “line search” to choose the step-size.
— “Conjugate” gradient and “accelerated” gradient methods.
— Newton’s method (which uses second derivatives).
— Quasi-Newton and Hessian-free Newton methods.
— Stochastic gradient (later in course).

* This course focuses on gradient descent and stochastic gradient:
— They’re simple and give reasonable solutions to most ML problemes.
— But the above can be faster for some applications.



Why use the negative gradient direction?

* For a twice-differentiable ‘t/, multivariable Taylor expansion gives:
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Normalized Steps
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Log-Sum-Exp for Brittle Regression

* To use log-sum-exp for brittle regression:
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Log-Sum-Exp Numerical Trick

* Numerical problem with log-sum-exp is that exp(z.) might overflow.
— For example, exp(100) has more than 40 digits.

* Implementation ‘trick’: [t p= max 723
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Gradient Descent for Non-Smooth?

* “You are unlikely to land on a non-smooth point, so gradient descent
should work for non-smooth problems?”

— Consider just trying to minimize the absolute value function:

)
— Norm(gradient) is constant when not at 0, so unless you are lucky enough to hit
exactly 0, you will just bounce back and forth forever.

— We didn’t have this problem for smooth functions, since the gradient gets
smaller as you approach a minimizer.

— You could fix this problem by making the step-size slowly go to zero, but you
need to do this carefully to make it work, and the algorithm gets much slower.



Gradient Descent for Non-Smooth?

* Counter-example from Bertsekas’ “Nonlinear Programming” where
gradient descent for a non-smooth convex problem does not
converge to a minimum.
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Figure 6.3.8. Contours and steepest ascent path for the function of Exercise
6.3.8.



Random Sample Consensus (RANSAC)

* In computer vision, a widely-used generic framework for robust
fitting is random sample consensus (RANSAC).

* This is designed for the scenario where: . o

— You have a large number of outliers. . . .

— Majority of points are “inliers”:
it’s really easy to get low error on them. . . o .



Random Sample Consensus (RANSAC)
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— Sample a small number of training examples. M‘.
* Minimum number needed to fit the model. e ©

* For linear regression with 1 feature, just 2 examples.

— Fit the model based on the samples.
e Fit aline to these 2 points.
* With ‘d’ features, you’ll need ‘d’” examples.

— Test how many points are fit well
based on the model.

— Repeat until we find a model that fits at
least the expected number of “inliers”.

* You might then re-fit based on the
estimated “inliers”.




