
CPSC	340:
Machine	Learning	and	Data	Mining

Gradient	Descent
BONUS	SLIDES

Beyond	Gradient	Descent
• There	are	many	variations	on	gradient	descent.
– Methods	employing	a	“line	search”	to	choose	the	step-size.
– “Conjugate”	gradient	and	“accelerated”	gradient	methods.
– Newton’s	method	(which	uses	second	derivatives).
– Quasi-Newton	and	Hessian-free	Newton	methods.
– Stochastic	gradient	(later	in	course).

• This	course	focuses	on	gradient	descent	and	stochastic	gradient:
– They’re	simple	and	give	reasonable	solutions	to	most	ML	problems.
– But	the	above	can	be	faster	for	some	applications.

Why	use	the	negative	gradient	direction?

• For	a	twice-differentiable	‘f’,	multivariable	Taylor	expansion	gives:

• If	gradient	can’t	change	arbitrarily	quickly,	Hessian	is	bounded	and:

– But	which	choice	of	wt+1 decreases	‘f’	the	most?
• As	||wt+1-wt||	gets	close	to	zero,	the	value	of	wt+1 minimizing	f(wt+1)	in	this	formula
converges	to	(wt+1 – wt)	=	- αt ∇ f(wt)	for	some	scalar	αt

.

• So	if	we’re	moving	a	small	amount,	the	optimal	wt+1	is:

Normalized	Steps

Log-Sum-Exp for	Brittle	Regression
• To	use	log-sum-exp for	brittle	regression:

Log-Sum-Exp Numerical	Trick
• Numerical	problem	with	log-sum-exp is	that	exp(zi)	might	overflow.
– For	example,	exp(100)	has	more	than	40	digits.

• Implementation	‘trick’:

Gradient	Descent	for	Non-Smooth?

• “You	are	unlikely	to	land	on	a	non-smooth	point,	so	gradient	descent	
should	work	for	non-smooth	problems?”
– Consider	just	trying	to	minimize	the	absolute	value	function:

– Norm(gradient)	is	constant	when	not	at	0,	so	unless	you	are	lucky	enough	to	hit	
exactly	0,	you	will	just	bounce	back	and	forth	forever.

– We	didn’t	have	this	problem	for	smooth	functions,	since	the	gradient	gets	
smaller	as	you	approach	a	minimizer.

– You	could	fix	this	problem	by	making	the	step-size	slowly	go	to	zero,	but	you	
need	to	do	this	carefully	to	make	it	work,	and	the	algorithm	gets	much	slower.

Gradient	Descent	for	Non-Smooth?
• Counter-example	from	Bertsekas’	“Nonlinear	Programming”	where	
gradient	descent	for	a	non-smooth	convex	problem	does	not	
converge	to	a	minimum.

Random	Sample	Consensus	(RANSAC)
• In	computer	vision,	a	widely-used	generic	framework	for	robust	
fitting	is	random	sample	consensus	(RANSAC).

• This	is	designed	for	the	scenario	where:
– You	have	a	large	number	of	outliers.
– Majority	of	points	are	“inliers”:	
it’s	really	easy	to	get	low	error	on	them.

https://en.wikipedia.org/wiki/Random_sample_consensus

Random	Sample	Consensus	(RANSAC)
• RANSAC:
– Sample	a	small	number	of	training	examples.

• Minimum	number	needed	to	fit	the	model.
• For	linear	regression	with	1	feature,	just	2	examples.

– Fit	the	model	based	on	the	samples.
• Fit	a	line	to	these	2	points.
• With	‘d’	features,	you’ll	need	‘d’	examples.

– Test	how	many	points	are	fit	well	
based	on	the	model.

– Repeat until	we	find	a	model	that	fits at	
least	the	expected number	of	“inliers”.

• You	might	then	re-fit	based	on	the
estimated	“inliers”.

https://en.wikipedia.org/wiki/Random_sample_consensus

