CPSC 340:
Machine Learning and Data Mining

Gradient Descent
BONUS SLIDES

Beyond Gradient Descent

* There are many variations on gradient descent.
— Methods employing a “line search” to choose the step-size.
— “Conjugate” gradient and “accelerated” gradient methods.
— Newton’s method (which uses second derivatives).
— Quasi-Newton and Hessian-free Newton methods.
— Stochastic gradient (later in course).

* This course focuses on gradient descent and stochastic gradient:
— They’re simple and give reasonable solutions to most ML problemes.
— But the above can be faster for some applications.

Why use the negative gradient direction?

* For a twice-differentiable ‘t/, multivariable Taylor expansion gives:
]F(Wt*') = ‘F(Wt> + V\C(wcf(wt#‘wt) +-21 (wthWt)kvjf\(/\/)(ww‘wé)

'F”f Some V! beTween
Wt+, Gnl Wt.

* |If gradient can’t change arbitrarily quickly, Hessian is bounded and:

N F(.t)+ VF(wt)T(wtu'wé) + 0C I~ \a/t//Q)
- —

lofwme) ne9i?i€/e oS W

o
— But which choice of wt*! decreases ‘f’ the most? 9% lose wt

o As | |wtl-wt|| gets close to zero, the value of wt! minimizing f(w'*!) in this formula
converges to (Wl —wt) = - ot V f(w!) for some scalar a*

* So if we’re moving a small amount, the optimal w1 is: Wf" | — \JZ - d{vp(\ut) 'Fw S ovwe
Scalo At .

£

Normalized Steps

. / ‘C"’/: t_—_'_ V_P é \
QW?”W\ from closss “can we we w w AN (LV)

Ths will work 5 a W:ﬂ;/e) byl nolico that

[T u LN

1N
= o

= |

So J”\t"/ u'l)ori'“\m Y)EVPK Conmverages

Log-Sum-Exp for Brittle Regression

* To use log-sum-exp for brittle regression:

= lbo = mex 5 [u75, = il
- e 21 g w*sz? e [217mcfz ot
.]09(26)({)(\” Y \/) -+ Zeyf(y, w)’)) (ASM(/ /o’ Sum™érp

10 Q f‘f’ro)(l"lq\/f

”"‘4/(ovée- An Terms.

Log-Sum-Exp Numerical Trick

* Numerical problem with log-sum-exp is that exp(z.) might overflow.
— For example, exp(100) has more than 40 digits.

* Implementation ‘trick’: [t p= max 723

l(y‘j(?(e)(/)(z.,)) = ’oq(]i cx/o(z,- ——,2 +I§))

= 09 (2\ ex'o(zj'ﬁ)cflo (,@))

= logCerp(h) 2 expai-p))

= laﬂ (exf(,@)) + |0q(?€xf(2,"ﬁ)>

= [} + IOﬂ(Ziexf(Zi'B) s\ sOO\/E”Qg(OV

Gradient Descent for Non-Smooth?

* “You are unlikely to land on a non-smooth point, so gradient descent
should work for non-smooth problems?”

— Consider just trying to minimize the absolute value function:

)
— Norm(gradient) is constant when not at 0, so unless you are lucky enough to hit
exactly 0, you will just bounce back and forth forever.

— We didn’t have this problem for smooth functions, since the gradient gets
smaller as you approach a minimizer.

— You could fix this problem by making the step-size slowly go to zero, but you
need to do this carefully to make it work, and the algorithm gets much slower.

Gradient Descent for Non-Smooth?

* Counter-example from Bertsekas’ “Nonlinear Programming” where
gradient descent for a non-smooth convex problem does not
converge to a minimum.

A
\p2 merfjes To hee (even 7L“°“')“ Losnchiom
o
Mmm e § (s (Mve/)
\\/ \-
H1
fwéﬁé%

Figure 6.3.8. Contours and steepest ascent path for the function of Exercise
6.3.8.

Random Sample Consensus (RANSAC)

* In computer vision, a widely-used generic framework for robust
fitting is random sample consensus (RANSAC).

* This is designed for the scenario where: . o

— You have a large number of outliers. . . .

— Majority of points are “inliers”:
it’s really easy to get low error on them. . . o .

Random Sample Consensus (RANSAC)

inear reqress,
e RANSAC: Line ;,4 +;4 r):;n é@,({
. . e
— Sample a small number of training examples. M‘.
* Minimum number needed to fit the model. e ©

* For linear regression with 1 feature, just 2 examples.

— Fit the model based on the samples.
e Fit aline to these 2 points.
* With ‘d’ features, you’ll need ‘d’” examples.

— Test how many points are fit well
based on the model.

— Repeat until we find a model that fits at
least the expected number of “inliers”.

* You might then re-fit based on the
estimated “inliers”.

