
CPSC	340:
Machine	Learning	and	Data	Mining

Nonlinear	Regression

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart. 1



Admin
• Midterm on	Feb	14	in	class.			
– Previous	midterms	on	course	homepage.
– Covers	lecture	1-14	(i.e.,	up	to	&	including	today),	assignments	1-3.

• Note	to	self:	we	need	to	finite	the	previous	lecture	before	starting.

2



Summary	of	Last	Lecture
1. Error	functions:
– Squared	error	is	sensitive	to	outliers.
– Absolute	(L1)	error	and	Huber	error	are	more	robust	to	outliers.
– Brittle	(L∞)	error is	more	sensitive	to	outliers.

2. L1 and	L∞ error	functions	are	convex	but	non-differentiable:
– Finding	‘w’	that	minimizes	these	errors	is	harder	than	squared	error.

3. We	can	approximate	these	with	convex	differentiable functions:
– L1 can	be	approximated	with	Huber.
– L∞ can	be	approximated	with	log-sum-exp.

4. Gradient	descent	finds	stationary	point	of	differentiable	function.
– “Stationary	point”	==	“critical	point”	==	“a	value	of	‘w’	where	∇ f(w)	=	0”.

5. For	convex	functions,	any	stationary	point	is	a	global	minimum.
– So	gradient	descent	finds	global	minimum.

3



Very	Robust	Regression

• Non-convex errors	can	be	very	robust:
– Not	influenced	by	outlier	groups.

4



Very	Robust	Regression

• Non-convex errors	can	be	very	robust:
– Not	influenced	by	outlier	groups.
– But	non-convex,	so	finding
global	minimum	is	hard.

– Absolute	value	is	“most	robust”
convex	loss	function.

5



(pause)

6



Nonlinear	regression
• We	can	adapt	classification	methods	to	perform	regression.
• E.g.	decision	tree	regression,	KNN	regression.
• See	bonus	slides	for	more	details.
• We	will	focus	on	direct	extensions	of	linear	regression.

7



Motivation:	Limitations	of	Linear	Models
• On	many	datasets,	yi is	not	a	linear	function	of	xi.

• Can	we	use	least	square	to	fit	non-linear models?
8



Non-Linear	Feature	Transforms
• Can	we	use	linear	least	squares	to	fit	a	quadratic	model?

• You	can	do	this	by	changing	the	features	(change	of	basis):

• It’s	a	linear	function	of	w,	but	a	quadratic	function	of	xi.
• Fit	using	normal	equations	with	Z	instead	of	X:	v	=	(ZTZ)-1(ZTy)

9



Non-Linear	Feature	Transforms

10



General	Polynomial	Features	(d=1)
• We	can	have	a	polynomial	of	degree	‘p’	by	using	these	features:

• There	are	polynomial	basis	functions	that	are	numerically	nicer:
– E.g.,	Lagrange	polynomials (see	CPSC	303).

• If	you	have	more	than	one	feature,	you	include	interactions:
– With	p=2,	in	addition	to	(xi1)2 and	(xi2)2 you	would	include	xi1xi2.

11



Jupyter notebook	demo

12



Beyond	Polynomial	Transformations
• Polynomials	are	not	the	only	possible	transformation:
– Exponentials,	logarithms,	trigonometric	functions,	etc.
– The	right	non-linear	transform	will	vastly	improve	performance.
– But	when	you	have	a	lot	of	features,	the	right	basis	may	not	be	obvious.

• The	above	bases	are	parametric	model:
– The	size	of	the	model	does	not	depend	on	the	number	of	training	examples	‘n’.
– As	‘n’	increases,	you	can	estimate	the	model	more	accurately.
– But	at	some	point,	more	data	doesn’t	help	because	model	is	too	simple.

• Alternative	is	non-parametric	models:
– Size	of	the	model	grows	with	the	number	of	training	examples.
– Model	gets	more	complicated	as	you	get	more	data.
– You	can	model	very	complicated	functions	where	you	don’t	know	the	right	basis.

13



Parametric	vs.	Non-Parametric	Transforms
• We’ve	been	using	linear	models	with	polynomial	bases:

• But	polynomials	are	not	the	only	possible	bases:
– Exponentials,	logarithms,	trigonometric	functions,	etc.
– The	right	basis	will	vastly	improve	performance.
– If	we	use	the	wrong	basis,	our	accuracy	is	limited	even	with	lots	of	data.
– But	the	right	basis	may	not	be	obvious.



Parametric	vs.	Non-Parametric	Transforms
• We’ve	been	using	linear	models	with	polynomial	bases:

• Alternative	is	non-parametric bases:
– Size	of	basis	(number	of	features)	grows	with	‘n’.
– Model	gets	more	complicated	as	you	get	more	data.
– Can	model	complicated	functions	where	you	don’t	know	the	right	basis.

• With	enough	data.

– Classic	example	is	“Gaussian	RBFs”.



• Gaussian	RBFs	are	universal	approximators (compact	subets of	ℝd)
– Enough	bumps	can	approximate	any	continuous	function	to	arbitrary	precision.
– Achieve	optimal	test	error	as	‘n’	goes	to	infinity.

Gaussian	RBFs:	A	Sum	of	“bumps”



Gaussian	RBFs:	A	Sum	of	“Bumps”
• Polynomial	fit:

• Constructing	a	function	from	bumps:

• Bonus	slides:	challenges	of	“far	from	data”	(and	future)	predictions.



Gaussian	RBF	Parameters
• Some	obvious	questions:

1. How	many	bumps	should	we	use?
2. Where	should	the	bumps	be	centered?
3. How	high	should	the	bumps	go?
4. How	wide	should	the	bumps	be?

• The	usual	answers:
1. We	use	‘n’	bumps	(non-parametric	basis).
2. Each	bump	is	centered	on	one	training	example	xi.
3. Fitting	regression	weights	‘w’	gives	us	the	heights (and	signs).
4. The	width	is	a	hyper-parameter	(narrow	bumps	==	complicated	model).



Gaussian	RBFs:	Formal	Details
• What	is	a	radial	basis	functions (RBFs)?
– A	set	of	non-parametric	bases	that	depend	on	distances	to	training	points.

– Most	common	‘g’	is	Gaussian	RBF:

• Variance	σ2 is	a	hyper-parameter	controlling	“width”.
– This	affects	fundamental	trade-off	(set	it	using	a	validation	set).



Gaussian	RBFs:	Formal	Details
• What	is	a	radial	basis	functions (RBFs)?
– A	set	of	non-parametric	bases	that	depend	on	distances	to	training	points.



Non-Parametric	Basis:	RBFs
• Least	squares	with	Gaussian	RBFs	for	different	σ	values:



Summary
• Tree/probabilistic/non-parametric/ensemble regression	methods.
• Non-linear	transforms:
– Allow	us	to	model	non-linear	relationships	with	linear	models.
– Polynomial	features	are	a	parametric	example
– RBF	features	are	a	non-parametric	example

22



Complexity	Penalties
• The	next	3	slides	are	a	previous	of	next	week’s	topics.

23



Finding	the	“True”	Model
• What	if	our	goal	is	find	the	“true”	model?
– We	believe	that	yi really	is	a	polynomial	function	of	xi.
– We	want	to	find	the	degree	of	the	polynomial	‘p’.

• Should	we	choose	the	‘p’	with	the	lowest	training	error?
– No,	this	will	pick	a	‘p’	that	is	way	too	large.	
(training	error	always	decreases	as	you	increase	‘p’)

24



Finding	the	“True”	Model
• What	if	our	goal	is	find	the	“true”	model?
– We	believe	that	yi really	is	a	polynomial	function	of	xi.
– We	want	to	find	the	degree	of	the	polynomial	‘p’.

• Should	we	choose	the	‘p’	with	the	lowest	validation	error?
– This	will	also	often	choose	a	‘p’	that	is	too	large.

– Even	if	true	model	has	p=2,	this	is	a	special	case	of	a	degree-3	polynomial.
– If	‘p’	is	too	big	then	we	overfit,	but	might	still	get	a	lower	validation	error.

• Another	example	of	optimization	bias.

25



Complexity	Penalties
• There	are	a	lot	of	“scores”	people	use	to	find	the	“true”	model.
• Basic	idea	behind	them:	put	a	penalty	on	the	model	complexity.
– Want	to	fit	the	data	and	have	a	simple	model.

• For	example,	minimize	training	error	plus	the	degree of	polynomial.

– If	we	use	p=4,	use	“training	error	plus	4”	as	error.

• If	two	‘p’	values	have	similar	error,	this	prefers	the	smaller	‘p’.
26



Motivation:	Non-Linear	Progressions	in	Athletics

• Are	top	athletes	going	faster,	higher,	and	farther?

http://www.at-a-lanta.nl/weia/Progressie.html
https://en.wikipedia.org/wiki/Usain_Bolt
http://www.britannica.com/biography/Florence-Griffith-Joyner

27



Adapting	Counting/Distance-Based	Methods
• We	can	adapt	our	classification	methods	to	perform	regression:

http://www.at-a-lanta.nl/weia/Progressie.html
28



Adapting	Counting/Distance-Based	Methods
• We	can	adapt	our	classification	methods	to	perform	regression:
– Regression	tree:	tree	with	mean	value	or	linear	regression	at	leaves.

http://www.at-a-lanta.nl/weia/Progressie.html
29



Adapting	Counting/Distance-Based	Methods
• We	can	adapt	our	classification	methods	to	perform	regression:
– Regression	tree:	tree	with	mean	value	or	linear	regression	at	leaves.
– Probabilistic	models:	fit	p(xi |	yi)	and	p(yi)	with	Gaussian	or	other	model.

• CPSC	540.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
30



Adapting	Counting/Distance-Based	Methods
• We	can	adapt	our	classification	methods	to	perform	regression:
– Regression	tree:	tree	with	mean	value	or	linear	regression	at	leaves.
– Probabilistic	models:	fit	p(xi |	yi)	and	p(yi)	with	Gaussian	or	other	model.
– Non-parametric	models:	

• KNN	regression:
– Find	‘k’	nearest	neighbours of	xi.
– Return	the	mean	of	the	corresponding	yi.

http://scikit-learn.org/stable/modules/neighbors.html
31



Adapting	Counting/Distance-Based	Methods
• We	can	adapt	our	classification	methods	to	perform	regression:
– Regression	tree:	tree	with	mean	value	or	linear	regression	at	leaves.
– Probabilistic	models:	fit	p(xi |	yi)	and	p(yi)	with	Gaussian	or	other	model.
– Non-parametric	models:	

• KNN	regression.
• Could	be	weighted	by	distance.

– Close	points	‘j’	get	more	“weight”	wij.

http://scikit-learn.org/stable/modules/neighbors.html
32



Adapting	Counting/Distance-Based	Methods
• We	can	adapt	our	classification	methods	to	perform	regression:
– Regression	tree:	tree	with	mean	value	or	linear	regression	at	leaves.
– Probabilistic	models:	fit	p(xi |	yi)	and	p(yi)	with	Gaussian	or	other	model.
– Non-parametric	models:	

• KNN	regression.
• Could	be	weighted	by	distance.
• ‘Nadaraya-Waston’:	weight	all yi by	distance	to	xi.

http://www.mathworks.com/matlabcentral/fileexchange/35316-kernel-regression-with-variable-window-width/content/ksr_vw.m
33



Adapting	Counting/Distance-Based	Methods
• We	can	adapt	our	classification	methods	to	perform	regression:
– Regression	tree:	tree	with	mean	value	or	linear	regression	at	leaves.
– Probabilistic	models:	fit	p(xi |	yi)	and	p(yi)	with	Gaussian	or	other	model.
– Non-parametric	models:	

• KNN	regression.
• Could	be	weighted	by	distance.
• ‘Nadaraya-Waston’:	weight	all yi by	distance	to	xi.
• ‘Locally	linear	regression’:	for	each	xi,	fit	a	linear	model	weighted	by	distance.

(Better	than	KNN	and	NW	at	boundaries.)

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm
34



Adapting	Counting/Distance-Based	Methods
• We	can	adapt	our	classification	methods	to	perform	regression:
– Regression	tree:	tree	with	mean	value	or	linear	regression	at	leaves.
– Probabilistic	models:	fit	p(xi |	yi)	and	p(yi)	with	Gaussian	or	other	model.
– Non-parametric	models:	

• KNN	regression.
• Could	be	weighted	by	distance.
• ‘Nadaraya-Waston’:	weight	all yi by	distance	to	xi.
• ‘Locally	linear	regression’:	for	each	xi,	fit	a	linear	model	weighted	by	distance.

(Better	than	KNN	and	NW	at	boundaries.)

– Ensemble	methods:
• Can	improve	performance	by	averaging	across	regression	models.

35



Adapting	Counting/Distance-Based	Methods
• We	can	adapt	our	classification	methods	to	perform	regression.

• Applications:
– Regression	forests	for	fluid	simulation:

• https://www.youtube.com/watch?v=kGB7Wd9CudA
– KNN	for	image	completion:

• http://graphics.cs.cmu.edu/projects/scene-completion
• Combined	with	“graph	cuts”	and	“Poisson	blending”.

– KNN	regression	for	“voice	photoshop”:
• https://www.youtube.com/watch?v=I3l4XLZ59iw
• Combined	with	“dynamic	time	warping”	and	“Poisson	blending”.

• But	we’ll	focus	on	linear	models	with	non-linear	transforms.
– These	are	the	building	blocks	for	more	advanced	methods.

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm
36


