
CPSC	340:
Machine	Learning	and	Data	Mining

Feature	Selection

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.

Admin
• Assignment	3:
– Due	Friday

• Midterm:	
– Feb	14	in	class
– 1	page	of	notes	allowed
– Past	exams	available	on	course	homepage

Change	of	Basis	Notation
• Linear	regression	with	original	features:
– We	use	‘X’	as	our	data	matrix,	and	‘w’	as	our	parameters.
– We	can	find	d-dimensional	‘w’ by	minimizing	the	squared	error:

• Linear	regression	with	change	of	basis:
– We	use	‘Z’	as	our	data	matrix,	and	‘v’	as	our	parameters.
– We	can	find	k-dimensional	‘v’ by	minimizing	the	squared	error:

– Notice	that	in	both	cases	the	target	is	still	‘y’.

Finding	the	“True”	Model
• What	if	our	goal	is	find	the	“true”	model?
– We	believe	that	yi really	is	a	polynomial	function	of	xi.
– We	want	to	find	the	degree	of	the	polynomial	‘p’.

• Should	we	choose	the	‘p’	with	the	lowest	training	error?
– No,	this	will	pick	a	‘p’	that	is	way	too	large.	
(training	error	always	decreases	as	you	increase	‘p’)

4

Finding	the	“True”	Model
• What	if	our	goal	is	find	the	“true”	model?
– We	believe	that	yi really	is	a	polynomial	function	of	xi.
– We	want	to	find	the	degree	of	the	polynomial	‘p’.

• Should	we	choose	the	‘p’	with	the	lowest	validation	error?
– This	will	also	often	choose	a	‘p’	that	is	too	large.
– If	‘p’	is	too	big	then	we	overfit,	but	might	still	get	a	lower	validation	error.

• Another	example	of	optimization	bias.

5

Complexity	Penalties
• There	are	a	lot	of	“scores”	people	use	to	find	the	“true”	model.
• Basic	idea	behind	them:	put	a	penalty	on	the	model	complexity.
– Want	to	fit	the	data	and	have	a	simple	model.

• For	example,	minimize	training	error	plus	the	degree of	polynomial.

– If	we	use	p=4,	use	“training	error	plus	4”	as	error.
• If	two	‘p’	values	have	similar	error,	this	prefers	the	smaller	‘p’.
• Can’t	optimize	this	using	normal	equations,	since	it’s	discontinuous	in	‘p’.

6

Choosing	Degree	of	Polynomial	Basis
• How	can	we	optimize	this	score?

– Form	Z0,	solve	for	‘v’,	compute	score(1)	=	½||Z0v – y||2 +	1.
– Form	Z1,	solve	for	‘v’,	compute	score(2)	=	½||Z1v – y||2 +	2.
– Form	Z2,	solve	for	‘v’,	compute	score(3)	=	½||Z2v – y||2 +	3.
– Form	Z3,	solve	for	‘v’,	compute	score(4)	=	½||Z3v – y||2 +	4.

– Choose	the	degree	with	the	lowest	score.
• “You	need	to	decrease	training	error	by	at	least	1	to	increase	degree	by	1.”

Information	Criteria
• There	are	many	scores,	usually	with	the	form:

– The	value	‘k’	is	the	“number	of	estimated	parameters”	(“degrees	of	freedom”).
• For	polynomial	basis,	we	have	k	=	(p+1).

– The	parameter	λ >	0	controls	how	strong	we	penalize	complexity.
• “You	need	to	decrease	the	training	error	by	least	λ to	increase	‘k’	by	1”.

• Using	(λ =	1)	is	called	Akaike information	criterion	(AIC).
• Other	choices	of	λ give	other	criteria:
– Mallow’s	Cp.
– Adjusted	R2.

Choosing	Degree	of	Polynomial	Basis
• How	can	we	optimize	this	score	in	terms	of	‘p’?

– Form	Z0,	solve	for	‘v’,	compute	score(0)	=	½||Z0v – y||2 +	λ.
– Form	Z1,	solve	for	‘v’,	compute	score(1)	=	½||Z1v – y||2 +	2λ.
– Form	Z2,	solve	for	‘v’,	compute	score(2)	=	½||Z2v – y||2 +	3λ.
– Form	Z3,	solve	for	‘v’,	compute	score(3)	=	½||Z3v – y||2 +	4λ.

– So	we	need	to	improve	by	“at	least	λ”	to	justify	increasing	degree.
• If	λ is	big,	we’ll	choose	a	small	degree.	If	λ is	small,	we’ll	choose	a	large	degree.

Bayesian	Information	Criterion	(BIC)
• A	disadvantage	of	these	methods:
– Still	prefers	a	larger	‘p’	as	‘n’	grows.

• Solution:	make	λ depend	on	‘n’.
• For	example,	the	Bayesian	information	criterion	(BIC)	uses:

• BIC	penalizes	a	bit	more	than	AIC	for	large	‘n’.
– As	‘n’	goes	to	∞,	recovers	“true”	model	(“consistent”	for	model	selection).

• In	practice,	we	usually	just	try	a	bunch	of	different	λ values.
– λ is	just	treated	as	another	hyperparameter

(pause)

Motivation:	Discovering	Food	Allergies
• Recall	the	food	allergy	example:

• Instead	of	predicting	“sick”,	we	want	to	do	feature	selection:
– Which	foods	are	“relevant”	for	predicting	“sick”.

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

Sick?

1

1

0

1

Feature	Selection
• General	feature	selection	problem:

– Find	the	features	(columns)	of	‘X’	that	are	important	for	predicting	‘y’.
• “What	are	the	relevant	factors?”
• “What	which	basis	functions	should	I	use	among	these	choices?”
• “What	types	of	new	data	should	I	collect?”
• “How	can	I	speed	up	computation?”

• One	of	most	important	problems	in	ML/statistics,	but	very	messy.
– For	now,	we’ll	say	a	feature	is	“relevant”	if	it	helps	predict	yi from	xi.

“Association”	Approach
• A	simple/common	way	to	do	feature	selection:
– For	each	feature	‘j’,	compute	correlation	between	feature	values	xj and	‘y’.

• Say	that	‘j’	is	relevant	if	correlation	is	above	0.9	or	below	-0.9.

• Turns	feature	selection	into	hypothesis	testing for	each	feature.
• There	are	many	other	measures	of	“dependence”	(Wikipedia).

• Usually	gives	unsatisfactory	results	as	it	ignores	variable	interactions:
– Includes	irrelevant	variables:	“Taco	Tuesdays”.

• If	tacos	make	you	sick,	and	you	often	eat	tacos	on	Tuesdays,	it	will	say	“Tuesday”	is	relevant.

– Excludes	relevant	variables:	“Diet	Coke	+	Mentos”.
• Diet	coke	and	Mentos	don’t	make	you	sick	on	their	own,	but	together they	make	you	sick.

“Regression	Weight”	Approach
• A	simple/common	approach	to	feature	selection:
– Fit	regression	weights	‘w’	based	on	all features	(maybe	with	least	squares).
– Take	all	features	‘j’	where	weight	|wj|	is	greater	than	a	threshold.

• This	could	recognize	that	“Tuesday”	is	irrelevant.
– If	you	get	enough	data,	and	you	sometimes	eat	tacos	on	other	days.
(And	the	relationship	is	actually	linear.)

• This	could	recognize	that	“Diet	Coke”	and	“Mentos”	are	relevant.
– Assuming	this	combination	occurs	enough	times	in	the	data.

“Regression	Weight”	Approach
• A	simple/common	approach	to	feature	selection:
– Fit	regression	weights	‘w’	based	on	all features	(maybe	with	least	squares).
– Take	all	features	‘j’	where	weight	|wj|	is	greater	than	a	threshold.

• Has	major	problems	with	collinearity:
– If	the	“Tuesday”	variable	always	equals	the	“taco”	variable,
it	could	say	that	Tuesdays	are	relevant	but	tacos	are	not.

– If	you	have	two	copies	of	an	irrelevant	feature,	
it	could	take	both	irrelevant	copies.

– We	will	deal	with	this	next	class.

Search	and	Score	Methods
• Most	common	feature	selection	framework	is	search	and	score:

1. Define	score	function	f(S)	that	measures	quality	of	a	set	of	features	‘S’.
2. Now search for	the	variables	‘S’	with	the	best	score.

• Example	with	3	features:
– Compute	“score”	of	using	feature	1.
– Compute	“score”	of	using	feature	2.
– Compute	“score”	of	using	feature	3.
– Compute	“score”	of	using	features	{1,2}.
– Compute	“score”	of	using	features	{1,3}.
– Compute	“score”	of	using	features	{2,3}.
– Compute	“score”	of	using	features	{1,2,3}.
– Compute	“score”	of	using	features	{}.
– Return	the	set	of	features	‘S’	with	the	best	“score”.

Which	Score	Function?
• The score	can’t	be	the	training	error.
– Training	error	goes	down	as	you	add	features,	so	will	select	all	features.

• A	more	logical	score	is	the	validation	error.
– “Find	the	set	of	features	that	gives	the	lowest	validation	error.”
– To	minimize	test	error,	this	is	what	we	want.

• But	there	are	problems	due	to	the	large	number	of	sets of	variables:
– If	we	have	‘d’	variables,	there	are	2d sets	of	variables.
– Optimization	bias is	high:	we’re	optimizing	over	2d models	(not	10).
– Prone	to	false	positives:		irrelevant	variables	will	sometimes	help	by	chance.

“Number	of	Features”	Penalties
• To	reduce	false	positives,	we	can	again	use	complexity	penalties:

– E.g.,	we	could	use	squared	error	and	number	of	non-zeroes.
– We’re	using	‘xiS’	as	the	features	‘S’	of	example	xi.		

• If	two	‘S’	have	similar	error,	this	prefers	the	smaller	set.
– It	prefers	having	w3 =	0	instead	of	w3 =	0.00001.

• Instead	of	“size(S)”,	we	usually	write	this	using	the	“L0-norm”...

L0-Norm	and	“Number	of	Features	We	Use”
• In	linear	models,	setting	wj =	0	is	the	same	as	removing	feature	‘j’:

• The	L0	“norm”	is	the	number	of	non-zero	values.

– Not	actually	a	true	norm.
– If	‘w’	has	a	small	L0-norm,	then	it	doesn’t	use	many	features.

L0-penalty:	optimization
• L0-norm	penalty	for	feature	selection:

• Suppose	we	want	to	use	this	to	evaluate	the	features	S	=	{1,2}:
– First	fit	the	‘w’	just	using	features	1	and	2.
– Now	compute	the	training	error	with	this	‘w’	and	features	1	and	2.
– Add	λ*2	to	the	training	error	to	get	the	score.

• We	repeat	this	with	other	choices	of	‘S’	to	find	the	“best”	features.
21

L0-penalty:	interpretation
• L0-norm	penalty	for	feature	selection:

• Balances	between	training	error	and	number	of	features	we	use.
– With	λ=0,	we	get	least	squares	with	all	features.
– With	λ=∞,	we	must	set	w=0	and	not	use	any	features.

– With	other	λ,	balances	between	training	error	and	number	of	non-zeroes.
• Larger	λ puts	more	emphasis	on	having	zeroes	in	‘w’	(more	feature	selection).
• Different	values	give	AIC,	BIC,	and	so	on.

22

Forward	Selection	(Greedy	Search	Heuristic)
• In	search	and	score,	it’s	also	just	hard	to	search	for	the	best	‘S’.
– There	are	2d possible	sets.

• A	common	greedy	search	procedure	is	forward	selection:

Forward	Selection	(Greedy	Search	Heuristic)
• Forward	selection	algorithm	for	variable	selection:

1. Start	with	an	empty	set	of	features,	S	=	[].
2. For	each	possible	feature	‘j’:

• Compute	scores	of	features	in	‘S’	combined	with	feature	‘j’.

3. If	no	‘j’	improves	the	score,	stop.
4. Otherwise,	add	the	‘j’	that	improves	the	score	the	most	to	‘S’.
• Then	go	back	to	Step	2.

• Not	guaranteed	to	find	the	best	set,	but	reduces	many	problems:
– Considers	O(d2)	models:	cheaper,	overfits less,	has	fewer	false	positives.

Summary
• Information	criteria	are	scores	that	penalize	number	of	parameters.
– When	we	want	to	find	the	“true”	model.

• Feature	selection	is	task	of	choosing	the	relevant	features.
– Obvious	simple	approaches	have	obvious	simple	problems.

• Search	and	score:	find	features	that	optimize	some	score.
– L0-norm	penalties	are	the	most	common	scores.
– Forward	selection	is	a	heuristic	to	search	over	a	smaller	set	of	features.

Complexity	Penalties	for	Other	Models
• Scores	like	AIC	and	BIC	can	also	be	used	in	other	contexts:
– When	fitting	a	decision	tree,	only	split	a	node	if	it	improves	BIC.
– This	makes	sense	if	we’re	looking	for	the	“true	tree”,	or	maybe	just	a	
simple/interpretable	tree	that	performs	well.

• In	these	cases	we	replace	“L0-norm”	with	“degrees	of	freedom”.
– In	linear	models	fit	with	least	squares,	degrees	of	freedom	is	number	of	
non-zeroes.

– Unfortunately,	it	is	not	always	easy	to	measure	“degrees	of	freedom”.

Discussion	of	other	Scores	for	Model	Selection
• There	are	many	other	scores:
– Elbow	method	(similar	to	choosing	λ).

• You	could	also	use	BIC	for	choosing	‘k’	in	k-means.

– Methods	based	on	validation	error.
• “Take	smallest	‘p’	within	one	standard	error	of	minimum	cross-validation	error”.

– Minimum	description	length.
– Risk	inflation	criterion.
– False	discovery	rate.
– Marginal	likelihood (CPSC	540).

• These	can	adapted	to	use	the	L1-norm	and	other	errors.

Genome-Wide	Association	Studies
• Genome-wide	association	studies:
– Measure	if	there	exists	a	dependency	between	each	individual	“single-
nucleotide	polymorphism”	in	the	genome	and	a	particular	disease.

– Has	identified	thousands	of	genes	“associated”	with	diseases.
• But	by	design	this	has	a	huge	numbers	of	false	positives (and	many	false	negatives).

https://en.wikipedia.org/wiki/Genome-wide_association_study

Backward	Selection	and	RFE
• Forward	selection	often	works	better	than	naïve	methods.

• A	related	method	is	backward	selection:
– Start	with	all	features,	remove	the	one	that	most	improves	the	score.

• If	you	consider	adding	or	removing	features,	it’s	called	stagewise.

• Stochastic	local	search	is	a	class	of	fancier	methods.
– Simulated	annealing,	genetic	algorithms,	ant	colony	optimization,	etc.

• Recursive	feature	elimination	(RFE)	is	another	related	method:
– Fit	parameters	of	a	regression	model.
– Prune	features	with	small	regression	weights.
– Repeat.

