
CPSC	340:
Machine	Learning	and	Data	Mining

Regularization

1Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.



Admin
• Assignment	3
– Due	Friday

• Midterm
– Feb	14	(a	week	from	today)	in	class
– If	your	surname	starts	with	the	letters	A-G,	room	DMP	201
– If	your	surname	starts	with	the	letters	H-Z,	room	DMP	110	(this	room)
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Last	Time:	Feature	Selection
• Last	time	we	discussed	feature	selection:
– Choosing	set	of	“relevant”	features.

• Most	common	approach	is	search	and	score:	
– Define	“score”	and	“search”	for	features	with	best	score.

• But	it’s	hard	to	define	the	“score”	and	it’s	hard	to	“search”.
– So	we	often	use	greedy	methods	like	forward	selection.

• Methods	work	ok	on	“toy”	data,	but	are	frustrating	on	real	data…
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Is	“Relevance”	Clearly	Defined?
• Consider	a	supervised	classification	task:

• Predict	whether	someone	has	particular	genetic	variation	(SNP).
– Location	of	mutation	is	in	“mitochondrial”	DNA.

• “You	almost	always	have	the	same	value	as	your	mom”.

gender mom dad

F 1 0

M 0 1

F 0 0

F 1 1

SNP

1

0

0

1

4



Is	“Relevance”	Clearly	Defined?
• Consider	a	supervised	classification	task:

• True	model:
– (SNP	=	mom)	with	very	high	probability.
– (SNP	!=	mom)	with	some	very	low	probability.

• What	are	the	“relevant”	features	for	this	problem?
– Mom	is	relevant	and	{gender,	dad}	are	not	relevant.

gender mom dad

F 1 0

M 0 1

F 0 0

F 1 1

SNP

1

0

0

1

https://en.wikipedia.org/wiki/Human_mitochondrial_genetics
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Is	“Relevance”	Clearly	Defined?
• What	if	“mom”	feature	is	repeated?

• Are	“mom”	and	“mom2”	relevant?
– Should	we	pick	them	both?
– Should	we	pick	one	because	it	predicts	the	other?

• General	problem	(“dependence”,	“collinearity”	for	linear	models):
– If	features	can	be	predicted	from	features,	don’t	know	one(s)	to	pick.

gender mom dad mom2

F 1 0 1

M 0 1 0

F 0 0 0

F 1 1 1

SNP

1

0

0

1
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Is	“Relevance”	Clearly	Defined?
• What	if	we	add	“grandma”?

• Is	“grandma”	relevant?
– You	can	predict	SNP	very	accurately	from	“grandma”	alone.
– But	“grandma”	is	irrelevant	if	I	know	“mom”.

• General	problem	(conditional	independence):
– “Relevant”	features	may	be	irrelevant	given	other	features.

gender mom dad grandma

F 1 0 1

M 0 1 0

F 0 0 0

F 1 1 1

SNP

1

0

0

1
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Is	“Relevance”	Clearly	Defined?
• What	if	we	don’t	know	“mom”?

• Now	is	“grandma”	is	relevant?
– Without	“mom”	variable,	using	“grandma”	is	the	best	you	can	do.

• General	problem	(“taco	Tuesday”):
– Features	can	be	relevant	due	to	missing	information.

SNP

1

0

0

1

gender grandma dad

F 1 0

M 0 1

F 0 0

F 1 1
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Is	“Relevance”	Clearly	Defined?
• What	if	we	don’t	know	“mom”	or	“grandma”?

• Now	there	are	no	relevant	variables,	right?
– But	“dad”	and	“mom”	must	have	some	common	maternal	ancestor.

• General	problem	(effect	size):
– “Relevant”	features	may	have	small	effects.

SNP

1

0

0

1

gender dad

F 0

M 1

F 0

F 1
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Is	“Relevance”	Clearly	Defined?
• What	if	we	don’t	know	“mom”	or	“grandma”?

• Now	there	are	no	relevant	variables,	right?
– What	if	“mom”	likes	“dad”	because	he	has	the	same	SNP	as	her?

• General	problem	(confounding):
– Hidden	effects	can	make	“irrelevant”	variables	“relevant”.

SNP

1

0

0

1

gender dad

F 0

M 1

F 0

F 1
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Is	“Relevance”	Clearly	Defined?
• What	if	we	add	“sibling”?

• Sibling	is	“relevant”	for	predicting	SNP,	but	it’s	not	the	cause.
• General	problem	(non-causality	or	reverse	causality):
– A	“relevant”	feature	may	not	be	causal,	or	may	be	an	effect	of	label.

SNP

1

0

0

1

gender dad sibling

F 0 1

M 1 0

F 0 0

F 1 1
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Is	“Relevance”	Clearly	Defined?
• What	if	don’t	have	“mom”	but	we	have	“baby”?

• “Baby”	is	relevant	when	(gender	==	F).
– “Baby”	is	relevant	(though	causality	is	reversed).
– Is	“gender”	relevant?

• If	we	want	to	find	relevant	causal	factors,	“gender”	is	not	relevant.
• If	we	want	to	predict	SNP,	“gender”	is	relevant.

• General	problem	(context-specific	relevance):
– Adding	a	feature	can	make	an	“irrelevant”	feature	“relevant”.

SNP

1

0

0

1

gender dad baby

F 0 1

M 1 1

F 0 0

F 1 1
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Is	this	hopeless?
• We	often	want	to	do	feature	selection	we	so	have	to	try!

• Different	methods	are	affected	by	problems	in	different	ways.

• These	“problems”	don’t	have	right	answers	but	have	wrong	
answers:
– Variable	dependence (“mom”	and	“mom2”	have	same	information).
– Conditional	independence	(“grandma”	is	irrelevant	given	“mom”).

• Today	we	will	help	deal	with	collinearity.
• Friday	we	will	see	another	powerful	feature	selection	method.
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(pause)
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Controlling	Complexity
• Usually	“true”	mapping	from	xi to	yi is	complex.
– Might	need	high-degree	polynomial.
– Might	need	to	combine	many	features,	and	don’t	know	“relevant”	ones.

• But	complex	models	can	overfit.
• So	what	do	we	do???

• Our	main	tools:
– Model	averaging:	average	over	multiple	models	to	decrease	variance.
– Regularization:	add	a	penalty	on	the	complexity	of	the	model.
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L2-Regularization
• Standard	regularization strategy	is	L2-regularization:

• Intuition: large	slopes	wj tend	to	lead	to	overfitting.
• So	we	minimize	squared	error	plus	penalty	on	L2-norm	of	‘w’.
– This	objective	balances	getting	low	error	vs.	having	small	slopes ‘wj’.

• “You	can	increase	the	training	error	if	it	makes	‘w’	much	smaller.”
• Nearly-always reduces	overfitting.

– Regularization	parameter	λ	>	0	controls	“strength”	of	regularization.
• Large	λ	puts	large	penalty	on	slopes.
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L2-Regularization
• Standard	regularization strategy	is	L2-regularization:

• In	terms	of	fundamental	trade-off:
– Regularization	increases	training	error.
– Regularization	decreases	approximation	error.

• How	should	you	choose	λ?
– Theory:	as	‘n’	grows	λ should	be	in	the	range	O(1)	to	(n1/2).
– Practice:	optimize validation	set	or	cross-validation error.

• This	almost	always	decreases	the	test	error.
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Jupyter notebook	demo

18



Regularization	Path
• Regularization	path	is	a	plot	of	the	optimal	weights	‘wj’	as	‘λ’ varies:

• Starts	with	least	squares	with	λ=	0,	and	wj converge	to	0	as	λ grows.
19



L2-regularization	and	the	normal	equations
• When	using	L2-regularization	we	can	still	set	∇ f(w)	to	0	and	solve.
• Loss	before:	
• Loss	after:

• Gradient	before:	
• Gradient	after:

• Linear	system	before:	
• Linear	system	after:	
• But	unlike	XTX,	the	matrix	(XTX	+	λI)	is	always	invertible:
– Multiply	by	its	inverse	for	unique	solution:

20

rf(w) = XTXw �XT y

f(w) = ||Xw � y||22
f(w) = ||Xw � y||22 + �||w||22

XTXw = XT y

rf(w) = XTXw �XT y + �w

(XTX + �I)w = XT y



Why	use	L2-Regularization?
• It’s	a	weird	thing	to	do,	but	we	advise	“always	use	regularization”.
– “Almost	always	decreases	test	error”	should	already	convince	you.

• But	here	are	more	reasons:
1. Solution	‘w’	is	unique.	
2. XTX	does	not	need	to	be	invertible (no	collinearity	issues).
3. Solution	‘w’	less	sensitive	to	changes	in	X	or	y.
4. Gradient	descent	converges	faster (bigger	λ means	fewer	iterations).
5. Worst	case:	just	set	λ small	and	get	the	same	performance.
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L2	regularization:	not	just	for	linear	regression!
• We	can	use	L2	(and	other)	regularization	in	a	bunch	of	contexts
• Stay	tuned	for	regularization	later	in	the	course:
– Regularized	linear	classifiers
– Regularized	PCA
– Regularized	recommender	systems
– Regularized	neural	networks	/	deep	learning
– An	interpretation	of	regularization	in	the	Bayesian	framework

• Overall	intuition:	training	error	isn’t	the	goal,	so	why	minimize	it
– Try	to	change	the	loss	so	that	it	hopefully	better	reflects	test	error
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Summary
• “Relevance”	is	really	hard	to	define.
– Different	methods	have	different	effects	on	what	you	find.

• Regularization:
– Adding	a	penalty	on	model	complexity.

• L2-regularization:	penalty	on	L2-norm	of	regression	weights	‘w’.
– Almost	always	improves	test	error.
– Simple	closed-form	unique	solution
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Is	“Relevance”	Clearly	Defined?
• Warnings	about	feature	selection:
– A	feature	is	only	“relevant”	in	the	context	of	available	features.

• Adding/removing	features	can	make	features	relevant/irrelevant.

– Confounding	factors	can	make	“irrelevant”	variables	the	most	“relevant”.

– If	features	can	be	predicted	from	features,	you	can’t	know	which	to	pick.
• Collinearity	is	a	special	case	of	“dependence”	(which	may	be	non-linear).

– A	“relevant”	feature	may	have	a	tiny	effect.

– “Relevance”	for	prediction	does	not	imply	a	causal	relationship.
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Rough	Guide	to	Feature	Selection
Method\Issue Dependence Conditional	

Independence
Tiny	effects Context-Specific	

Relevance
Association
(e.g.,	measure
correlation between
features	‘j’	and	‘y’)

Ok	
(takes	“mom”	
and	“mom2”)

Bad
(takes	“grandma”,	

“great-grandma”,	etc.)

Ignores Bad
(misses	features	that	

must	interact,
“gender”	irrelevant	

given	“baby”)
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Rough	Guide	to	Feature	Selection
Method\Issue Dependence Conditional	

Independence
Tiny	effects Context-Specific	

Relevance
Association
(e.g.,	measure
correlation between
features	‘j’	and	‘y’)

Ok	
(takes	“mom”	
and	“mom2”)

Bad
(takes	“grandma”,	

“great-grandma”,	etc.)

Ignores Bad
(misses	features	that	

must	interact,
“gender”	irrelevant	

given	“baby”)
Regression Weight
(fit	least	squares,
take	biggest	|wj|)

Bad
(can	take irrelevant	but	

collinear,	can	take	
none	of	“mom1-3”)

Ok
(takes	“mom”	not	
“grandma”,	if	linear	

and	‘n’	large.

Ignores
(unless	collinear)

Ok
(if	linear, “gender”	

relevant	give	“baby”)
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Rough	Guide	to	Feature	Selection
Method\Issue Dependence Conditional	

Independence
Tiny	effects Context-Specific	

Relevance
Association
(e.g.,	measure
correlation between
features	‘j’	and	‘y’)

Ok	
(takes	“mom”	
and	“mom2”)

Bad
(takes	“grandma”,	

“great-grandma”,	etc.)

Ignores Bad
(misses	features	that	

must	interact,
“gender”	irrelevant	

given	“baby”)
Regression Weight
(fit	least	squares,
take	biggest	|wj|)

Bad
(can	take irrelevant	but	

collinear,	can	take	
none	of	“mom1-3”)

Ok
(takes	“mom”	not	
“grandma”,	if	linear	

and	‘n’	large.

Ignores
(unless	collinear)

Ok
(if	linear, “gender”	

relevant	give	“baby”)

Search	and	Score
w/ Validation	Error

Ok
(takes	at	least	one	of	
“mom”	and	“mom2”)

Bad
(takes	“grandma”,	

“great-grandma”,	etc.)

Allows Ok
(“gender”	relevant
given	“baby”)
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Rough	Guide	to	Feature	Selection

• gvhc

Method\Issue Dependence Conditional	
Independence

Tiny	effects Context-Specific	
Relevance

Association
(e.g.,	measure
correlation between
features	‘j’	and	‘y’)

Ok	
(takes	“mom”	
and	“mom2”)

Bad
(takes	“grandma”,	

“great-grandma”,	etc.)

Ignores Bad
(misses	features	that	

must	interact,
“gender”	irrelevant	

given	“baby”)

Regression Weight
(fit	least	squares,
take	biggest	|wj|)

Bad
(can	take irrelevant	but	

collinear,	can	take	
none	of	“mom1-3”)

Ok
(takes	“mom”	not	
“grandma”,	if	linear	

and	‘n’	large.

Ignores
(unless	collinear)

Ok
(if	linear, “gender”	

relevant	give	“baby”)

Search	and	Score
w/ Validation	Error

Ok
(takes	at	least	one	of	
“mom”	and	“mom2”)

Bad
(takes	“grandma”,	

“great-grandma”,	etc.)

Allows
(many	false	positives)

Ok
(“gender”	relevant
given	“baby”)

Search and	Score
w/	L0-norm

Ok
(takes	exactly	one	of	
“mom”	and “mom2”)

Ok
(takes “mom”	not	

grandma	if	linear-ish).

Ignores
(even	if	collinear)

Ok
(“gender”	relevant
given	“baby”)
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L2-Regularization
• Standard	regularization strategy	is	L2-regularization:

• Equivalent	to	minimizing	squared	
error	but	keeping	L2-norm	small.
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Alternative	to	Search	and	Score:	good	old	p-values

• Hypothesis	testing	(“constraint-based”)	approach:
– Generalization	of	the	“association”	approach	to	feature	selection.
– Performs	a	sequence	of	conditional	independence	tests.

– If	they	are	independent	(like	“p	<	.05”),	say	that	‘j’	is	“irrelevant”.

• Common	way	to	do	the	tests:
– “Partial”	correlation	(numerical	data).
– “Conditional”	mutual	information	(discrete	data).
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Testing-Based	Feature	Selection
• Hypothesis	testing	(“constraint-based”)	approach:
• Two	many	possible	tests,	“greedy”	method	is	for	each	‘j’	do:

• “Association	approach”	is	the	greedy	method	where	you	only	do	
the	first	test (subsequent	tests	remove	a	lot	of	false	positives).
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Hypothesis-Based	Feature	Selection
• Advantages:

– Deals	with	conditional	independence.
– Algorithm	can	explain	why	it	thinks	‘j’	is	irrelevant.
– Doesn’t	necessarily	need	linearity.

• Disadvantages:
– Deals	badly	with	exact	dependence:	doesn’t	select	“mom”	or	“mom2”	if	both	present.
– Usual	warning	about	testing	multiple	hypotheses:

• If	you	test	p	<	0.05	more	than	20	times,	you’re	going	to	make	errors.
– Greedy	approach	may	be	sub-optimal.

• Neither	good	nor	bad:
– Allows	tiny	effects.
– Says	“gender”	is	irrelevant	when	you	know	“baby”.
– This	approach	is	sometimes	better	for	finding	relevant	factors,	not	to	select	features	for	learning.
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Causality
• None	of	these	approaches	address	causality	or	confounding:
– “Mom”	is	the	only	relevant	causal	factor.
– “Dad”	is	really	irrelevant.
– “Grandma”	is	causal	but	is	irrelevant	if	we	know	“mom”.

• Other	factors	can	help	prediction	but	aren’t	causal:
• “Sibling”	is	predictive	due	to	confounding	of	effect	of	same	“mom”.
• “Baby”	is	predictive	due	to	reverse	causality.
• “Gender”	is	predictive	due	to	common	effect	on	“baby”.

• We	can	sometimes	address	this	using interventional	data…
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Interventional	Data
• The	difference	between	observational and	interventional data:
– If	I	see that	my	watch	says	4:45,	class	is	almost	over	(observational).
– If	I	set my	watch	to	say	4:45,	it	doesn’t	help	(interventional).

• The	intervention	can	help	discover	causal	effects:
– “Watch”	is	only	predictive	of	“time”	in	observational	setting	(so	not	
causal).

• General	idea	for	identifying	causal	effects:
– “Force”	the	variable	to	take	a	certain	value,	then	measure	the	effect.

• If	the	dependency	remains,	there	is	a	causal	effect.
• We	“break”	connections	from	reverse	causality,	common	effects,	or	confounding.
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Causality	and	Dataset	Collection
• This	has	to	do	with	the	way	you	collect	data:
– You	can’t	“look”	for	variables	taking	the	value	“after	the	fact”.
– You	need	to	manipulate	the	value	of	the	variable,	then	watch	for	changes.

• This	is	the	basis	for	randomized	control	trial in	medicine:
– Randomly	assigning	pills	“forces”	value	of	“treatment”	variable.
– Include	a	“control”	as	a	value	to	prevent	placebo	effect	as	confounding.

• See	also	Simpson’s	Paradox:
– https://www.youtube.com/watch?v=ebEkn-BiW5k
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Regularization/Shrinking	Paradox
• We	throw	darts	at	a	target:
– Assume	we	don’t	always	hit	the	exact	center.
– Assume	the	darts	follow	a	symmetric	pattern	
around	center.	
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Regularization/Shrinking	Paradox
• We	throw	darts	at	a	target:
– Assume	we	don’t	always	hit	the	exact	center.
– Assume	the	darts	follow	a	symmetric	pattern	
around	center.	

• Shrinkage	of	the	darts	:
1. Choose	some	arbitrary location	‘0’.
2. Measure	distances	from	darts	to	‘0’.
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Regularization/Shrinking	Paradox
• We	throw	darts	at	a	target:
– Assume	we	don’t	always	hit	the	exact	center.
– Assume	the	darts follow	a	symmetric	pattern	
around	center.	

• Shrinkage	of	the	darts	:
1. Choose	some	arbitrary location	‘0’.
2. Measure	distances	from	darts	to	‘0’.
3. Move	misses	towards	‘0’,	by	small

amount	proportional	to	distance	from	0.

• If	small	enough,	darts	will	be	closer	to	center	on	average.
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Regularization/Shrinking	Paradox
• We	throw	darts	at	a	target:
– Assume	we	don’t	always	hit	the	exact	center.
– Assume	the	darts follow	a	symmetric	pattern	
around	center.	

• Shrinkage	of	the	darts	:
1. Choose	some	arbitrary location	‘0’.
2. Measure	distances	from	darts	to	‘0’.
3. Move	misses	towards	‘0’,	by	small

amount	proportional	to	distance	from	0.

• If	small	enough,	darts	will	be	closer	to	center	on	average.
Visualization	of	the	related	higher-dimensional	paradox	that	the	mean	of	data	coming	from	a	Gaussian	
is	not	the	best	estimate	of	the	mean	of	the	Gaussian	in	3-dimensions	or	higher: https://www.naftaliharris.com/blog/steinviz39


