CPSC 340:
Machine Learning and Data Mining

More Regularization

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.



Admin

* Assignment 3
— Due tonight

 Midterm
— Feb 14 in class (this is the next time we’ll meet because of Monday holiday)
— If your surname starts with the letters A-G, room DMP 201
— If your surname starts with the letters H-Z, room DMP 110 (this room)
— Plenty of practice exams on course homepage
— Extra office hours added on Tuesday (see calendar)

e Tutorials
— Cancelled next week (due to Monday holiday)



Last Time: L2-Regularization

* We discussed regularization:

— Adding a continuous penalty on the model complexity:
— _
)= S I =yl + 2 J)7

— Best parameter A almost always leads to improved test error.
e L2-regularized least squares is also known as “ridge regression”.
e Can be solved as a linear system like least squares.

— Numerous other benefits:

* Solution is unique, less sensitive to data, gradient descent converges faster.



Features with Different Scales

e Consider continuous features with different scales:

Egg (#) Milk (mL) Pasta
(cups)
250 0) 1

0

1 250 200 1
0 0 0 0.5
2 250 150 0

* Should we convert to some standard ‘unit’?
— It doesn’t matter for decision trees or naive Bayes.
* They only look at one feature at a time.

— |t doesn’t matter for least squares:
* w;*(100 mL) gives the same model as w;*(0.1 L) with a different w;.



Features with Different Scales

e Consider continuous features with different scales:

Egg (#) Milk (mL) Pasta
(cups)
250 0) 1

0

1 250 200 1
0 0 0 0.5
2 250 150 0

e Should we convert to some standard ‘unit’?
— |t matters for k-nearest neighbours:
* “Distance” will be affected more by large features than small features.

— |t matters for regularized least squares:
* Penalizing (w;)*> means different things if features ‘j’ are on different scales.



Standardizing Features

* Itis common to standardize continuous features: - e
aAver )
— For each feature: D oy
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2. Subtract mean and divide by standard deviation:
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— Now changes in ‘w;" have similar effect for any feature .

e Should we regularize the y-intercept?
— No! The y-intercept can be anywhere, why encourage it to be close to zero?
— Yes! Regularizing all variables makes solution unigue and it easier to compute ‘w’.
— Compromise: regularize the bias by a smill_wt than other variables? (A

Ly Slxw=yl+ 2w =

)~



Standardizing Target

* In regression, we sometimes standardize the targets y..
— Puts targets on the same standard scale as standardized features:

Rer,(a(e Yi wi'h )/_l_:_/___.dy

%

* With standardized target, setting w = O predicts average y.:

— High regularization makes us predict closer to the average value.

* Other common transformations of y, are logarithm/exponent:

Use | og(w) or 8>(r (A'/y,-)

— Makes sense for geometric/exponential processes.



(pause)



RBFs, Regularization, and Validation

* Radial basis functions (RBFs):
— With ‘n’ data points RBFs have ‘n’ basis functions.

* How do we avoid overfitting with this huge number of features?

— We regularize ‘w’ and use validation error to choose ¢ and A.
* A model that is hard to beat:

— RBF basis with L2-regularization and cross-validation to choose o and A.

— Flexible non-parametric basis, magic of regularization, and tuning for test
error!

— Can add bias or linear/poly basis to do better away from data.
— But expensive at test time: needs distance to all training examples.



Hyperparameter Optimization

In this setting we have 2 hyperparameters (o and A).

More complicated models have even more hyperparameters.
— This makes searching all values expensive (and increases overfitting risk).

Leads to the problem of hyperparameter optimization.
— Try to efficiently find “best” hyperparameters.

Simplest approaches:

— Exhaustive search: try all combinations among a fixed set of o and A values.
* In scikit-learn, GridSearchCV

— Random search: try random values.
* |n scikit-learn, RandomizedSearchCV



Hyperparameter Optimization (bonus slide)

 Other common hyperparameter optimization methods:

— Coordinate search:
* Optimize one hyperparameter at a time, keeping the others fixed.
* Repeatedly go through the hyperparameters

— Generic global optimization methods:
e simulated annealing, genetic algorithms, etc.
— Bayesian optimization (Mike’s PhD topic):
e Use regression to build model of how hyper-parameters affect validation error.

* Try the best guess based on the model.
* Tends to be worth the hassle if each function evaluation is very expensive (slow).

e See bonus slides for a list of hyperparameter optimization software



(pause)



Previously: Search and Score

We talked about search and score for feature selection:
— Define a “score” and “search” for features with the best score.

Usual scores count the number of non-zeroes (“LO-norm”):
F)= LI = 12 + Al
.~
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But it’s hard to find the ‘W’ minimizing this objective.
We discussed forward selection, but requires fitting O(d?) models.



L1-Regularization

Consider regularizing by the L1-norm:
FG)= L= )12 + Ml

Like L2-norm, it’s convex and improves our test error.

Like LO-norm, it encourages elements of ‘w’ to be exactly zero.

L1-regularization simultaneously regularizes and selects features.
— Very fast alternative to search and score.
— Sometimes called “LASSO” regularization.



Sparsity and Least Squares

* Consider 1D least squares objective:
N
‘F(W>: ‘:l'z g'(w ) \/‘>Z

* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):

P
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* This variable does not look relevant (minimum is close to 0). (bonag)

— But for finite ‘n’ the minimum is unlikely to be exactly zero.




Sparsity and LO-Regularization

* Consider 1D LO-regularized least squares objective:

2 N i w0
«F(\,\):‘lig'(w X = \/i)Z + w/o/ O if w=0

* This is a convex 1D quadratic function but with a discontinuity at O: ()

/
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e LO-regularized minimum is often exactly at the ‘discontinuity’ at O:
— Sets the feature to exactly O (does feature selection), but is non-convex.



Sparsity and L2-Regularization

* Consider 1D L2-regularized least squares objective:

¥(w>3 ‘li g*'\'(w Xi = ‘/a)Z + %WQ

* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola): £(.)

.
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* L2-regularization moves it closer to zero, but not all the way to zero.

— It doesn’t do feature selection (“penalty goes to 0 as slope goes to 0”).



Sparsity and L1-Regularization

* Consider 1D L1-regularized least squares objective:
= 42wy y)?
ﬁ(\z\/)" 2 &N ﬂ)w\

* This is a convex piecewise-quadratic function of ‘w’ with ‘kink’ at O: £(.)
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* L1-regularization tends to set variables to exactly O (feature selection).
— Penalty on slope is 4 even if you are close to zero.
— Big A selects few features, small A allows many features.



L2-Regularization vs. L1-Regularization

 Regularization path of w. values as ‘A’ varies:

Regularization Path Regularization Path
T I
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* Bonus slides: details on why only L1-regularization gives sparsity.



L2-Regularization vs. L1-Regularization

e L2-Regularization: * L1-Regularization:
— Insensitive to changes in data. — Insensitive to changes in data.
— Decreased variance: — Decreased variance:
* Lower test error. * Lower test error.
— Closed-form solution. — Requires iterative solver.
— Solution is unique. — Solution is not unique.
— All ‘w’ tend to be non-zero. — Many ‘w’ tend to be zero.

e Can also do both (“elastic net regularization”)



L1-loss vs. L1-regularization

 Don’t confuse the L1 loss with L1-regularization!!!

— L1-loss is robust to outlier data points.
* You can use instead of removing outliers.
* “sparse residuals”
— L1-regularization is robust to irrelevant features.

* You can use instead of removing features.
* “sparse coefficients/weights”

* And note that you can be robust to outliers and select features:

"ﬁ(w): {,va—\/“, -+ /A’/w//,

* Why aren’t we smoothing and using “Huber regularization”?
— With the L1 loss, we cared about its behavior far from O.

— With L1 regularization, we care about its behavior near O.
* It’s precisely the non-smoothness that sets weights to exactly O.

21



Summary

e Standardizing features:

— For some models it makes sense to have features on the same scale.

* Hyperparameter optimization

— A difficult but important task, especially with lots of hyperparameters.

* L1-regularization:
— Simultaneous regularization and feature selection.
— Robust to having lots of irrelevant features.
— Not the same thing as using the L1 loss.



Why doesn’t L2-Regularization set variables to 0?

* Consider an L2-regularized Iﬂeast squares problem with 1 feature:
{(w) = 7:2 (wx.~ y;)L t f\/i,wl

* Let’s solve for the optimal ‘w’:

n N
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* So as A gets bigger, ‘W’ converges to 0.
* However, for all finite A ‘w’ will be non-zero unless y'x = 0.

— But it’s very unlikely that y™x will be exactly zero.



Why doesn’t L2-Regularization set variables to 0?

. Small A Big A

\ 1 / \

N i

e Solution further from zero Solution closer to zero
(but not exactly 0)



Why does L1-Regularization set things to 07?

* Consider an L1-regularized least squares problem with 1 feature:
fhf:%éﬂwm'xﬂ'VMhJ
e If (w=0), then “left” limit and “right” limit are given by:
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* So what should gradient descent do if (w=0)?
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Why does L1-Regularization set things to 07?

Small A Big A

\ 1 / \ 1 /

i / i

& i

Solution nonzero Solution exactly zero

(minimum of left parabola is past origin, but right parabola is not) (minima of both parabolas are past the origin)



L2-regularization vs. L1-regularization

e So with 1 feature:

— L2-regularization only sets ‘w’ to 0 if y'x = 0.
* There is a only a single possible y'x value where the variable gets set to zero.
* And A has nothing to do with the sparsity.

— L1-regularization sets ‘w’ to O if |y™x| <A.
* There is a range of possible y'x values where the variable gets set to zero.
* And increasing A increases the sparsity since the range of y'x grows.

* Note thatit’s really important that the function is non-
differentiable:

— If we used “Huber regularization”, it would select all variables.



L1-Loss vs. Huber Loss

 The same reasoning tells us the difference between the L1 *loss*
and the Huber loss. They are very similar in that they both grow
linearly far away from 0. So both are both robust but...

— With the L1 loss the model often passes exactly through some points.
— With Huber the model doesn’t necessarily pass through any points.

 Why? With L1-regularization we were causing the elements of ‘'w’
to be exactly 0. Analogously, with the L1-loss we cause the
elements of ‘r’ (the residual) to be exactly zero. But zero residual
for an example means you pass through that example exactly.



Non-Uniqueness of L1-Regularized Solution

How can L1-regularized least squares solution not be unique?

— Isn’t it convex?

Convexity implies that minimum value of f(w) is unique (if exists),
but there may be multiple ‘w’ values that achieve the minimum.

Consider L1-regularized least squares with d=2, where feature 2 is a
copy of a feature 1. For a solution (w,,w,) we have:

N

Yi = WXy tw,Xy = W, %, F Wy by = (Wl+wz )Xn

So we can get the same squared error with different w, and w, values
that have the same sum. Further, if neither w, or w, changes sign, then
lw,| + |w,| will be the same so the new w,; and w, will be a solution.



Predicting the Future

* In principle, we can use any features x; that we think are relevant.
* This makes it tempting to use time as a feature, and predict future.

43
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Predicting the Future

* |In principle, we can use any features x; that we think are relevant.
* This makes it tempting to use time as a feature, and predict future.
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Predicting 100m times 400 years in the future?

Male 100 m Sprint Prediction
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Interpolation vs Extrapolation

Interpolation is task of predicting “between the data points”.
— Regression models are good at this if you have enough data and function is smooth.

Extrapolation is task of prediction outside the range of the data points.
— Without assumptions, regression models can be embarrassingly-bad at this.

If you run the 100m regression models backwards in time:
— They predict that humans used to be really really slow!

If you run the 100m regression models forwards in time:
— They might eventually predict arbitrarily-small 100m times.

— The linear model actually predicts negative times in the future.
* These time traveling races in 2060 should be pretty exciting!

Some discussion here:
— http://callingbullshit.org/case studies/case study gender gap running.html




No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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Ockham’s Razor vs. No Free Lunch

* Ockham’s razor is a problem-solving principle:

— “Among competing hypotheses, the one with the
fewest assumptions should be selected.”

— Suggests we should select linear model.

* Fundamental trade-off:
— |f same training error, pick model less likely to overfit.
— Formal version of Occam’s problem-solving principle.

— Also suggests we should select linear model.

e No free lunch theorem:

— There exists possible datasets where you should
select the green model.



No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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Discussion: Climate Models

* Has Earth warmed up over last 100 years? (Consistency zone)
— Data clearly says “yes”.

Global Land—Ocean Temperature Index

=
o

—=—Annual Mean
5-year Running Mean
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 Will Earth continue to warm over next 100 years? (generalization error)
— We should be more skeptical about models that predict future events.



Discussion: Climate Models

* So should we all become global warming skeptics?

* If we average over models that overfit in *independent™* ways, we
expect the test error to be lower, so this gives more confidence:

Global Warming Projections
—— CCSR/NIES W

— CCCma s
CSIRO //“
Hadley Centre M
GFDL .
MPIM

— NCARPCM
— NCARCSM

- N w N (&)

......................................................
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o
Temperature Anomaly (°C)

'
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1900 1950 2000 2050 2100

— We should be skeptical of individual models, but agreeing predictions
made by models with different data/assumptions are more likely be true.

 If all near-future predictions agree, they are likely to be accurate.
* As we go further in the future, variance of average will be higher.



Splines in 1D

* For 1D interpolation, alternative to polynomials/RBFs are splines:
— Use a polynomial in the region between each data point.
— Constrain some derivatives of the polynomials to yield a unique solution.

* Most common example is cubic spline:
— Use a degree-3 polynomial between each pair of points.
— Enforce that f’(x) and f”’(x) of polynomials agree at all point.
— “Natural” spline also enforces f"’(x) = 0 for smallest and largest x.

Approximating f(x) = x sin(2x x + 1) using Natural cubic splines

* Non-trivial fact: natural cubic splines are sum of: ~
— Y-intercept. "
— Linear basis.
— RBFs with g(g) = €3.
* Different than Gaussian RBF because it increases with distance.

= Cubic splins Approx.
= = Exact Function




Splines in Higher Dimensions

* Splines generalize to higher dimensions if data lies on a grid.
— For more general (“scattered”) data, there isn’t a natural generalization.
e Common 2D “scattered” data interpolation is thin-plate splines:

— Based on curve made when bending sheets of metal.
— Corresponds to RBFs with g(e) = €2 log(¢).

* Natural splines and thin-plate splines: special cases of
“polyharmonic” splines:
— Less sensitive to parameters than Gaussian RBF. =




L2-Regularization vs. L1-Regularization

| 2-regularization conceptually restricts ‘w’ to a ball.
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L2-Regularization vs. L1-Regularization

| 2-regularization conceptually restricts ‘w’ to a ball.

@ Unconstrained Solution
A @) L2-Regularized Solution |,

.. | @Unconstrained Solution
“...] © L1-Regularized Solution .,

_1-regularization restricts to the L1 “ball”:
— Solutions tend to be at corners where W, are zero.

Related Infinite Series video




* L2-regularization

— Can learn with linear number of irrelevant features.

* E.g., only O(d) relevant features.

* L1-regularization

— Can learn with exponential number of irrelevant features.
e E.g., only O(log(d)) relevant features.
* Paper on this result by Andrew Ng:

— http://www.andrewng.org/portfolio/feature-selection-l1-vs-12-regularization-and-rotational-
invariance/



Some hyperparameter optimization software

 Hyperparameter tuning with scikit-learn:
— https://github.com/hyperopt/hyperopt-sklearn
— https://github.com/automl/auto-sklearn
— https://sigopt.com/docs/overview/scikit learn

e Other software (not scikit-learn specific):
— https://github.com/rhiever/tpot
— https://github.com/hyperopt/hyperopt
— https://github.com/zygmuntz/hyperband
— http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
— https://github.com/Yelp/MOE
— https://github.com/mwhoffman/pybo
— https://github.com/HIPS/Spearmint
— https://github.com/rmcantin/bayesopt
— https://github.com/PythonOptimizers/opal
* Note: this list is biased towards Bayesian optimization, since that’s what | (Mike) know best. This
list isn't meant to be exhaustive.

* The recently announced Amazon SageMaker also does hyperparameter optimization for you.




