
CPSC	340:
Machine	Learning	and	Data	Mining

More	Regularization

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.

Admin
• Assignment	3
– Due	tonight

• Midterm
– Feb	14	in	class	(this	is	the	next	time	we’ll	meet	because	of	Monday	holiday)
– If	your	surname	starts	with	the	letters	A-G,	room	DMP	201
– If	your	surname	starts	with	the	letters	H-Z,	room	DMP	110	(this	room)
– Plenty	of	practice	exams	on	course	homepage
– Extra	office	hours	added	on	Tuesday	(see	calendar)

• Tutorials
– Cancelled	next	week	(due	to	Monday	holiday)

Last	Time:	L2-Regularization
• We	discussed	regularization:
– Adding	a	continuous penalty	on	the	model	complexity:

– Best	parameter	λ almost	always	leads	to	improved	test	error.
• L2-regularized	least	squares	is	also	known	as	“ridge	regression”.
• Can	be	solved	as	a	linear	system	like	least	squares.

– Numerous	other	benefits:
• Solution	is	unique,	less	sensitive	to	data,	gradient	descent	converges	faster.

Features	with	Different	Scales
• Consider	continuous	features	with	different	scales:

• Should	we	convert	to	some	standard	‘unit’?
– It	doesn’t	matter	for	decision	trees	or	naïve	Bayes.

• They	only	look	at	one	feature	at	a	time.
– It	doesn’t	matter	for	least	squares:

• wj*(100	mL)	gives	the	same	model	as	wj*(0.1	L)	with	a	different	wj.

Egg	(#) Milk	(mL) Fish	(g) Pasta
(cups)

0 250 0 1
1 250 200 1
0 0 0 0.5
2 250 150 0

Features	with	Different	Scales
• Consider	continuous	features	with	different	scales:

• Should	we	convert	to	some	standard	‘unit’?
– It	matters	for	k-nearest	neighbours:

• “Distance”	will	be	affected	more	by	large	features	than	small	features.
– It	matters	for	regularized	least	squares:

• Penalizing	(wj)2 means	different	things	if	features	‘j’	are	on	different	scales.

Egg	(#) Milk	(mL) Fish	(g) Pasta
(cups)

0 250 0 1
1 250 200 1
0 0 0 0.5
2 250 150 0

Standardizing	Features
• It	is	common	to	standardize	continuous	features:
– For	each	feature:

1. Compute	mean	and	standard	deviation:

2. Subtract	mean	and	divide	by	standard	deviation:

– Now	changes	in	‘wj’	have	similar	effect	for	any	feature	‘j’.
• Should	we	regularize	the	y-intercept?
– No!	The	y-intercept	can	be	anywhere,	why	encourage	it	to	be	close	to	zero?
– Yes!	Regularizing	all	variables	makes	solution	unique	and	it	easier	to	compute	‘w’.
– Compromise:	regularize	the	bias	by	a	smaller	amount	than	other	variables?

Standardizing	Target
• In	regression,	we	sometimes	standardize	the	targets	yi.
– Puts	targets	on	the	same	standard	scale	as	standardized	features:

• With	standardized	target,	setting	w	=	0	predicts	average	yi:
– High	regularization	makes	us	predict	closer	to	the	average	value.

• Other	common	transformations	of	yi are	logarithm/exponent:

– Makes	sense	for	geometric/exponential	processes.	

(pause)

RBFs,	Regularization,	and	Validation
• Radial	basis	functions (RBFs):
– With	‘n’	data	points	RBFs	have	‘n’	basis	functions.

• How	do	we	avoid	overfitting	with	this	huge	number	of	features?
– We regularize ‘w’	and	use	validation	error	to	choose	𝜎	and	λ.

• A	model	that	is	hard	to	beat:
– RBF	basis	with	L2-regularization	and	cross-validation	to	choose	𝜎	and	λ.
– Flexible	non-parametric	basis,	magic	of	regularization,	and	tuning	for	test	
error!

– Can	add	bias	or	linear/poly	basis	to	do	better	away	from	data.
– But	expensive	at	test	time:	needs	distance	to	all	training	examples.

Hyperparameter Optimization
• In	this	setting	we	have	2	hyperparameters (𝜎	and	λ).
• More	complicated	models	have	even	more	hyperparameters.
– This	makes	searching	all	values	expensive (and	increases	overfitting	risk).

• Leads	to	the	problem	of	hyperparameter optimization.
– Try	to	efficiently	find	“best”	hyperparameters.

• Simplest	approaches:
– Exhaustive	search:	try	all	combinations	among	a	fixed	set	of	σ and	λ values.

• In	scikit-learn,	GridSearchCV
– Random	search:	try	random	values.

• In	scikit-learn,	RandomizedSearchCV

Hyperparameter Optimization	(bonus	slide)
• Other	common	hyperparameter optimization methods:
– Coordinate	search:

• Optimize	one	hyperparameter at	a	time,	keeping	the	others	fixed.
• Repeatedly	go	through	the	hyperparameters

– Generic	global	optimization	methods:
• simulated	annealing,	genetic	algorithms,	etc.

– Bayesian	optimization (Mike’s	PhD	topic):
• Use	regression	to	build	model	of	how	hyper-parameters	affect	validation	error.
• Try	the	best	guess	based	on	the	model.
• Tends	to	be	worth	the	hassle	if	each	function	evaluation	is	very	expensive	(slow).

• See	bonus	slides	for	a	list	of	hyperparameter optimization	software

(pause)

Previously:	Search	and	Score
• We	talked	about search	and	score for	feature	selection:
– Define	a	“score”	and	“search”	for	features	with	the	best	score.

• Usual	scores	count	the	number	of	non-zeroes	(“L0-norm”):

• But	it’s	hard	to	find	the	‘w’	minimizing	this	objective.
• We	discussed	forward	selection,	but	requires	fitting	O(d2)	models.

L1-Regularization
• Consider	regularizing	by	the	L1-norm:

• Like	L2-norm,	it’s	convex	and	improves	our	test	error.
• Like	L0-norm,	it	encourages	elements	of	‘w’	to	be	exactly	zero.

• L1-regularization	simultaneously	regularizes	and	selects	features.
– Very	fast	alternative	to	search	and	score.
– Sometimes	called	“LASSO”	regularization.

Sparsity	and	Least	Squares
• Consider	1D	least	squares	objective:

• This	is	a	convex	1D	quadratic	function	of	‘w’	(i.e.,	a	parabola):

• This	variable	does	not	look	relevant	(minimum	is	close	to	0).
– But	for	finite	‘n’	the	minimum	is	unlikely	to	be	exactly	zero.

Sparsity	and	L0-Regularization
• Consider	1D	L0-regularized least	squares	objective:

• This	is	a	convex	1D	quadratic	function	but	with	a	discontinuity	at	0:

• L0-regularized	minimum	is	often	exactly	at	the	‘discontinuity’	at	0:
– Sets	the	feature	to	exactly	0	(does	feature	selection),	but	is non-convex.

Sparsity	and	L2-Regularization
• Consider	1D	L2-regularized least	squares	objective:

• This	is	a	convex	1D	quadratic	function	of	‘w’	(i.e.,	a	parabola):

• L2-regularization	moves	it	closer	to	zero,	but	not	all	the	way	to	zero.
– It	doesn’t	do	feature	selection	(“penalty	goes	to	0	as	slope	goes	to	0”).

Sparsity	and	L1-Regularization
• Consider	1D	L1-regularized least	squares	objective:

• This	is	a	convex piecewise-quadratic	function	of	‘w’	with	‘kink’	at	0:

• L1-regularization	tends	to	set	variables	to	exactly	0 (feature	selection).
– Penalty	on	slope	is	𝜆	even	if	you	are	close	to	zero.
– Big	𝜆 selects	few	features,	small	𝜆 allows	many	features.

L2-Regularization	vs.	L1-Regularization
• Regularization	path	of	wj values	as	‘λ’	varies:

• Bonus	slides:	details	on	why	only	L1-regularization	gives	sparsity.

L2-Regularization	vs.	L1-Regularization
• L2-Regularization:
– Insensitive	to	changes	in	data.
– Decreased	variance:

• Lower	test	error.
– Closed-form	solution.
– Solution	is	unique.
– All	‘w’	tend	to	be	non-zero.

• L1-Regularization:
– Insensitive	to	changes	in	data.
– Decreased	variance:

• Lower	test	error.
– Requires	iterative	solver.
– Solution	is	not	unique.
– Many	‘w’	tend	to	be	zero.

• Can	also	do	both	(“elastic	net	regularization”)

L1-loss vs.	L1-regularization
• Don’t	confuse	the	L1	loss	with	L1-regularization!!!
– L1-loss	is	robust	to	outlier	data	points.

• You	can	use	instead	of	removing	outliers.
• “sparse	residuals”

– L1-regularization	is	robust	to	irrelevant	features.
• You	can	use	instead	of	removing	features.
• “sparse	coefficients/weights”

• And	note	that	you	can	be	robust	to	outliers	and	select	features:

• Why	aren’t	we	smoothing	and	using	“Huber	regularization”?
– With	the	L1	loss,	we	cared	about	its	behavior	far	from	0.
– With	L1	regularization,	we	care	about	its	behavior	near	0.

• It’s	precisely	the	non-smoothness	that	sets	weights	to	exactly	0.
21

Summary
• Standardizing	features:
– For	some	models	it	makes	sense	to	have	features	on	the	same	scale.

• Hyperparameter optimization
– A	difficult	but	important	task,	especially	with	lots	of	hyperparameters.

• L1-regularization:	
– Simultaneous	regularization	and	feature	selection.
– Robust	to	having	lots	of	irrelevant	features.
– Not	the	same	thing	as	using	the	L1	loss.

Why	doesn’t	L2-Regularization	set	variables	to	0?

• Consider	an	L2-regularized	least	squares	problem	with	1	feature:

• Let’s	solve	for	the	optimal	‘w’:

• So	as	λ gets	bigger,	‘w’	converges	to	0.
• However,	for	all	finite	λ ‘w’	will	be	non-zero	unless	yTx =	0.
– But	it’s	very	unlikely	that	yTx will	be	exactly	zero.

Why	doesn’t	L2-Regularization	set	variables	to	0?

24

• Small	𝜆	 Big	𝜆

• Solution	further	from	zero Solution	closer	to	zero
(but	not	exactly	0)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.8

0.8

1.6

2.4

3.2

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.8

0.8

1.6

2.4

3.2

4

Why	does	L1-Regularization	set	things	to	0?
• Consider	an	L1-regularized	least	squares	problem	with	1	feature:

• If	(w	=	0),	then	“left”	limit	and	“right“	limit	are	given	by:

• So	what	should	gradient	descent	do	if	(w=0)?

Why	does	L1-Regularization	set	things	to	0?

26

• Small	λ Big	λ

• Solution	nonzero Solution	exactly	zero
(minimum	of	left	parabola	is	past	origin,	but	right	parabola	is	not)	 (minima	of	both	parabolas	are	past	the	origin)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.8

0.8

1.6

2.4

3.2

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.8

0.8

1.6

2.4

3.2

4

L2-regularization	vs.	L1-regularization
• So	with	1	feature:
– L2-regularization	only	sets	‘w’	to	0	if	yTx =	0.

• There	is	a	only	a	single	possible	yTx value	where	the	variable	gets	set	to	zero.
• And	λ	has	nothing	to	do	with	the	sparsity.

– L1-regularization	sets	‘w’	to	0	if	|yTx|	≤λ.
• There	is	a	range	of	possible	yTx values	where	the	variable	gets	set	to	zero.
• And	increasing	λ	increases	the	sparsity	since	the	range	of	yTx grows.

• Note	that	it’s	really	important	that	the	function	is	non-
differentiable:
– If	we	used	“Huber	regularization”,	it	would	select	all	variables.

L1-Loss	vs.	Huber	Loss
• The	same	reasoning	tells	us	the	difference	between	the	L1	*loss*	
and	the	Huber	loss.	They	are	very	similar	in	that	they	both	grow	
linearly	far	away	from	0.	So	both	are	both	robust	but…
– With	the	L1	loss	the	model	often	passes	exactly	through	some	points.
– With	Huber	the	model	doesn’t	necessarily	pass	through	any	points.

• Why?	With	L1-regularization	we	were	causing	the	elements	of	’w’	
to	be	exactly	0.	Analogously,	with	the	L1-loss	we	cause	the	
elements	of	‘r’	(the	residual)	to	be	exactly	zero.	But	zero	residual	
for	an	example	means	you	pass	through	that	example	exactly.

28

Non-Uniqueness	of	L1-Regularized	Solution
• How	can	L1-regularized	least	squares	solution	not	be	unique?
– Isn’t	it	convex?

• Convexity	implies	that	minimum	value	of	f(w)	is	unique	(if	exists),
but	there	may	be	multiple	‘w’	values	that	achieve	the	minimum.

• Consider	L1-regularized	least	squares	with	d=2,	where	feature	2	is	a	
copy	of	a	feature	1.	For	a	solution	(w1,w2)	we	have:

• So	we	can	get	the	same	squared	error	with	different	w1 and	w2 values	
that	have	the	same	sum.	Further,	if	neither	w1 or	w2 changes	sign,	then	
|w1|	+	|w2|	will	be	the	same	so	the	new	w1 and	w2 will	be	a	solution.

Predicting	the	Future
• In	principle,	we	can	use	any	features	xi that	we	think	are	relevant.
• This	makes	it	tempting	to	use	time as	a	feature,	and	predict	future.

https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-mile/

Predicting	the	Future
• In	principle,	we	can	use	any	features	xi that	we	think	are	relevant.
• This	makes	it	tempting	to	use	time as	a	feature,	and	predict	future.

https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-mi
https://overthehillsports.wordpress.com/tag/hicham-el-guerrouj/le/

Predicting	100m	times	400	years	in	the	future?

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gif

Predicting	100m	times	400	years	in	the	future?

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gif
http://www.washingtonpost.com/blogs/london-2012-olympics/wp/2012/08/08/report-usain-bolt-invited-to-tryout-for-manchester-united/

Interpolation	vs	Extrapolation
• Interpolation is	task	of	predicting	“between	the	data	points”.

– Regression	models	are	good	at	this	if	you	have	enough	data	and	function	is	smooth.
• Extrapolation is	task	of	prediction	outside	the	range	of	the	data	points.

– Without	assumptions,	regression	models	can	be	embarrassingly-bad	at	this.

• If	you	run	the	100m	regression	models	backwards	in	time:
– They	predict	that	humans	used	to	be	really	really slow!

• If	you	run	the	100m	regression	models	forwards	in	time:
– They	might	eventually	predict	arbitrarily-small	100m	times.
– The	linear	model	actually	predicts	negative	times	in	the	future.

• These	time	traveling	races	in	2060	should	be	pretty	exciting!

• Some	discussion	here:
– http://callingbullshit.org/case_studies/case_study_gender_gap_running.html

No	Free	Lunch,	Consistency,	and	the	Future

No	Free	Lunch,	Consistency,	and	the	Future

No	Free	Lunch,	Consistency,	and	the	Future

Ockham’s	Razor	vs.	No	Free	Lunch
• Ockham’s	razor is	a	problem-solving	principle:
– “Among	competing	hypotheses,	the	one	with	the	
fewest	assumptions	should	be	selected.”

– Suggests	we	should	select	linear	model.

• Fundamental	trade-off:
– If	same	training	error,	pick	model	less	likely	to	overfit.
– Formal	version	of	Occam’s	problem-solving	principle.
– Also	suggests	we	should	select	linear	model.

• No	free	lunch	theorem:
– There	exists	possible	datasets	where	you	should	
select	the	green	model.

No	Free	Lunch,	Consistency,	and	the	Future

No	Free	Lunch,	Consistency,	and	the	Future

No	Free	Lunch,	Consistency,	and	the	Future

No	Free	Lunch,	Consistency,	and	the	Future

No	Free	Lunch,	Consistency,	and	the	Future

No	Free	Lunch,	Consistency,	and	the	Future

No	Free	Lunch,	Consistency,	and	the	Future

Discussion:	Climate	Models
• Has	Earth	warmed	up	over	last	100	years?	(Consistency	zone)
– Data	clearly	says	“yes”.

• Will	Earth	continue	to	warm	over	next	100	years?	(generalization	error)
– We	should	be	more	skeptical	about	models	that	predict	future	events.

https://en.wikipedia.org/wiki/Global_warming

Discussion:	Climate	Models
• So	should	we	all	become	global	warming	skeptics?
• If	we	average	over	models	that	overfit in	*independent*	ways,	we	
expect	the	test	error	to	be	lower,	so	this	gives	more	confidence:

– We	should	be	skeptical	of	individual	models,	but	agreeing	predictions	
made	by	models	with	different	data/assumptions	are	more	likely	be	true.

• If	all	near-future	predictions	agree,	they	are	likely	to	be	accurate.
• As	we	go	further	in	the	future,	variance	of	average	will	be	higher.

https://en.wikipedia.org/wiki/Global_warming

Splines	in	1D
• For	1D	interpolation,	alternative	to	polynomials/RBFs	are	splines:
– Use	a	polynomial	in	the	region	between	each	data	point.
– Constrain	some	derivatives	of	the	polynomials	to	yield	a	unique	solution.

• Most	common	example	is	cubic	spline:	
– Use	a	degree-3	polynomial	between	each	pair	of	points.
– Enforce	that	f’(x)	and	f’’(x)	of	polynomials	agree	at	all	point.
– “Natural”	spline	also	enforces	f’’(x)	=	0	for	smallest	and	largest	x.

• Non-trivial	fact:	natural	cubic	splines	are	sum	of:
– Y-intercept.
– Linear	basis.
– RBFs	with	g(ε)	=	ε3.

• Different	than	Gaussian	RBF	because	it	increases	with	distance.

http://www.physics.arizona.edu/~restrepo/475A/Notes/sourcea-/node35.html

Splines	in	Higher	Dimensions
• Splines	generalize	to	higher	dimensions	if	data	lies	on	a	grid.
– For	more	general	(“scattered”)	data,	there	isn’t	a	natural	generalization.

• Common	2D	“scattered”	data	interpolation	is	thin-plate	splines:
– Based	on	curve	made	when	bending	sheets	of	metal.
– Corresponds	to	RBFs	with	g(ε)	=	ε2 log(ε).

• Natural	splines	and	thin-plate	splines:	special	cases	of	
“polyharmonic”	splines:
– Less	sensitive	to	parameters	than	Gaussian	RBF.

http://step.polymtl.ca/~rv101/thinplates/

L2-Regularization	vs.	L1-Regularization
• L2-regularization	conceptually	restricts	‘w’	to	a	ball.

L2-Regularization	vs.	L1-Regularization
• L2-regularization	conceptually	restricts	‘w’	to	a	ball.

• L1-regularization	restricts	to	the	L1	“ball”:
– Solutions	tend	to	be	at	corners	where	wj are	zero.

Related	Infinite	Series	video

• L2-regularization
– Can	learn	with	linear number	of	irrelevant	features.

• E.g.,	only	O(d)	relevant	features.

• L1-regularization
– Can	learn	with	exponential number	of	irrelevant	features.

• E.g.,	only	O(log(d))	relevant	features.
• Paper	on	this	result	by	Andrew	Ng:

– http://www.andrewng.org/portfolio/feature-selection-l1-vs-l2-regularization-and-rotational-
invariance/

Some	hyperparameter optimization	software
• Hyperparameter tuning	with	scikit-learn:

– https://github.com/hyperopt/hyperopt-sklearn
– https://github.com/automl/auto-sklearn
– https://sigopt.com/docs/overview/scikit_learn

• Other	software	(not	scikit-learn	specific):	
– https://github.com/rhiever/tpot
– https://github.com/hyperopt/hyperopt
– https://github.com/zygmuntz/hyperband
– http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
– https://github.com/Yelp/MOE
– https://github.com/mwhoffman/pybo
– https://github.com/HIPS/Spearmint
– https://github.com/rmcantin/bayesopt
– https://github.com/PythonOptimizers/opal

• Note:	this	list	is	biased	towards	Bayesian	optimization,	since	that’s	what	I	(Mike)	know	best. This	
list	isn't	meant	to	be	exhaustive.	

• The	recently	announced	Amazon	SageMaker also	does	hyperparameter optimization	for	you.

