CPSC 340: Machine Learning and Data Mining

More Regularization

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.

Admin

• Assignment 3

Due tonight

• Midterm

- Feb 14 in class (this is the next time we'll meet because of Monday holiday)
- If your surname starts with the letters A-G, room DMP 201
- If your surname starts with the letters H-Z, room DMP 110 (this room)
- Plenty of practice exams on course homepage
- Extra office hours added on Tuesday (see calendar)

• Tutorials

Cancelled next week (due to Monday holiday)

Last Time: L2-Regularization

- We discussed regularization:
 - Adding a continuous penalty on the model complexity:

$$f(w) = \frac{1}{2} ||X_w - y||^2 + \frac{1}{2} ||w||^2$$

- Best parameter λ almost always leads to improved test error.
 - L2-regularized least squares is also known as "ridge regression".
 - Can be solved as a linear system like least squares.
- Numerous other benefits:
 - Solution is unique, less sensitive to data, gradient descent converges faster.

Features with Different Scales

• Consider continuous features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It doesn't matter for decision trees or naïve Bayes.
 - They only look at one feature at a time.
 - It doesn't matter for least squares:
 - $w_i^*(100 \text{ mL})$ gives the same model as $w_i^*(0.1 \text{ L})$ with a different w_i .

Features with Different Scales

• Consider continuous features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It matters for k-nearest neighbours:
 - "Distance" will be affected more by large features than small features.
 - It matters for regularized least squares:
 - Penalizing $(w_i)^2$ means different things if features 'j' are on different scales.

Standardizing Features

- It is common to standardize continuous features:
 - For each feature:
 - 1. Compute mean and standard deviation: $\mathcal{M}_{j} = \frac{1}{n} \sum_{i=1}^{n} X_{ij}$ $\mathcal{O}_{j} = \left[\frac{1}{n} \sum_{i=1}^{n} (x_{ij} y_{j})^{2}\right]$
 - 2. Subtract mean and divide by standard deviation:

Replace
$$X_{ij}$$
 with $\frac{X_{ij} - M_{ij}}{O_{ij}}$

X=

 $-3 \frac{1}{2} ||Xw - y||^2 + \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3}$

- Now changes in ' w_i ' have similar effect for any feature 'j'.
- Should we regularize the y-intercept?
 - No! The y-intercept can be anywhere, why encourage it to be close to zero?
 - Yes! Regularizing all variables makes solution unique and it easier to compute 'w'.
 - Compromise: regularize the bias by a smaller amount than other variables?

Standardizing Target

- In regression, we sometimes standardize the targets y_i.
 - Puts targets on the same standard scale as standardized features:

- With standardized target, setting w = 0 predicts average y_i:
 - High regularization makes us predict closer to the average value.
- Other common transformations of y_i are logarithm/exponent:

Use
$$log(y_i)$$
 or $exp(\Upsilon y_i)$

- Makes sense for geometric/exponential processes.

(pause)

RBFs, Regularization, and Validation

- Radial basis functions (RBFs):
 - With 'n' data points RBFs have 'n' basis functions.
- How do we avoid overfitting with this huge number of features?
 We regularize 'w' and use validation error to choose σ and λ.
- A model that is hard to beat:
 - RBF basis with L2-regularization and cross-validation to choose σ and λ .
 - Flexible non-parametric basis, magic of regularization, and tuning for test error!
 - Can add bias or linear/poly basis to do better away from data.
 - But expensive at test time: needs distance to all training examples.

Hyperparameter Optimization

- In this setting we have 2 hyperparameters (σ and λ).
- More complicated models have even more hyperparameters.
 - This makes searching all values expensive (and increases overfitting risk).
- Leads to the problem of hyperparameter optimization.
 - Try to efficiently find "best" hyperparameters.
- Simplest approaches:
 - Exhaustive search: try all combinations among a fixed set of σ and λ values.
 - In scikit-learn, GridSearchCV
 - Random search: try random values.
 - In scikit-learn, RandomizedSearchCV

Hyperparameter Optimization (bonus slide)

- Other common hyperparameter optimization methods:
 - Coordinate search:
 - Optimize one hyperparameter at a time, keeping the others fixed.
 - Repeatedly go through the hyperparameters
 - Generic global optimization methods:
 - simulated annealing, genetic algorithms, etc.
 - Bayesian optimization (Mike's PhD topic):
 - Use regression to build model of how hyper-parameters affect validation error.
 - Try the best guess based on the model.
 - Tends to be worth the hassle if each function evaluation is very expensive (slow).
- See bonus slides for a list of hyperparameter optimization software

(pause)

Previously: Search and Score

- We talked about search and score for feature selection:
 Define a "score" and "search" for features with the best score.
- Usual scores count the number of non-zeroes ("LO-norm"): $f'(w) = \frac{1}{2} ||\chi_w - \gamma||^2 + \frac{1}{2} ||w|_0$ Number of
 non-zeroes
 in 'w'
- But it's hard to find the 'w' minimizing this objective.
- We discussed forward selection, but requires fitting O(d²) models.

L1-Regularization

• Consider regularizing by the L1-norm:

$$f(w) = \frac{1}{2} || \chi_w - y ||^2 + \lambda ||w||_1$$

- Like L2-norm, it's convex and improves our test error.
- Like LO-norm, it encourages elements of 'w' to be exactly zero.

- L1-regularization simultaneously regularizes and selects features.
 - Very fast alternative to search and score.
 - Sometimes called "LASSO" regularization.

Sparsity and Least Squares

• Consider 1D least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2$$

• This is a convex 1D quadratic function of 'w' (i.e., a parabola):

F'(0) = 0 $\frac{only}{if} + \frac{only}{y^{T}x} = 0.$

(bonus)

- This variable does not look relevant (minimum is close to 0).
 - But for finite 'n' the minimum is unlikely to be exactly zero.

Sparsity and LO-Regularization

• Consider 1D LO-regularized least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{2} (w x_i - y_i)^2 + \lambda ||u||_0 \qquad 7 \quad 0 \quad if \quad w = 0$$

ィン

• This is a convex 1D quadratic function but with a discontinuity at 0: \mathcal{N}

L0-regularized minimum is often exactly at the 'discontinuity' at 0:
 – Sets the feature to exactly 0 (does feature selection), but is non-convex.

Sparsity and L2-Regularization

• Consider 1D L2-regularized least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2 + \frac{1}{2} w^2$$

• This is a convex 1D quadratic function of 'w' (i.e., a parabola): f(-)

L2-regularization moves it closer to zero, but not all the way to zero.
 It doesn't do feature selection ("penalty goes to 0 as slope goes to 0").

Sparsity and L1-Regularization

• Consider 1D L1-regularized least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2 + \lambda |w|$$

• This is a convex piecewise-quadratic function of 'w' with 'kink' at 0: f(w)

- L1-regularization tends to set variables to exactly 0 (feature selection).
 - Penalty on slope is λ even if you are close to zero.
 - Big λ selects few features, small λ allows many features.

L2-Regularization vs. L1-Regularization

• Regularization path of w_i values as ' λ ' varies:

• Bonus slides: details on why only L1-regularization gives sparsity.

L2-Regularization vs. L1-Regularization

- L2-Regularization:
 - Insensitive to changes in data.
 - Decreased variance:
 - Lower test error.
 - Closed-form solution.
 - Solution is unique.
 - All 'w' tend to be non-zero.

- L1-Regularization:
 - Insensitive to changes in data.
 - Decreased variance:
 - Lower test error.
 - Requires iterative solver.
 - Solution is not unique.
 - Many 'w' tend to be zero.

• Can also do both ("elastic net regularization")

L1-loss vs. L1-regularization

- Don't confuse the L1 loss with L1-regularization!!!
 - L1-loss is robust to outlier data points.
 - You can use instead of removing outliers.
 - "sparse residuals"
 - L1-regularization is robust to irrelevant features.
 - You can use instead of removing features.
 - "sparse coefficients/weights"
- And note that you can be robust to outliers and select features:

$$f(w) = || \chi_w - \gamma ||_1 + \lambda ||w||_1$$

- Why aren't we smoothing and using "Huber regularization"?
 - With the L1 loss, we cared about its behavior far from 0.
 - With L1 regularization, we care about its behavior near 0.
 - It's precisely the non-smoothness that sets weights to exactly 0.

Summary

- Standardizing features:
 - For some models it makes sense to have features on the same scale.
- Hyperparameter optimization
 - A difficult but important task, especially with lots of hyperparameters.
- L1-regularization:
 - Simultaneous regularization and feature selection.
 - Robust to having lots of irrelevant features.
 - Not the same thing as using the L1 loss.

Why doesn't L2-Regularization set variables to 0?

- Consider an L2-regularized least squares problem with 1 feature: $f(w) = \frac{1}{2} \sum_{j=1}^{2} (wx_i - y_j)^2 + \frac{1}{2} w^2$
- Let's solve for the optimal 'w':

$$f'(w) = \sum_{i=1}^{n} x_i (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

$$f'(w) = \sum_{i=1}^{n} x_i^2 (wx_i - y_i) + 1w$$

- So as λ gets bigger, 'w' converges to 0.
- However, for all finite λ 'w' will be non-zero unless $y^T x = 0$.
 - But it's very unlikely that y^Tx will be exactly zero.

Why doesn't L2-Regularization set variables to 0?

• Small λ

• Solution further from zero

Big λ

Solution closer to zero (but not exactly 0)

Why does L1-Regularization set things to 0?

- Consider an L1-regularized least squares problem with 1 feature: $f(w) = \frac{1}{2} \sum_{i=1}^{2} (wx_i - y_i)^2 + \lambda |w|$
- If (w = 0), then "left" limit and "right" limit are given by:

$$f^{-}(0) = \sum_{i=1}^{n} x_i (0x_i - y_i) - \lambda \qquad f^{+}(0) = \sum_{i=1}^{n} x_i (0x_i - y_i) + \lambda \\ = \sum_{i=1}^{n} x_i y_i - \lambda \qquad = \sum_{i=1}^{n} x_i y_i + \lambda$$

• So what should gradient descent do if (w=0)?

Why does L1-Regularization set things to 0?

• Small λ

• Solution nonzero

(minimum of left parabola is past origin, but right parabola is not)

Solution exactly zero

Big λ

(minima of both parabolas are past the origin) $_{26}$

25

1.5

L2-regularization vs. L1-regularization

- So with 1 feature:
 - L2-regularization only sets 'w' to 0 if $y^T x = 0$.
 - There is a only a single possible y^Tx value where the variable gets set to zero.
 - And λ has nothing to do with the sparsity.
 - L1-regularization sets 'w' to 0 if $|y^Tx| \le \lambda$.
 - There is a range of possible y^Tx values where the variable gets set to zero.
 - And increasing λ increases the sparsity since the range of $y^T x$ grows.
- Note that it's really important that the function is nondifferentiable:
 - If we used "Huber regularization", it would select all variables.

L1-Loss vs. Huber Loss

- The same reasoning tells us the difference between the L1 *loss* and the Huber loss. They are very similar in that they both grow linearly far away from 0. So both are both robust but...
 - With the L1 loss the model often passes exactly through some points.
 - With Huber the model doesn't necessarily pass through any points.

Why? With L1-regularization we were causing the elements of 'w' to be exactly 0. Analogously, with the L1-loss we cause the elements of 'r' (the residual) to be exactly zero. But zero residual for an example means you pass through that example exactly.

Non-Uniqueness of L1-Regularized Solution

- How can L1-regularized least squares solution not be unique?
 Isn't it convex?
- Convexity implies that minimum value of f(w) is unique (if exists), but there may be multiple 'w' values that achieve the minimum.
- Consider L1-regularized least squares with d=2, where feature 2 is a copy of a feature 1. For a solution (w_1, w_2) we have: $\hat{y}_i = w_i x_{i_1} + w_2 x_{i_2} = w_i x_{i_1} + w_2 x_{i_1} = (w_1 + w_2) x_{i_1}$
- So we can get the same squared error with different w_1 and w_2 values that have the same sum. Further, if neither w_1 or w_2 changes sign, then $|w_1| + |w_2|$ will be the same so the new w_1 and w_2 will be a solution.

Predicting the Future

- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.

Predicting the Future

- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.

https://overthehillsports.wordpress.com/tag/hicham-el-guerrouj/le/

Predicting 100m times 400 years in the future?

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gif

Predicting 100m times 400 years in the future?

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.glf http://www.washingtonpost.com/blogs/london-2012-olympics/wp/2012/08/08/report-usain-bolt-invited-to-tryout-for-manchester-united/

Interpolation vs Extrapolation

- Interpolation is task of predicting "between the data points".
 - Regression models are good at this if you have enough data and function is smooth.
- Extrapolation is task of prediction outside the range of the data points.
 - Without assumptions, regression models can be embarrassingly-bad at this.
- If you run the 100m regression models backwards in time:
 - They predict that humans used to be really really slow!
- If you run the 100m regression models forwards in time:
 - They might eventually predict arbitrarily-small 100m times.
 - The linear model actually predicts negative times in the future.
 - These time traveling races in 2060 should be pretty exciting!
- Some discussion here:
 - <u>http://callingbullshit.org/case_studies/case_study_gender_gap_running.html</u>

Ockham's Razor vs. No Free Lunch

- Ockham's razor is a problem-solving principle:
 - "Among competing hypotheses, the one with the fewest assumptions should be selected."
 - Suggests we should select linear model.
- Fundamental trade-off:
 - If same training error, pick model less likely to overfit.
 - Formal version of Occam's problem-solving principle.
 - Also suggests we should select linear model.
- No free lunch theorem:
 - There *exists possible datasets* where you should select the green model.

Discussion: Climate Models

- Has Earth warmed up over last 100 years? (Consistency zone)
 - Data clearly says "yes".

Will Earth continue to warm over next 100 years? (generalization error)
 We should be more skeptical about models that predict future events.

Discussion: Climate Models

- So should we all become global warming skeptics?
- If we average over models that overfit in *independent* ways, we expect the test error to be lower, so this gives more confidence:

- We should be skeptical of individual models, but agreeing predictions made by models with different data/assumptions are more likely be true.
- If all near-future predictions agree, they are likely to be accurate.
- As we go further in the future, variance of average will be higher.

https://en.wikipedia.org/wiki/Global_warming

Splines in 1D

- For 1D interpolation, alternative to polynomials/RBFs are splines:
 - Use a polynomial in the region between each data point.
 - Constrain some derivatives of the polynomials to yield a unique solution.
- Most common example is cubic spline:
 - Use a degree-3 polynomial between each pair of points.
 - Enforce that f'(x) and f''(x) of polynomials agree at all point.
 - "Natural" spline also enforces f''(x) = 0 for smallest and largest x.
- Non-trivial fact: natural cubic splines are sum of:
 - Y-intercept.
 - Linear basis.
 - RBFs with $g(\varepsilon) = \varepsilon^3$.
 - Different than Gaussian RBF because it *increases with distance*.

Splines in Higher Dimensions

- Splines generalize to higher dimensions if data lies on a grid.
 For more general ("scattered") data, there isn't a natural generalization.
- Common 2D "scattered" data interpolation is thin-plate splines:
 - Based on curve made when bending sheets of metal.
 - Corresponds to RBFs with $g(\varepsilon) = \varepsilon^2 \log(\varepsilon)$.
- Natural splines and thin-plate splines: special cases of "polyharmonic" splines:
 - Less sensitive to parameters than Gaussian RBF.

L2-Regularization vs. L1-Regularization

• L2-regularization conceptually restricts 'w' to a ball.

Minimizing
$$\frac{1}{2} ||Xw - y||^2 + \frac{3}{2} ||w||^2$$

is equivalent to minimizing
 $\frac{1}{2} ||Xw - y||^2$ subject to
the constraint that $||w|| \leq \gamma$
for some value '7'

L2-Regularization vs. L1-Regularization

• L2-regularization conceptually restricts 'w' to a ball.

- L1-regularization restricts to the L1 "ball":
 - Solutions tend to be at corners where w_i are zero.

- L2-regularization
 - Can learn with *linear* number of irrelevant features.
 - E.g., only O(d) relevant features.
- L1-regularization
 - Can learn with **exponential** number of irrelevant features.
 - E.g., only O(log(d)) relevant features.
 - Paper on this result by Andrew Ng:
 - http://www.andrewng.org/portfolio/feature-selection-l1-vs-l2-regularization-and-rotationalinvariance/

Some hyperparameter optimization software

- Hyperparameter tuning with scikit-learn:
 - <u>https://github.com/hyperopt/hyperopt-sklearn</u>
 - https://github.com/automl/auto-sklearn
 - <u>https://sigopt.com/docs/overview/scikit_learn</u>
- Other software (not scikit-learn specific):
 - <u>https://github.com/rhiever/tpot</u>
 - <u>https://github.com/hyperopt/hyperopt</u>
 - <u>https://github.com/zygmuntz/hyperband</u>
 - <u>http://www.cs.ubc.ca/labs/beta/Projects/SMAC/</u>
 - <u>https://github.com/Yelp/MOE</u>
 - <u>https://github.com/mwhoffman/pybo</u>
 - <u>https://github.com/HIPS/Spearmint</u>
 - <u>https://github.com/rmcantin/bayesopt</u>
 - <u>https://github.com/PythonOptimizers/opal</u>
- Note: this list is biased towards Bayesian optimization, since that's what I (Mike) know best. This list isn't meant to be exhaustive.
- The recently announced Amazon SageMaker also does hyperparameter optimization for you.