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More	Regularization

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.



Admin
• Assignment	3
– Due	tonight

• Midterm
– Feb	14	in	class	(this	is	the	next	time	we’ll	meet	because	of	Monday	holiday)
– If	your	surname	starts	with	the	letters	A-G,	room	DMP	201
– If	your	surname	starts	with	the	letters	H-Z,	room	DMP	110	(this	room)
– Plenty	of	practice	exams	on	course	homepage
– Extra	office	hours	added	on	Tuesday	(see	calendar)

• Tutorials
– Cancelled	next	week	(due	to	Monday	holiday)



Last	Time:	L2-Regularization
• We	discussed	regularization:
– Adding	a	continuous penalty	on	the	model	complexity:

– Best	parameter	λ almost	always	leads	to	improved	test	error.
• L2-regularized	least	squares	is	also	known	as	“ridge	regression”.
• Can	be	solved	as	a	linear	system	like	least	squares.

– Numerous	other	benefits:
• Solution	is	unique,	less	sensitive	to	data,	gradient	descent	converges	faster.



Features	with	Different	Scales
• Consider	continuous	features	with	different	scales:

• Should	we	convert	to	some	standard	‘unit’?
– It	doesn’t	matter	for	decision	trees	or	naïve	Bayes.

• They	only	look	at	one	feature	at	a	time.
– It	doesn’t	matter	for	least	squares:

• wj*(100	mL)	gives	the	same	model	as	wj*(0.1	L)	with	a	different	wj.

Egg	(#) Milk	(mL) Fish	(g) Pasta
(cups)

0 250 0 1
1 250 200 1
0 0 0 0.5
2 250 150 0



Features	with	Different	Scales
• Consider	continuous	features	with	different	scales:

• Should	we	convert	to	some	standard	‘unit’?
– It	matters	for	k-nearest	neighbours:

• “Distance”	will	be	affected	more	by	large	features	than	small	features.
– It	matters	for	regularized	least	squares:

• Penalizing	(wj)2 means	different	things	if	features	‘j’	are	on	different	scales.

Egg	(#) Milk	(mL) Fish	(g) Pasta
(cups)

0 250 0 1
1 250 200 1
0 0 0 0.5
2 250 150 0



Standardizing	Features
• It	is	common	to	standardize	continuous	features:
– For	each	feature:

1. Compute	mean	and	standard	deviation:

2. Subtract	mean	and	divide	by	standard	deviation:

– Now	changes	in	‘wj’	have	similar	effect	for	any	feature	‘j’.
• Should	we	regularize	the	y-intercept?
– No!	The	y-intercept	can	be	anywhere,	why	encourage	it	to	be	close	to	zero?
– Yes!	Regularizing	all	variables	makes	solution	unique	and	it	easier	to	compute	‘w’.
– Compromise:	regularize	the	bias	by	a	smaller	amount	than	other	variables?



Standardizing	Target
• In	regression,	we	sometimes	standardize	the	targets	yi.
– Puts	targets	on	the	same	standard	scale	as	standardized	features:

• With	standardized	target,	setting	w	=	0	predicts	average	yi:
– High	regularization	makes	us	predict	closer	to	the	average	value.

• Other	common	transformations	of	yi are	logarithm/exponent:

– Makes	sense	for	geometric/exponential	processes.	



(pause)



RBFs,	Regularization,	and	Validation
• Radial	basis	functions (RBFs):
– With	‘n’	data	points	RBFs	have	‘n’	basis	functions.

• How	do	we	avoid	overfitting	with	this	huge	number	of	features?
– We regularize ‘w’	and	use	validation	error	to	choose	𝜎	and	λ.

• A	model	that	is	hard	to	beat:
– RBF	basis	with	L2-regularization	and	cross-validation	to	choose	𝜎	and	λ.
– Flexible	non-parametric	basis,	magic	of	regularization,	and	tuning	for	test	
error!

– Can	add	bias	or	linear/poly	basis	to	do	better	away	from	data.
– But	expensive	at	test	time:	needs	distance	to	all	training	examples.



Hyperparameter Optimization
• In	this	setting	we	have	2	hyperparameters (𝜎	and	λ).
• More	complicated	models	have	even	more	hyperparameters.
– This	makes	searching	all	values	expensive (and	increases	overfitting	risk).

• Leads	to	the	problem	of	hyperparameter optimization.
– Try	to	efficiently	find	“best”	hyperparameters.

• Simplest	approaches:
– Exhaustive	search:	try	all	combinations	among	a	fixed	set	of	σ and	λ values.

• In	scikit-learn,	GridSearchCV
– Random	search:	try	random	values.

• In	scikit-learn,	RandomizedSearchCV



Hyperparameter Optimization	(bonus	slide)
• Other	common	hyperparameter optimization methods:
– Coordinate	search:

• Optimize	one	hyperparameter at	a	time,	keeping	the	others	fixed.
• Repeatedly	go	through	the	hyperparameters

– Generic	global	optimization	methods:
• simulated	annealing,	genetic	algorithms,	etc.

– Bayesian	optimization (Mike’s	PhD	topic):
• Use	regression	to	build	model	of	how	hyper-parameters	affect	validation	error.
• Try	the	best	guess	based	on	the	model.
• Tends	to	be	worth	the	hassle	if	each	function	evaluation	is	very	expensive	(slow).

• See	bonus	slides	for	a	list	of	hyperparameter optimization	software



(pause)



Previously:	Search	and	Score
• We	talked	about search	and	score for	feature	selection:
– Define	a	“score”	and	“search”	for	features	with	the	best	score.

• Usual	scores	count	the	number	of	non-zeroes	(“L0-norm”):

• But	it’s	hard	to	find	the	‘w’	minimizing	this	objective.
• We	discussed	forward	selection,	but	requires	fitting	O(d2)	models.



L1-Regularization
• Consider	regularizing	by	the	L1-norm:

• Like	L2-norm,	it’s	convex	and	improves	our	test	error.
• Like	L0-norm,	it	encourages	elements	of	‘w’	to	be	exactly	zero.

• L1-regularization	simultaneously	regularizes	and	selects	features.
– Very	fast	alternative	to	search	and	score.
– Sometimes	called	“LASSO”	regularization.



Sparsity	and	Least	Squares
• Consider	1D	least	squares	objective:

• This	is	a	convex	1D	quadratic	function	of	‘w’	(i.e.,	a	parabola):

• This	variable	does	not	look	relevant	(minimum	is	close	to	0).
– But	for	finite	‘n’	the	minimum	is	unlikely	to	be	exactly	zero.



Sparsity	and	L0-Regularization
• Consider	1D	L0-regularized least	squares	objective:

• This	is	a	convex	1D	quadratic	function	but	with	a	discontinuity	at	0:

• L0-regularized	minimum	is	often	exactly	at	the	‘discontinuity’	at	0:
– Sets	the	feature	to	exactly	0	(does	feature	selection),	but	is non-convex.



Sparsity	and	L2-Regularization
• Consider	1D	L2-regularized least	squares	objective:

• This	is	a	convex	1D	quadratic	function	of	‘w’	(i.e.,	a	parabola):

• L2-regularization	moves	it	closer	to	zero,	but	not	all	the	way	to	zero.
– It	doesn’t	do	feature	selection	(“penalty	goes	to	0	as	slope	goes	to	0”).



Sparsity	and	L1-Regularization
• Consider	1D	L1-regularized least	squares	objective:

• This	is	a	convex piecewise-quadratic	function	of	‘w’	with	‘kink’	at	0:

• L1-regularization	tends	to	set	variables	to	exactly	0 (feature	selection).
– Penalty	on	slope	is	𝜆	even	if	you	are	close	to	zero.
– Big	𝜆 selects	few	features,	small	𝜆 allows	many	features.



L2-Regularization	vs.	L1-Regularization
• Regularization	path	of	wj values	as	‘λ’	varies:

• Bonus	slides:	details	on	why	only	L1-regularization	gives	sparsity.



L2-Regularization	vs.	L1-Regularization
• L2-Regularization:
– Insensitive	to	changes	in	data.
– Decreased	variance:

• Lower	test	error.
– Closed-form	solution.
– Solution	is	unique.
– All	‘w’	tend	to	be	non-zero.

• L1-Regularization:
– Insensitive	to	changes	in	data.
– Decreased	variance:

• Lower	test	error.
– Requires	iterative	solver.
– Solution	is	not	unique.
– Many	‘w’	tend	to	be	zero.

• Can	also	do	both	(“elastic	net	regularization”)



L1-loss vs.	L1-regularization
• Don’t	confuse	the	L1	loss	with	L1-regularization!!!
– L1-loss	is	robust	to	outlier	data	points.

• You	can	use	instead	of	removing	outliers.
• “sparse	residuals”

– L1-regularization	is	robust	to	irrelevant	features.
• You	can	use	instead	of	removing	features.
• “sparse	coefficients/weights”

• And	note	that	you	can	be	robust	to	outliers	and	select	features:

• Why	aren’t	we	smoothing	and	using	“Huber	regularization”?
– With	the	L1	loss,	we	cared	about	its	behavior	far	from	0.
– With	L1	regularization,	we	care	about	its	behavior	near	0.

• It’s	precisely	the	non-smoothness	that	sets	weights	to	exactly	0.
21



Summary
• Standardizing	features:
– For	some	models	it	makes	sense	to	have	features	on	the	same	scale.

• Hyperparameter optimization
– A	difficult	but	important	task,	especially	with	lots	of	hyperparameters.

• L1-regularization:	
– Simultaneous	regularization	and	feature	selection.
– Robust	to	having	lots	of	irrelevant	features.
– Not	the	same	thing	as	using	the	L1	loss.



Why	doesn’t	L2-Regularization	set	variables	to	0?

• Consider	an	L2-regularized	least	squares	problem	with	1	feature:

• Let’s	solve	for	the	optimal	‘w’:

• So	as	λ gets	bigger,	‘w’	converges	to	0.
• However,	for	all	finite	λ ‘w’	will	be	non-zero	unless	yTx =	0.
– But	it’s	very	unlikely	that	yTx will	be	exactly	zero.



Why	doesn’t	L2-Regularization	set	variables	to	0?
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• Small	𝜆	 Big	𝜆

• Solution	further	from	zero Solution	closer	to	zero
(but	not	exactly	0)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.8

0.8

1.6

2.4

3.2

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.8

0.8

1.6

2.4

3.2

4



Why	does	L1-Regularization	set	things	to	0?
• Consider	an	L1-regularized	least	squares	problem	with	1	feature:

• If	(w	=	0),	then	“left”	limit	and	“right“	limit	are	given	by:

• So	what	should	gradient	descent	do	if	(w=0)?



Why	does	L1-Regularization	set	things	to	0?
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• Small	λ Big	λ

• Solution	nonzero Solution	exactly	zero
(minimum	of	left	parabola	is	past	origin,	but	right	parabola	is	not)	 (minima	of	both	parabolas	are	past	the	origin)
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L2-regularization	vs.	L1-regularization
• So	with	1	feature:
– L2-regularization	only	sets	‘w’	to	0	if	yTx =	0.

• There	is	a	only	a	single	possible	yTx value	where	the	variable	gets	set	to	zero.
• And	λ	has	nothing	to	do	with	the	sparsity.

– L1-regularization	sets	‘w’	to	0	if	|yTx|	≤λ.
• There	is	a	range	of	possible	yTx values	where	the	variable	gets	set	to	zero.
• And	increasing	λ	increases	the	sparsity	since	the	range	of	yTx grows.

• Note	that	it’s	really	important	that	the	function	is	non-
differentiable:
– If	we	used	“Huber	regularization”,	it	would	select	all	variables.



L1-Loss	vs.	Huber	Loss
• The	same	reasoning	tells	us	the	difference	between	the	L1	*loss*	
and	the	Huber	loss.	They	are	very	similar	in	that	they	both	grow	
linearly	far	away	from	0.	So	both	are	both	robust	but…
– With	the	L1	loss	the	model	often	passes	exactly	through	some	points.
– With	Huber	the	model	doesn’t	necessarily	pass	through	any	points.

• Why?	With	L1-regularization	we	were	causing	the	elements	of	’w’	
to	be	exactly	0.	Analogously,	with	the	L1-loss	we	cause	the	
elements	of	‘r’	(the	residual)	to	be	exactly	zero.	But	zero	residual	
for	an	example	means	you	pass	through	that	example	exactly.

28



Non-Uniqueness	of	L1-Regularized	Solution
• How	can	L1-regularized	least	squares	solution	not	be	unique?
– Isn’t	it	convex?

• Convexity	implies	that	minimum	value	of	f(w)	is	unique	(if	exists),
but	there	may	be	multiple	‘w’	values	that	achieve	the	minimum.

• Consider	L1-regularized	least	squares	with	d=2,	where	feature	2	is	a	
copy	of	a	feature	1.	For	a	solution	(w1,w2)	we	have:

• So	we	can	get	the	same	squared	error	with	different	w1 and	w2 values	
that	have	the	same	sum.	Further,	if	neither	w1 or	w2 changes	sign,	then	
|w1|	+	|w2|	will	be	the	same	so	the	new	w1 and	w2 will	be	a	solution.



Predicting	the	Future
• In	principle,	we	can	use	any	features	xi that	we	think	are	relevant.
• This	makes	it	tempting	to	use	time as	a	feature,	and	predict	future.

https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-mile/



Predicting	the	Future
• In	principle,	we	can	use	any	features	xi that	we	think	are	relevant.
• This	makes	it	tempting	to	use	time as	a	feature,	and	predict	future.

https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-mi
https://overthehillsports.wordpress.com/tag/hicham-el-guerrouj/le/



Predicting	100m	times	400	years	in	the	future?

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gif



Predicting	100m	times	400	years	in	the	future?

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gif
http://www.washingtonpost.com/blogs/london-2012-olympics/wp/2012/08/08/report-usain-bolt-invited-to-tryout-for-manchester-united/



Interpolation	vs	Extrapolation
• Interpolation is	task	of	predicting	“between	the	data	points”.

– Regression	models	are	good	at	this	if	you	have	enough	data	and	function	is	smooth.
• Extrapolation is	task	of	prediction	outside	the	range	of	the	data	points.

– Without	assumptions,	regression	models	can	be	embarrassingly-bad	at	this.

• If	you	run	the	100m	regression	models	backwards	in	time:
– They	predict	that	humans	used	to	be	really	really slow!

• If	you	run	the	100m	regression	models	forwards	in	time:
– They	might	eventually	predict	arbitrarily-small	100m	times.
– The	linear	model	actually	predicts	negative	times	in	the	future.

• These	time	traveling	races	in	2060	should	be	pretty	exciting!

• Some	discussion	here:
– http://callingbullshit.org/case_studies/case_study_gender_gap_running.html



No	Free	Lunch,	Consistency,	and	the	Future
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No	Free	Lunch,	Consistency,	and	the	Future



Ockham’s	Razor	vs.	No	Free	Lunch
• Ockham’s	razor is	a	problem-solving	principle:
– “Among	competing	hypotheses,	the	one	with	the	
fewest	assumptions	should	be	selected.”

– Suggests	we	should	select	linear	model.

• Fundamental	trade-off:
– If	same	training	error,	pick	model	less	likely	to	overfit.
– Formal	version	of	Occam’s	problem-solving	principle.
– Also	suggests	we	should	select	linear	model.

• No	free	lunch	theorem:
– There	exists	possible	datasets	where	you	should	
select	the	green	model.



No	Free	Lunch,	Consistency,	and	the	Future
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No	Free	Lunch,	Consistency,	and	the	Future



Discussion:	Climate	Models
• Has	Earth	warmed	up	over	last	100	years?	(Consistency	zone)
– Data	clearly	says	“yes”.

• Will	Earth	continue	to	warm	over	next	100	years?	(generalization	error)
– We	should	be	more	skeptical	about	models	that	predict	future	events.

https://en.wikipedia.org/wiki/Global_warming



Discussion:	Climate	Models
• So	should	we	all	become	global	warming	skeptics?
• If	we	average	over	models	that	overfit in	*independent*	ways,	we	
expect	the	test	error	to	be	lower,	so	this	gives	more	confidence:

– We	should	be	skeptical	of	individual	models,	but	agreeing	predictions	
made	by	models	with	different	data/assumptions	are	more	likely	be	true.

• If	all	near-future	predictions	agree,	they	are	likely	to	be	accurate.
• As	we	go	further	in	the	future,	variance	of	average	will	be	higher.

https://en.wikipedia.org/wiki/Global_warming



Splines	in	1D
• For	1D	interpolation,	alternative	to	polynomials/RBFs	are	splines:
– Use	a	polynomial	in	the	region	between	each	data	point.
– Constrain	some	derivatives	of	the	polynomials	to	yield	a	unique	solution.

• Most	common	example	is	cubic	spline:	
– Use	a	degree-3	polynomial	between	each	pair	of	points.
– Enforce	that	f’(x)	and	f’’(x)	of	polynomials	agree	at	all	point.
– “Natural”	spline	also	enforces	f’’(x)	=	0	for	smallest	and	largest	x.

• Non-trivial	fact:	natural	cubic	splines	are	sum	of:
– Y-intercept.
– Linear	basis.
– RBFs	with	g(ε)	=	ε3.

• Different	than	Gaussian	RBF	because	it	increases	with	distance.

http://www.physics.arizona.edu/~restrepo/475A/Notes/sourcea-/node35.html



Splines	in	Higher	Dimensions
• Splines	generalize	to	higher	dimensions	if	data	lies	on	a	grid.
– For	more	general	(“scattered”)	data,	there	isn’t	a	natural	generalization.

• Common	2D	“scattered”	data	interpolation	is	thin-plate	splines:
– Based	on	curve	made	when	bending	sheets	of	metal.
– Corresponds	to	RBFs	with	g(ε)	=	ε2 log(ε).

• Natural	splines	and	thin-plate	splines:	special	cases	of	
“polyharmonic”	splines:
– Less	sensitive	to	parameters	than	Gaussian	RBF.

http://step.polymtl.ca/~rv101/thinplates/



L2-Regularization	vs.	L1-Regularization
• L2-regularization	conceptually	restricts	‘w’	to	a	ball.



L2-Regularization	vs.	L1-Regularization
• L2-regularization	conceptually	restricts	‘w’	to	a	ball.

• L1-regularization	restricts	to	the	L1	“ball”:
– Solutions	tend	to	be	at	corners	where	wj are	zero.

Related	Infinite	Series	video



• L2-regularization
– Can	learn	with	linear number	of	irrelevant	features.

• E.g.,	only	O(d)	relevant	features.

• L1-regularization
– Can	learn	with	exponential number	of	irrelevant	features.

• E.g.,	only	O(log(d))	relevant	features.
• Paper	on	this	result	by	Andrew	Ng:

– http://www.andrewng.org/portfolio/feature-selection-l1-vs-l2-regularization-and-rotational-
invariance/



Some	hyperparameter optimization	software
• Hyperparameter tuning	with	scikit-learn:

– https://github.com/hyperopt/hyperopt-sklearn
– https://github.com/automl/auto-sklearn
– https://sigopt.com/docs/overview/scikit_learn

• Other	software	(not	scikit-learn	specific):	
– https://github.com/rhiever/tpot
– https://github.com/hyperopt/hyperopt
– https://github.com/zygmuntz/hyperband
– http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
– https://github.com/Yelp/MOE
– https://github.com/mwhoffman/pybo
– https://github.com/HIPS/Spearmint
– https://github.com/rmcantin/bayesopt
– https://github.com/PythonOptimizers/opal

• Note:	this	list	is	biased	towards	Bayesian	optimization,	since	that’s	what	I	(Mike)	know	best. This	
list	isn't	meant	to	be	exhaustive.	

• The	recently	announced	Amazon	SageMaker also	does	hyperparameter optimization	for	you.


