
CPSC	340:
Machine	Learning	and	Data	Mining

Linear	Classifiers:	predictions

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart. 1

Admin
• Assignment	4:
– Due	Friday	of	next	week

• Midterm:
– Well	done!
– You	have	until	Thursday	to	discuss	grading	concerns	(in	person)

• See	Piazza	for	post	regarding	Q4a
– You	can	collect	exam	papers	after	class	or	in	office	hours

2

Part	3	Key	Ideas:	Linear	Models,	Least	Squares
• Focus	of	Part	3	is	linear	models:
– Supervised	learning	where	prediction	is	linear	combination	of	features:

• Regression:
– Target	yi is	numerical,	testing	(𝑦"i ==	yi)	doesn’t	make	sense.

• Squared	error:

– Can	find	optimal	‘w’	by	solving	“normal	equations”.
3

Part	3	Key	Ideas:	Gradient	Descent,	Error	Functions

• For	large	‘d’	we	often	use	gradient	descent:
– Iterations	only	cost	O(nd).
– Converges	to	a	critical	point	of	a	smooth	function.
– For	convex functions,	it	finds	a	global	optimum.

• L1-norm	and	L∞-norm	errors:	

– More/less	robust	to	outliers.
– Can	apply	gradient	descent	after	smoothing	with	Huber or	log-sum-exp.

4

Part	3	Key	Ideas:	Change	of	basis,	Complexity	Scores

• Change	of	basis: replaces	features	xi with	non-linear	transforms	zi:
– Add	a	bias	variable	(feature	that	is	always	one).
– Polynomial	basis.
– Radial	basis	functions	(non-parametric	basis).

• We	discussed	scores	for	choosing	“true”	model	complexity.
– Validation	score	vs.	AIC/BIC.

• Search	and	score	for	feature	selection:
– Define	a	“score”	like	BIC,	and	do	a	“search”	like	forward	selection.

5

Part	3	Key	Ideas:	Regularization
• L0-regularization (AIC,	BIC):
– Adds	penalty	on	the	number	of	non-zeros	to	select	features.

• L2-regularization (ridge	regression):
– Adding	penalty	on	the	L2-norm	of	‘w’	to	decrease	overfitting:

• L1-regularization (LASSO):
– Adding	penalty	on	the	L1-norm	decreases	overfitting	and	selects	features:

6

Key	Idea	in	Rest	of	Part	3
• The	next	few	lectures	will	focus	on:
– Using	linear	models	for	classification

• It	may	seem	like	we’re	spending	a	lot	of	time	on	linear	models.
– Linear	models	are	used	a	lot	and	are	understandable.

• ICBC	only	uses	linear	models	for	insurance	estimates.

– Linear	models	are	also	the	building	blocks	for	more-advanced	methods.
• “Latent-factor”	models	in	Part	4	and	“deep	learning”	in	Part	5.

7

Motivation:	Identifying	Important	E-mails
• How	can	we	automatically	identify	‘important’	e-mails?

• A	binary	classification problem	(“important”	vs.	“not	important”).
– Labels	are	approximated	by	whether	you	took	an	“action”	based	on	mail.
– High-dimensional	feature	set	(that	we’ll	discuss	later).

• Gmail	uses	a	linear	classifier	for	this	problem.
8

Binary	Classification	Using	Regression?
• Can	we	apply	linear	models	for	binary	classification?
– Set	yi =	+1	for	one	class (“important”).
– Set	yi =	-1	for	the	other	class	(“not	important”).

• At	training	time,	fit	a	linear	regression	model:

• The	model	will	try	to	make	wTxi =	+1	for	“important”	e-mails,
and	wTxi =	-1	for	“not	important”	e-mails.

9

Binary	Classification	Using	Regression?
• Can	we	apply	linear	models	for	binary	classification?
– Set	yi =	+1	for	one	class (“important”).
– Set	yi =	-1	for	the	other	class	(“not	important”).

• Linear	model	gives	real	numbers	like	0.9,	-1.1,	and	so	on.
• So	to	predict,	we	look	at	the	sign	of	wTxi.
– If	wTxi =	0.9,	predict	𝑦"i =	+1.
– If	wTxi =	-1.1,	predict	𝑦"i =	-1.
– If	wTxi =	0.1,	predict	𝑦"i =	+1.
– If	wTxi =	-100,	predict	𝑦"i =	-1.

10

Decision	Boundary	in	1D

11

• We	can	interpret	‘w’	as	hyperplane	separating	x	into	2	half-spaces:
– Half-space	where	wTxi >	0	and	half-space	where	wTxi <	0.

Decision	Boundary	in	1D

12

Decision	Boundary	in	2D

decision	tree KNN									 linear	classifier

13

• A	linear	classifier	would	be	linear	function	𝑦"i=	β +	w1xi1+w2xi2
coming	out	of	the	page	(the	boundary	is	at	𝑦"i=0).

• Or	recall	from	multivariable	calculus	that	a	plane	in	d-dimensions	is	
defined	by	its	normal	vector	in	d-dimensions,	plus	an	intercept/offset.

Perceptron	Algorithm
• One	of	the	first	“learning”	algorithms	was	the	“perceptron”	(1957).

– Searches	for	a	‘w’	such	that	sign(wTxi)	=	yi for	all	i.

• Perceptron algorithm:
– Start	with	w0 =	0.
– Go	through	examples	in	any	order	until	you	make	a	mistake	predicting	yi.

• Set	wt+1 =	wt +	yixi.
– Keep	going	through	examples	until	you	make	no	errors	on	training	data.

• Intuition	for	step:	if	yi =	+1,	“add	more	of	xi to	w”	so	that	wTxi is	larger.

• If	a	perfect	classifier	exists,	this	algorithm	finds	one	in	finite	number	of	steps.
– In	this	case	we	say	the	training	data	is	“linearly	separable”

14

Lecture	continues	in	Jupyter notebook…

15

Summary
• Binary	classification	using	regression:
– Encode	using	yi in	{-1,1}.
– Use sign(wTxi)	as	prediction.
– “Linear	classifier”	(a	hyperplane	splitting	the	space	in	half).

• Perceptron	algorithm:	finds	a	perfect	classifier	(if	one	exists).
• Least	squares	is	a	weird	error	for	classification.

16

https://en.wikipedia.org/wiki/Perceptron
17

Online	Classification	with	Perceptron
• Perceptron for	online	linear	binary	classification	[Rosenblatt,	1957]
– Start	with	w0 =	0.
– At	time	‘t’	we	receive	features	xt.
– We	predict	𝑦"t =	sign(wt

Txt).
– If	𝑦"t ≠	yt,	then	set	wt+1 =	wt +	ytxt.

• Otherwise,	set	wt+1 =	wt.

(Slides	are	old	so	above	I’m	using	subscripts	of	‘t’	instead	of	superscripts.)

• Perceptron	mistake	bound	[Novikoff,	1962]:
– Assume	data	is	linearly-separable with	a	“margin”:

• There	exists	w*	with	||w*||=1	such	that	sign(xtTw*)	=	sign(yt)	for	all	‘t’	and	|xTw*|	≥	γ.
– Then	the	number	of	total	mistakes	is	bounded.

• No	requirement	that	data	is	IID.
18

Perceptron	Mistake	Bound
• Let’s	normalize	each	xt so	that	||xt||	=	1.
– Length	doesn’t	change	label.

• Whenever	we	make	a	mistake,	we	have	sign(yt)	≠	sign(wt
Txt)	and

• So	after	‘k’	errors	we	have	||wt||2 ≤	k.
19

Perceptron	Mistake	Bound
• Let’s	consider	a	solution	w*,	so	sign(yt)	=	sign(xtTw*).
• Whenever	we	make	a	mistake,	we	have:

• So	after	‘k’	mistakes	we	have	||wt||	≥	γk.
20

Perceptron	Mistake	Bound
• So	our	two	bounds	are	||wt||	≤	sqrt(k)	and ||wt||	≥	γk.

• This	gives	γk	≤	sqrt(k),	or	a	maximum	of	1/γ2 mistakes.
– Note	that	γ >	0	by	assumption	and is	upper-bounded	by	one	by	||x||	≤ 1.
– After	this	‘k’,	under	our	assumptions	
we’re	guaranteed	to	have	a	perfect	classifier.

21

