CPSC 340: Machine Learning and Data Mining

Linear Classifiers: predictions

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. ¹

Admin

- Assignment 4:
 - Due Friday of next week
- Midterm:
 - Well done!
 - You have until Thursday to discuss grading concerns (in person)
 - See Piazza for post regarding Q4a
 - You can collect exam papers after class or in office hours

Part 3 Key Ideas: Linear Models, Least Squares

- Focus of Part 3 is linear models:
 - Supervised learning where prediction is linear combination of features:

$$y_{i} = w_{1} x_{i1} + w_{2} x_{i2} + \cdots + w_{d} x_{id}$$

= $w^{T} x_{i}$

- Regression:
 - Target y_i is numerical, testing ($\hat{y}_i == y_i$) doesn't make sense.

• Squared error: $\frac{1}{2}\sum_{i=1}^{n} (w^{7}x_{i} - y_{i})^{2}$ or $\frac{1}{2} ||X_{w} - y||^{2}$ exactly pass through aby point.

Can find optimal 'w' by solving "normal equations".

Part 3 Key Ideas: Gradient Descent, Error Functions

- For large 'd' we often use gradient descent:
 - Iterations only cost O(nd).
 - Converges to a critical point of a smooth function.
 - For convex functions, it finds a global optimum.

• L_1 -norm and L_{∞} -norm errors:

$$||Xw-y||_{1}$$
 $||Xw-y||_{\infty}$

- More/less robust to outliers.
- Can apply gradient descent after smoothing with Huber or log-sum-exp.

Part 3 Key Ideas: Change of basis, Complexity Scores

- Change of basis: replaces features x_i with non-linear transforms z_i:
 - Add a bias variable (feature that is always one).
 - Polynomial basis.
 - Radial basis functions (non-parametric basis).
- We discussed scores for choosing "true" model complexity.
 Validation score vs. AIC/BIC.
- Search and score for feature selection:

- Define a "score" like BIC, and do a "search" like forward selection.

Part 3 Key Ideas: Regularization

- LO-regularization (AIC, BIC):
 - Adds penalty on the number of non-zeros to select features.

$$f(w) = ||Xw - y||^2 + \lambda ||w||_0$$

- L2-regularization (ridge regression):
 - Adding penalty on the L2-norm of 'w' to decrease overfitting:

$$f(w) = ||Xw - y||^2 + \frac{3}{2}||w||^2$$

- L1-regularization (LASSO):
 - Adding penalty on the L1-norm decreases overfitting and selects features:

$$f(w) = ||Xw - y||^2 + \frac{1}{2} ||w||_{1}$$

Key Idea in Rest of Part 3

- The next few lectures will focus on:
 - Using linear models for classification
- It may seem like we're spending a lot of time on linear models.
 - Linear models are used a lot and are understandable.
 - ICBC only uses linear models for insurance estimates.
 - Linear models are also the building blocks for more-advanced methods.
 - "Latent-factor" models in Part 4 and "deep learning" in Part 5.

Motivation: Identifying Important E-mails

• How can we automatically identify 'important' e-mails?

COMPOSE		Mark Issam, Ricky (10)	Inbox A2, tutorials, marking @ 10:41 am
		Holger, Jim (2)	lists Intro to Computer Science 10:20 am
Inbox (3) Starred		Issam Laradji	Inbox Convergence rates for cu
Important	🗆 📩 💌	sameh, Mark, sameh (3)	Inbox Graduation Project Dema C 8:01 am
Sent Mail		Mark sara, Sara (11)	Label propagation @ 7:57 am

- A binary classification problem ("important" vs. "not important").
 - Labels are approximated by whether you took an "action" based on mail.
 - High-dimensional feature set (that we'll discuss later).
- Gmail uses a linear classifier for this problem.

Binary Classification Using Regression?

- Can we apply linear models for binary classification?
 - Set $y_i = +1$ for one class ("important").
 - Set $y_i = -1$ for the other class ("not important").
- At training time, fit a linear regression model:

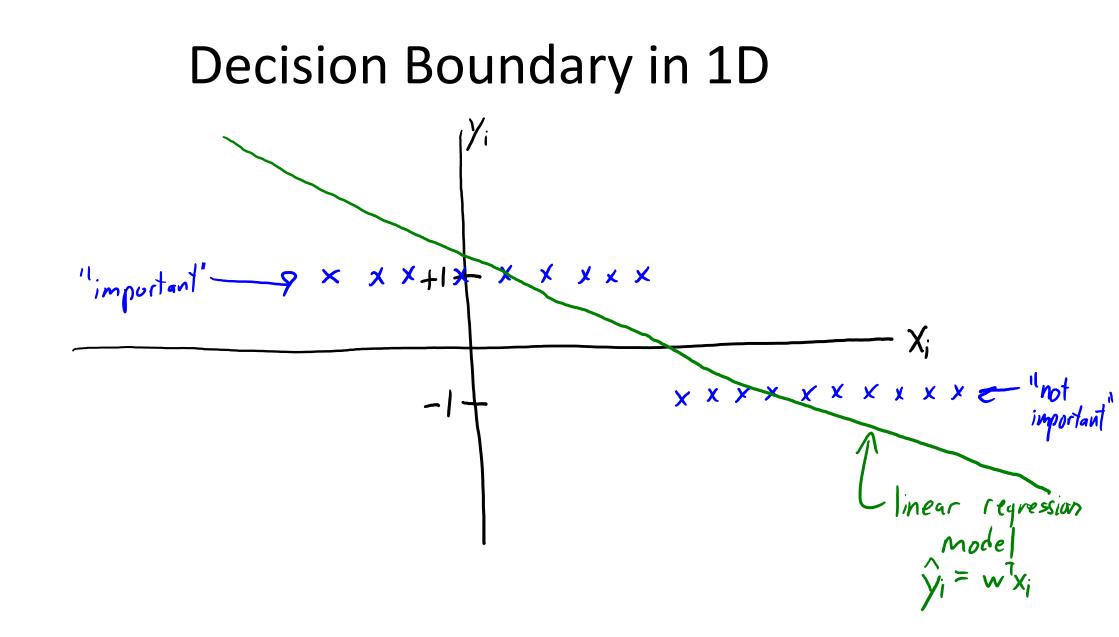
$$\hat{y}_{i} = W_{i} x_{i1} + W_{2} x_{i2} + \cdots + W_{d} x_{id}$$

= $W^{T} x_{i}$

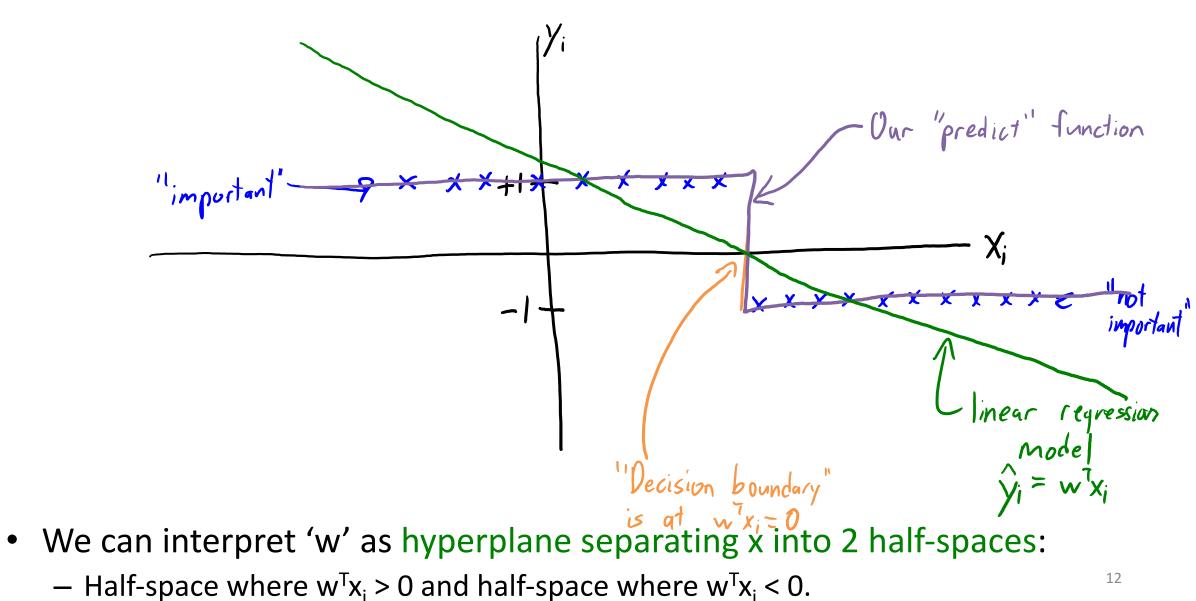
 The model will try to make w^Tx_i = +1 for "important" e-mails, and w^Tx_i = -1 for "not important" e-mails.

Binary Classification Using Regression?

- Can we apply linear models for binary classification?
 - Set $y_i = +1$ for one class ("important").
 - Set $y_i = -1$ for the other class ("not important").
- Linear model gives real numbers like 0.9, -1.1, and so on.
- So to predict, we look at the sign of w^Tx_i.
 - If $w^T x_i = 0.9$, predict $\hat{y}_i = +1$.
 - If $w^T x_i = -1.1$, predict $\hat{y}_i = -1$.
 - If $w^T x_i = 0.1$, predict $\hat{y}_i = +1$.
 - If $w^T x_i = -100$, predict $\hat{y}_i = -1$.



Decision Boundary in 1D

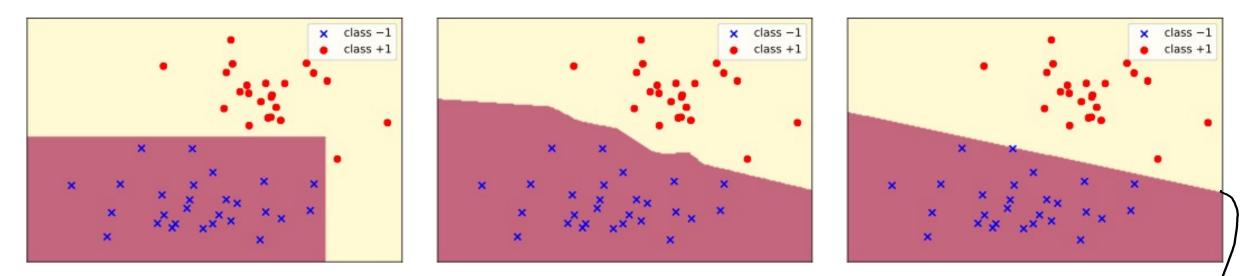


Decision Boundary in 2D

decision tree

KNN

linear classifier



- A linear classifier would be linear function $\hat{y}_i = \beta + w_1 x_{i1} + w_2 x_{i2}$ coming out of the page (the boundary is at $\hat{y}_i = 0$).
- Or recall from multivariable calculus that a plane in d-dimensions is defined by its normal vector in d-dimensions, plus an intercept/offset.

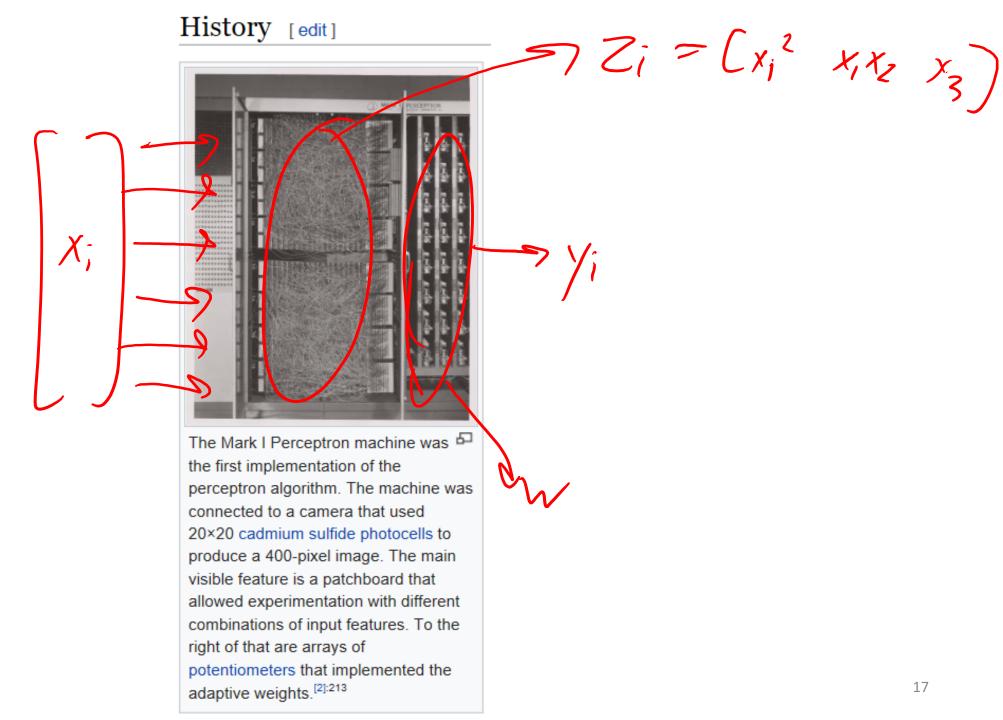
Perceptron Algorithm

- One of the first "learning" algorithms was the "perceptron" (1957).
 - Searches for a 'w' such that $sign(w^Tx_i) = y_i$ for all i.
- Perceptron algorithm:
 - Start with $w^0 = 0$.
 - Go through examples in any order until you make a mistake predicting y_i .
 - Set $w^{t+1} = w^t + y_i x_i$.
 - Keep going through examples until you make no errors on training data.
- Intuition for step: if $y_i = +1$, "add more of x_i to w" so that $w^T x_i$ is larger. $(w^{t+1})^T x_i = (w^t + x_i)^T x_i = (w^t)^T x_i + x_i^T x_i = (old prediction) + ||x_i||^2$
- If a perfect classifier exists, this algorithm finds one in finite number of steps.
 In this case we say the training data is "linearly separable"

Lecture continues in Jupyter notebook...

Summary

- Binary classification using regression:
 - Encode using y_i in {-1,1}.
 - Use $sign(w^Tx_i)$ as prediction.
 - "Linear classifier" (a hyperplane splitting the space in half).
- Perceptron algorithm: finds a perfect classifier (if one exists).
- Least squares is a weird error for classification.



Online Classification with Perceptron

- Perceptron for online linear binary classification [Rosenblatt, 1957]
 - Start with $w_0 = 0$.
 - At time 't' we receive features x_t .
 - We predict $\hat{y}_t = \text{sign}(w_t^T x_t)$.
 - If $\hat{y}_t \neq y_t$, then set $w_{t+1} = w_t + y_t x_t$.
 - Otherwise, set w_{t+1} = w_t.

(Slides are old so above I'm using subscripts of 't' instead of superscripts.)

- Perceptron mistake bound [Novikoff, 1962]:
 - Assume data is linearly-separable with a "margin":
 - There exists w* with $||w^*||=1$ such that sign $(x_t^T w^*) = sign(y_t)$ for all 't' and $|x^T w^*| \ge \gamma$.
 - Then the number of total mistakes is bounded.
 - No requirement that data is IID.

Perceptron Mistake Bound

- Let's normalize each x_t so that $||x_t|| = 1$.
 - Length doesn't change label.
- Whenever we make a mistake, we have sign(y_t) \neq sign($w_t^T x_t$) and

$$||w_{t+1}||^{2} = ||w_{t} + yx_{t}||^{2}$$

= $||w_{t}||^{2} + 2 \underbrace{y_{t}w_{t}^{T}x_{t}}_{<0} + 1$
 $\leq ||w_{t}||^{2} + 1$
 $\leq ||w_{t-1}||^{2} + 2$
 $\leq ||w_{t-2}||^{2} + 3.$

• So after 'k' errors we have $||w_t||^2 \le k$.

Perceptron Mistake Bound

- Let's consider a solution w^* , so sign $(y_t) = sign(x_t^T w^*)$.
- Whenever we make a mistake, we have:

$$||w_{t+1}|| = ||w_{t+1}|| ||w_*||$$

$$\geq w_{t+1}^T w_*$$

$$= (w_t + y_t x_t)^T w_*$$

$$= w_t^T w_* + y_t x_t^T w_*$$

$$= w_t^T w_* + |x_t^T w_*|$$

$$\geq w_t^T w_* + \gamma.$$

• So after 'k' mistakes we have $||w_t|| \ge \gamma k$.

Perceptron Mistake Bound

- So our two bounds are $||w_t|| \leq sqrt(k)$ and $||w_t|| \geq \gamma k$.
- This gives $\gamma k \leq sqrt(k)$, or a maximum of $1/\gamma^2$ mistakes.
 - Note that $\gamma > 0$ by assumption and is upper-bounded by one by $||x|| \le 1$.
 - After this 'k', under our assumptions we're guaranteed to have a perfect classifier.