CPSC 340:
Machine Learning and Data Mining

Linear Classifiers: predictions

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.

Admin

* Assignment 4:
— Due Friday of next week

e Midterm:
— Well done!
— You have until Thursday to discuss grading concerns (in person)

» See Piazza for post regarding Q4a

— You can collect exam papers after class or in office hours

Part 3 Key Ideas: Linear Models, Least Squares

e Focus of Part 3 is linear models:

— Supervised learning where prediction is linear combination of features:
\/i = Wl Xil +W2xil t .- +WJKIJ

. = w'y
* Regression:

— Target y, is numerical, testing (V. ==y.) doesn’t make sense.
M
(

GooJ 'r+ .”N+ &095" 1
° . n '
Squared error: -}Z (Jy, - \/')z o _é //Xw"\///l

Cxactly [oss "vaoh-)k qey fom

— Can find optimal ‘w’ by solving “normal equations”.

Part 3 Key Ideas: Gradient Descent, Error Functions

* For large ‘d’ we often use gradient descent:
— |terations only cost O(nd).
— Converges to a critical point of a smooth function.
— For convex functions, it finds a global optimum.

* L;-norm and L.,-norm errors:

H)(w'y“. Hy‘ﬂ/\'y//oo

— More/less robust to outliers.
— Can apply gradient descent after smoothing with Huber or log-sum-exp.

Part 3 Key Ideas: Change of basis, Complexity Scores

* Change of basis: replaces features x. with non-linear transforms z:
— Add a bias variable (feature that is always one).
— Polynomial basis.
— Radial basis functions (non-parametric basis).

* We discussed scores for choosing “true” model complexity.
— Validation score vs. AIC/BIC.

 Search and score for feature selection:

— Define a “score” like BIC, and do a “search” like forward selection.

Part 3 Key Ideas: Regularization

e LO-regularization (AIC, BIC):
— Adds penalty on the number of non-zeros to select features.
£()= 1K= yll? + Al
e L2-regularization (ridge regression):

— Adding penalty on the L2-norm of ‘W’ to decrease overfitting:

Floy= 1w =yl*+ Zj)

e L1-regularization (LASSO):
— Adding penalty on the L1-norm decreases overfitting and selects features:

Fl) = 10 =yl + A0

Key Idea in Rest of Part 3

e The next few lectures will focus on:

— Using linear models for classification

* It may seem like we’re spending a lot of time on linear models.
— Linear models are used a lot and are understandable.
* ICBC only uses linear models for insurance estimates.

— Linear models are also the building blocks for more-advanced methods.

e “Latent-factor” models in Part 4 and “deep learning” in Part 5.

Motivation: Identifying Important E-mails

* How can we automatically identify ‘important’ e-mails?

| » Mark .. Issam, Ricky (10) Inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) ists Intro to Computer Science 10:20 am
Inbox (3) - i
» Issam Laradji Inbox Convergence rates forcu & 9:49 am
Starred
<!mpo§nt > » sameh, Mark, sameh (3) Inbox Graduation ProjectDema = 8:01 am
Sent Mal » Mark .. sara, Sara (11) Label propagation = 7:57am

Nraftas (1)

* A binary classification problem (“important” vs. “not important”).
— Labels are approximated by whether you took an “action” based on mail.
— High-dimensional feature set (that we’ll discuss later).

 Gmail uses a linear classifier for this problem.

Binary Classification Using Regression?

 Can we apply linear models for binary classification?

— Set y. = +1 for one class (“important”).

— Set y, = -1 for the other class (“not important”).
* At training time, fit a linear regression model:

)/' = W x,, twy Xyt Fwyxy
—_ W YI
* The model will try to make w'x. = +1 for “important” e-mails,
and w'x. = -1 for “not important” e-mails.

Binary Classification Using Regression?

 Can we apply linear models for binary classification?
— Set y. = +1 for one class (“important”).
— Set y, = -1 for the other class (“not important”).

* Linear model gives real numbers like 0.9, -1.1, and so on.

* So to predict, we look at the sign of w'x..
— If w'x, = 0.9, predict y, = +1.
— If wix, =-1.1, predict y, = -1.
— If w'x, = 0.1, predict y, = +1.
— If w'x, =-100, predict y. = -1.

10

Decision Boundary in 1D

\”

X;

)()()(XXXC—'ll’Df A
I’Mrlar‘/au'l

Z\/
l)neqr‘ r (7r=es$1a/>

ﬂnoge,
¢ T
Yim WX

11

Decision Boundary in 1D
Y

Our Preo't(,‘/ ‘rt/lﬂc"ior\
P35 5 /

z\/
lm éar (c, e s§ o0

nnoJel

N
>’i - w XI
 We can interpret ‘w’ as hyperplane separating x into 2 half-spaces:

— Half-space where w'x. > 0 and half-space where w'x. < 0.

12

Decision Boundary in 2D

decision tree KNN linear classifier

X class -1

® class +1
o ® e

" o.o ®e

X class -1

° X class -1

® class +1 ® class +1

* Alinear classifier would be linear function y.= B + w x,;+w,X., 2 Y
coming out of the page (the boundary is at 3 .=0). YiZwy

e Or recall from multivariable calculus that a plane in d-dimensions is
defined by its normal vector in d-dimensions, plus an intercept/offset.

13

Perceptron Algorithm

One of the first “learning” algorithms was the “perceptron” (1957).
— Searches for a ‘w’ such that sign(w'x.) =y, for all i.

Perceptron algorithm:
— Start with w® = 0.

— Go through examples in any order until you make a mistake predicting y..
* Set wtl=w'+yx.
— Keep going through examples until you make no errors on training data.

Intuition for step: if y, = +1, “add more of x. to w” so that w'x; is larger.

(wtﬂ)_r)(,' = (\Nt T)—'x,' - @vt)lxl- + 'y = (old p/wl"(f?d’l> + ”X.'I/2
If a perfect classifier exists, this algorithm finds one in finite number of steps.
— In this case we say the training data is “linearly separable”

Lecture continues in Jupyter notebook...

Summary

* Binary classification using regression:
— Encode using y. in {-1,1}.
— Use sign(w'x,) as prediction.
— “Linear classifier” (a hyperplane splitting the space in half).

* Perceptron algorithm: finds a perfect classifier (if one exists).
* Least squares is a weird error for classification.

https://en.wikipedia.org/wiki/Perceptron

History [edit]

e mw e e e S S ST P D Y s W

=3

The Mark | Perceptron machine was &J
the first implementation of the
perceptron algorithm. The machine was
connected to a camera that used
20x20 cadmium sulfide photocells to
produce a 400-pixel image. The main
visible feature is a patchboard that
allowed experimentation with different
combinations of input features. To the
right of that are arrays of
potentiometers that implemented the
adaptive weights.*?"?

17

Online Classification with Perceptron

e Perceptron for online linear binary classification [Rosenblatt, 1957]
— Start with w, = 0.
— At time ‘t” we receive features x..
— We predict y, = sign(w,'x,).
— Ify. 2y, thensetw,, =w, +yx.
e Otherwise, set w,; = w,.

(Slides are old so above I’'m using subscripts of ‘t’ instead of superscripts.)

* Perceptron mistake bound [Novikoff, 1962]:

— Assume data is linearly-separable with a “margin”: .

* There exists w* with | |w*| |=1 such that sign(x,'w*) = sign(y,) for all ‘t" and |x'w*| > v.>o
— Then the number of total mistakes is bounded.

* No requirement that data is IID.

Perceptron Mistake Bound

* Let’s normalize each x, so that | |x,| | = 1.
— Length doesn’t change label.

* Whenever we make a mistake, we have sign(y,) # sign(w,'x,) and
lwis]|* = Jlwe + ya|®

lwe|* + 2 g ; +1

<0
< Jlwe|® +1
< |Jwe) + 2
< |lwi—a]|” + 3.

* So after ‘k’ errors we have | |w,]| |? < k.

Perceptron Mistake Bound

* Let’s consider a solution w*, so sign(y,) = sign(x,'w*).
* Whenever we make a mistake, we have:

lwiall = lwera|llw]]

T
2> Wiy Wi

= (wy + ypxe) " w,

T T
= Wy Wx + YTy W

T T
= w; Wy + |T; Wy
T
> Wy Wy + 7.

* So after k" mistakes we have | |w,|| > yk.

Perceptron Mistake Bound

* So our two bounds are | |w,| | < sqgrt(k) and | |w,| | = yk.

* This gives vk < sqgrt(k), or a maximum of 1/y? mistakes.
— Note that y > 0 by assumption and is upper-bounded by one by | |x]|| < 1.

— After this ‘k’, under our assumptions
we’re guaranteed to have a perfect classifier.

