CPSC 340: Machine Learning and Data Mining

Linear Classifiers: loss functions

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. ¹

Last Time: Classification using Regression

• Binary classification using sign of linear models:

Fit model
$$y_i \approx w^T x_i$$
 and predict using sign($w^T x_i$)
+ $i^T - i$

- We talked about predictions and the interpretation of 'w'
- But what loss function do we use to learn 'w'?

• Consider training by minimizing squared error with these y_i:

$$f(w) = \frac{1}{2} ||Xw - y||^{2} \qquad y = \begin{bmatrix} 1 \\ 1 \\ -1 \\ +1 \\ -1 \end{bmatrix}$$

- If we predict $w^T x_i = +0.9$ and $y_i = +1$, error is small: $(0.9 1)^2 = 0.01$.
- If we predict $w^T x_i = -0.8$ and $y_i = +1$, error is big: $(-0.8 1)^2 = 3.24$.
- If we predict $w^T x_i = +100$ and $y_i = +1$, error is huge: $(100 1)^2 = 9801$.
- Least squares penalized for being "too right".

+100 has the right sign, so the error should be zero.

Least squares behaves weirdly when applied to classification: •

Make sure you understand why the green line achieves 0 training error. •

• What went wrong?

Thoughts on the previous (and next) slide

- We are now plotting the loss vs. the predicted w[⊤]x_i.
 - This is totally different from plotting in the data space (y_i vs. x_i).
- The loss is a sum over training examples.
 - We're plotting the individual loss for a particular training example.
 - In the figure, this example has label $y_i = -1$ so the loss is centered at -1. (The plot would be mirrored in the case of $y_i = +1$.)
 - We only need to show one case or the other to get our point across.
 - Note that with regular linear regression the output y_i could be any number and thus the parabola could be centred anywhere. But here we've restricted ourselves to y_i ={-1,+1}.
- (The next slide is the same as the previous one)

0-1 Loss Function

- The 0-1 loss function is the number of classification errors:
 - We can write using the LO-norm as $||sign(Xw) y||_0$.
 - Unlike regression, in classification it's reasonable that sign(w^Tx_i) = y_i .
- Unfortunately the 0-1 loss is non-convex in 'w'.
 - It's easy to minimize if a perfect classifier exists (perceptron).
 - Otherwise, finding the 'w' minimizing 0-1 loss is a hard problem.
 - Gradient is zero everywhere so you don't know "which way to go" in w-space.
 - Note this is NOT the same type of problem we had with using the squared loss.
 - We can minimize the squared error, but it might giver a bad model for classification.

(Jupyter notebook demo / notes)

 NOTE: the next 4 slides are being replaced with the Jupyter notebook. I do not want to delete them in case they are usual for you to refer to, and I do not want to move them to Bonus since they aren't bonus material. But I won't cover them in lecture.

Hinge Loss: Convex Approximation to 0-1 Loss "Error" or "loss" for predicting wTx; when true label y; is -1. Let's choose a loss function that: "hinge" loss What we want is the "O-1 loss". I. Has error of D if $w'x_i \leq -1$ (no "bad" errors beyond this point) 2. Has a loss of 1 if $w^{7}x_{i} = 0$ (matches 0-1 loss at decision boundary) Prediction W Xi 3. Is convex and "(lose" to 0-1 1055.

Hinge Loss

• Hinge loss for all 'n' training examples is given by:

$$f(w) = \sum_{j=1}^{n} \max \{0, 1 - y_i \ w^T x_i\}$$

- Convex upper bound on 0-1 loss.
 - If the hinge loss is 18.3, then number of training errors is at most 18 because each error incurs a loss of at least 1.
 - So minimizing hinge loss indirectly tries to minimize training error.
 - Finds a perfect linear classifier if one exists.
- Support vector machine (SVM) is hinge loss with L2-regularization.

$$f(w) = \sum_{i=1}^{n} \max \{0, 1-y_i, w^T x_i\} + \frac{\pi}{2} ||w||^2$$

• SVMs can also be viewed as "maximizing the margin" (later in lecture). 18

Location of the "hinge"

• Hinge loss for all 'n' training examples is given by:

$$f(w) = \sum_{j=1}^{n} \max \{0, 1 - y_i \}$$

- Why not have the hinge at 0 instead of 1?
 - In that case, we'd have a trivial solution at w=0
 - f(0)=0 and $f(w)\geq 0$ so w=0 minimizes f.
 - Putting the hinge at some positive value avoids this problem.
 - The "1" is arbitrary and is just an overall scaling factor for w.
 - See bonus slides for more info

Logistic Loss

• Logistic loss:

$$f(n) = \sum_{i=1}^{n} log(1 + exp(-y_iw^7x_i))$$

- This is the "logistic loss" and model is called "logistic regression".
 - Convex and differentiable: minimize this with gradient descent.
 - You should also add regularization.
 - We'll see later that the probabilities it outputs have a meaningful interpretation.

Logistic Regression and SVMs

- Logistic regression and SVMs are used EVERYWHERE!
 - Fast training and testing.
 - Training on huge datasets using "stochastic" gradient descent (next week).
 - Testing is just computing w^Tx_i.
 - (For now we haven't said how to minimize the SVM loss since it's not smooth)
 - Weights w_i are easy to understand.
 - It's how much x_i changes the prediction and in what direction.
 - We can often get a good test error.
 - With low-dimensional features using RBF basis and regularization.
 - With high-dimensional features and regularization.
 - Smoother predictions than random forests.

Comparison of "Black Box" Classifiers

- Fernandez-Delgado et al. [2014]:
 - "Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?"

- Compared 179 classifiers on 121 datasets.
- Random forests are most likely to be the best classifier.
- Next best class of methods was SVMs (L2-regularization, RBFs).

- You should know the word "margin" because you might hear it
- Personally I believe this is not the best way to understand SVM
- Thus the following slides are mainly for completeness
- More on max-margin in the bonus slides

- Consider a linearly-separable dataset.
 - Perceptron algorithm finds *some* classifier with zero error.
 - But are all zero-error classifiers equally good?

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- We want to "maximize the minimum distance"
 - We saw this sort of "minimax" problem with brittle regression:
 - Minimize the maximum distance from data to line (maximum residual)
- But we also don't like errors, so we penalize them
 - The objective becomes an error penalty term plus a max-margin term
 - One can massage these into the hinge loss + L2-regularization (bonus)
- SVM solving ties to constrained optimization (outside scope of 340)

Summary

- Hinge loss is a convex upper bound on 0-1 loss.
 - SVMs add L2-regularization, can be viewed as "maximizing the margin".
- Logistic loss is a smooth convex approximation to the 0-1 loss.
 - "Logistic regression".
- SVMs and logistic regression are very widely-used.
 - A lot of ML consulting: "find good features, use L2-regularized logistic regression".
 - Both are just linear classifiers (a hyperplane dividing into two halfspaces)

Degenerate Convex Approximation to 0-1 Loss

- If $y_i = +1$, we get the label right if $w^T x_i > 0$.
- If $y_i = -1$, we get the label right if $w^T x_i < 0$, or equivalently $-w^T x_i > 0$.
- So "classifying 'i' correctly" is equivalent to having $y_i w^T x_i > 0$.
- One possible convex approximation to 0-1 loss:
 - Minimize how much this constraint is violated.

Degenerate Convex Approximation to 0-1 Loss

• Our convex approximation of the error for one example is:

 $\max\{0, -\gamma; w^T x;\}$

- We could train by minimizing sum over all examples: $f(w) = \sum_{i=1}^{n} \max\{O_{i} - \gamma_{i} w^{T} x_{i}\}$
- But this has a degenerate solution:

- We have f(0) = 0, and this is the lowest possible value of 'f'.

• There are two standard fixes: hinge loss and logistic loss.

Hinge Loss

• Consider replacing $y_i w^T x_i > 0$ with $y_i w^T x_i \ge 1$.

(the "1" is arbitrary: we could make ||w|| bigger/smaller to use any positive constant)

• The violation of this constraint is now given by:

$$\max \{O_{j} \mid -y_{i} w^{T} x_{i} \}$$

- This is the called hinge loss.
 - It's convex: max(constant,linear).
 - It's not degenerate: w=0 now gives an error of 1 instead of 0.

Robustness and Convex Approximations

• Because the hinge/logistic grow like absolute value for mistakes, they tend not to be affected by a small number of outliers.

Robustness and Convex Approximations

 Because the hinge/logistic grow like absolute value for mistakes, they tend not to be affected by a small number of outliers.

But performance degrades if we have many outliers.

Non-Convex 0-1 Approximations

• There exists some smooth non-convex 0-1 approximations.

"Robust" Logistic Regression

• A recent idea: add a "fudge factor" v_i for each example.

$$f(w,v) = \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i + v_i))$$

- If w^Tx_i gets the sign wrong, we can "correct" the mis-classification by modifying v_i.
 - This makes the training error lower but doesn't directly help with test data, because we won't have the v_i for test data.
 - But having the v_i means the 'w' parameters don't need to focus as much on outliers (they can make $|v_i|$ big if sign($w^T x_i$) is very wrong).

"Robust" Logistic Regression

• A recent idea: add a "fudge factor" v_i for each example.

$$f(w,v) = \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i + v_i))$$

- If w^Tx_i gets the sign wrong, we can "correct" the mis-classification by modifying v_i.
- A problem is that we can ignore the 'w' and get a tiny training error by just updating the v_i variables.
- But we want most v_i to be zero, so "robust logistic regression" puts an L1-regularizer on the v_i values:

$$f(w,v) = \sum_{i=1}^{n} \log (1 + exp(-y_i w^T x_i + v_i)) + \lambda \|v\|_{1}$$

• You would probably also want to regularize the 'w' with different λ_{23}

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

- Consider a linearly-separable dataset.
 - Maximum-margin classifier: choose the farthest from both classes.

Support Vector Machines

• For linearly-separable data, SVM minimizes:

$$f(w) = \frac{1}{2} ||w||^2 \quad (equivalent \ to \ maximizing \ margin \ \frac{1}{1/w}|)$$

$$- \text{Subject to the constraints that:} \qquad w^7 x_i \geqslant 1 \quad \text{for } y_i = 1 \quad (c \text{ lassify all } y_i)$$

$$(see \ Wikipedia/textbooks) \qquad w^7 x_i \leqslant -1 \quad \text{for } y_i = -1 \quad (c \text{ lassify all } y_i)$$

0 5

- (see Wikipedia/tex • But most data is not linearly separable.
- For non-separable data, try to minimize violation of constraints: $\begin{cases} If \quad w^{T}x_{i} \leq -1 \quad \text{and} \quad y_{i} = -1 \quad \text{then} \quad "violation" \text{ should be zero.} \\ If \quad w^{T}x_{i} \gtrsim -1 \quad \text{and} \quad y_{i} = -1 \quad \text{then} \quad we \quad "violate \quad constraint" \quad by \quad 1 + w^{T}x_{i} \end{cases}$ > Constraint violation is the hinge 41

Support Vector Machines

• Try to maximizing margin and also minimizing constraint violation:

Hinge loss
$$f(w) = \sum_{i=1}^{n} \max \{0, 1 - y_i w^T x_i\} + \frac{1}{2} ||w||^2$$

for example (i):
if's the amount we violate $y_i w^T x_i \ge 1$
"slack"
 $\max(w) = \sum_{i=1}^{n} \max \{0, 1 - y_i w^T x_i\} + \frac{1}{2} ||w||^2$
 $encourages large margin.$

• We typically control margin/violation trade-off with parameter " λ ":

$$f(w) = \sum_{i=1}^{n} \max\{0, 1 - y_i w^T x_i\} + \frac{\lambda}{2} ||w||^2$$

- This is the standard SVM formulation (L2-regularized hinge).
 - Some formulations use $\lambda = 1$ and multiply hinge by 'C' (equivalent).

• Non-separable case:

• Non-separable case:

