
CPSC	340:
Machine	Learning	and	Data	Mining

Linear	Classifiers:	loss	functions

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart. 1

Last	Time:	Classification	using	Regression
• Binary	classification	using sign	of	linear	models:

• We	talked	about	predictions	and	the	interpretation	of	‘w’
• But	what	loss	function	do	we	use	to	learn	‘w’?

2

Can	we	just	use	least	squares??
• Consider	training	by	minimizing	squared	error	with	these	yi:

• If	we	predict	wTxi =	+0.9	and	yi =	+1,	error	is	small:	(0.9	– 1)2 =	0.01.
• If	we	predict	wTxi =	-0.8	and	yi =	+1,	error	is	big:	(-0.8	– 1)2 =	3.24.
• If	we	predict	wTxi =	+100	and	yi =	+1,	error	is	huge:	(100	– 1)2 =	9801.

• Least	squares	penalized	for	being	“too	right”.
– +100	has	the	right	sign,	so	the	error	should	be	zero.

3

Can	we	just	use	least	squares??
• Least	squares	behaves	weirdly	when	applied	to	classification:

• Make	sure	you	understand	why	the	green	line	achieves	0	training	error.
4

Can	we	just	use	least	squares??
• What	went	wrong?
– “Good”	errors	vs.	“bad”	errors.

5

Can	we	just	use	least	squares??
• What	went	wrong?
– “Good”	errors	vs.	“bad”	errors.

6

Comparing	Loss	Functions

7

Thoughts	on	the	previous	(and	next)	slide
• We	are	now	plotting	the	loss	vs.	the	predicted	w⊤xi.
– This	is	totally	different	from	plotting	in	the	data	space	(yi vs.	xi).

• The	loss	is	a	sum	over	training	examples.
– We're	plotting	the	individual	loss	for	a	particular	training	example.
– In	the	figure,	this	example	has	label	yi =	−1	so	the	loss	is	centered	at	-1.	
(The	plot	would	be	mirrored	in	the	case	of	yi =	+1.)
• We	only	need	to	show	one	case	or	the	other	to	get	our	point	across.

– Note	that	with	regular	linear	regression	the	output	yi could	be	any	number	
and	thus	the	parabola	could	be	centred anywhere.	But	here	we've	
restricted	ourselves	to	yi={-1,+1}.	

• (The	next	slide	is	the	same	as	the	previous	one)
8

Comparing	Loss	Functions

9

Comparing	Loss	Functions

10

Comparing	Loss	Functions

11

0-1	Loss	Function
• The	0-1	loss	function	is	the	number	of	classification	errors:
– We	can	write	using	the	L0-norm	as	||sign(Xw)	– y||0.
– Unlike	regression,	in	classification	it’s	reasonable	that	sign(wTxi)	=	yi.

• Unfortunately	the	0-1	loss	is	non-convex	in	‘w’.
– It’s	easy	to	minimize	if	a	perfect	classifier	exists	(perceptron).
– Otherwise,	finding	the	‘w’	minimizing	0-1	loss	is	a	hard	problem.

– Gradient	is	zero	everywhere	so	you	don’t	know	“which	way	to	go”	in	w-space.
– Note	this	is	NOT	the	same	type	of	problem	we	had	with	using	the	squared	loss.

• We	can	minimize	the	squared	error,	but	it	might	giver	a	bad	model	for	classification.
12

(Jupyter notebook	demo	/	notes)
• NOTE:	the	next	4	slides	are	being	replaced	with	the	Jupyter
notebook.	I	do	not	want	to	delete	them	in	case	they	are	usual	for	
you	to	refer	to,	and	I	do	not	want	to	move	them	to	Bonus	since	
they	aren’t	bonus	material.	But	I	won’t	cover	them	in	lecture.

13

Hinge	Loss:	Convex	Approximation	to	0-1	Loss

14

Hinge	Loss:	Convex	Approximation	to	0-1	Loss

15

Hinge	Loss:	Convex	Approximation	to	0-1	Loss

16

Convex	Approximations	to	0-1	Loss

17

Hinge	Loss
• Hinge	loss for	all	‘n’	training	examples	is	given	by:

– Convex	upper	bound	on	0-1	loss.
• If	the	hinge	loss	is	18.3,	then	number	of	training	errors	is	at	most	18	because	each	error	
incurs	a	loss	of	at	least	1.

• So	minimizing	hinge	loss	indirectly	tries	to	minimize	training	error.
• Finds	a	perfect	linear	classifier	if	one	exists.

• Support	vector	machine	(SVM)	is	hinge	loss	with	L2-regularization.

• SVMs	can	also	be	viewed	as	“maximizing	the	margin”	(later	in	lecture). 18

Location	of	the	“hinge”
• Hinge	loss for	all	‘n’	training	examples	is	given	by:

• Why	not	have	the	hinge	at	0	instead	of	1?
– In	that	case,	we’d	have	a	trivial	solution	at	w=0	

• f(0)=0	and	f(w)≥0	so	w=0	minimizes	f.

– Putting	the	hinge	at	some	positive	value	avoids	this	problem.
– The	“1”	is	arbitrary	and	is	just	an	overall	scaling	factor	for	w.
– See	bonus	slides	for	more	info

19

Logistic	Loss
• Logistic	loss:

• This	is	the	“logistic	loss”	and	model	is	called	“logistic	regression”.
– Convex	and	differentiable:	minimize	this	with	gradient	descent.
– You	should	also	add	regularization.
– We’ll	see	later	that	the	probabilities it	outputs	have	a	meaningful	
interpretation.

20

Logistic	Regression	and	SVMs
• Logistic	regression	and	SVMs	are used	EVERYWHERE!
– Fast	training	and	testing.

• Training	on	huge	datasets	using	“stochastic”	gradient	descent	(next	week).
• Testing	is	just	computing	wTxi.
• (For	now	we	haven’t	said	how	to	minimize	the	SVM	loss	since	it’s	not	smooth)

– Weights	wj are	easy	to	understand.	
• It’s	how	much	xj changes	the	prediction	and	in	what	direction.

– We	can	often	get	a	good	test	error.
• With	low-dimensional	features	using	RBF	basis	and	regularization.	
• With	high-dimensional	features	and	regularization.

– Smoother	predictions	than	random	forests.
21

Comparison	of	“Black	Box”	Classifiers
• Fernandez-Delgado	et	al.	[2014]:
– “Do	we	Need	Hundreds	of	Classifiers	to	Solve	Real	World	Classification	
Problems?”

• Compared	179	classifiers	on	121	datasets.
• Random	forests	are	most	likely	to	be	the	best	classifier.
• Next	best	class	of	methods	was	SVMs	(L2-regularization,	RBFs).

22

Maximum-Margin	Classifier
• You	should	know	the	word	“margin”	because	you	might	hear	it
• Personally	I	believe	this	is	not	the	best	way	to	understand	SVM
• Thus	the	following	slides	are	mainly	for	completeness
• More	on	max-margin	in	the	bonus	slides

23

Maximum-Margin	Classifier
• Consider	a	linearly-separable dataset.
– Perceptron	algorithm	finds	some classifier	with	zero	error.
– But	are	all	zero-error	classifiers	equally	good?

24

Maximum-Margin	Classifier
• Consider	a	linearly-separable	dataset.
– Maximum-margin classifier:	choose	the	farthest	from	both	classes.

25

Maximum-Margin	Classifier
• Consider	a	linearly-separable	dataset.
– Maximum-margin classifier:	choose	the	farthest	from	both	classes.

26

Maximum-Margin	Classifier
• Consider	a	linearly-separable	dataset.
– Maximum-margin classifier:	choose	the	farthest	from	both	classes.

27

Maximum-Margin	Classifier
• We	want	to	“maximize	the	minimum	distance”	
– We	saw	this	sort	of	“minimax”	problem	with	brittle	regression:

• Minimize	the	maximum	distance	from	data	to	line	(maximum	residual)

• But	we	also	don’t	like	errors,	so	we	penalize	them
– The	objective	becomes	an	error	penalty	term	plus	a	max-margin	term
– One	can	massage	these	into	the	hinge	loss	+	L2-regularization	(bonus)

• SVM	solving	ties	to	constrained	optimization	(outside	scope	of	340)

28

Summary
• Hinge	loss is	a	convex	upper	bound	on	0-1	loss.
– SVMs	add	L2-regularization,	can	be	viewed	as	“maximizing	the	margin”.

• Logistic	loss	is	a	smooth	convex	approximation	to	the	0-1	loss.
– “Logistic	regression”.

• SVMs	and	logistic	regression	are	very	widely-used.
– A	lot	of	ML	consulting:	“find	good	features,	use	L2-regularized	logistic	
regression”.

– Both	are	just	linear classifiers	(a	hyperplane	dividing	into	two	halfspaces)

29

Degenerate	Convex	Approximation	to	0-1	Loss
• If	yi =	+1,	we	get	the	label	right	if	wTxi >	0.
• If	yi =	-1,	we	get	the	label	right	if	wTxi <	0,	or	equivalently	–wTxi >	0.
• So	“classifying	‘i’	correctly”	is	equivalent	to	having	yiwTxi >	0.

• One	possible	convex	approximation	to	0-1	loss:
– Minimize	how	much	this	constraint	is	violated.

30

Degenerate	Convex	Approximation	to	0-1	Loss
• Our	convex	approximation	of	the	error	for	one	example	is:

• We	could	train	by	minimizing	sum	over	all	examples:

• But	this	has	a	degenerate	solution:
– We	have	f(0)	=	0,	and	this	is	the	lowest	possible	value	of	‘f’.

• There	are	two	standard	fixes:	hinge	loss	and	logistic	loss.
31

Hinge	Loss
• Consider replacing	yiwTxi >	0	with	yiwTxi ≥	1.

(the	“1”	is	arbitrary:	we	could	make	||w||	bigger/smaller	to	use	any	positive	constant)

• The	violation	of	this	constraint	is	now	given	by:

• This	is	the	called	hinge	loss.
– It’s	convex:	max(constant,linear).
– It’s	not	degenerate:	w=0	now	gives	an	error	of	1	instead	of	0.

32

Robustness	and	Convex	Approximations
• Because	the	hinge/logistic	grow	like	absolute	value	for	mistakes,	
they	tend	not	to	be	affected	by	a	small	number	of	outliers.

33

Robustness	and	Convex	Approximations
• Because	the	hinge/logistic	grow	like	absolute	value	for	mistakes,	
they	tend	not	to	be	affected	by	a	small	number	of	outliers.

• But	performance	degrades	if	we	have	many	outliers.
34

Non-Convex	0-1	Approximations
• There	exists	some	smooth non-convex	0-1	approximations.
– Robust	to	many/extreme	outliers.
– Still	NP-hard	to	minimize.
– But	can	use	gradient	descent.

• Finds	“local”	optimum.

35

“Robust”	Logistic	Regression
• A	recent	idea:	add	a	“fudge	factor”	vi for	each	example.

• If	wTxi gets	the	sign	wrong,	we	can	“correct”	the	mis-classification	
by	modifying	vi.
– This	makes	the	training	error	lower	but	doesn’t	directly	help	with	test	
data,	because	we	won’t	have	the	vi for	test	data.

– But	having	the	vi means	the	‘w’	parameters	don’t	need	to	focus	as	much	
on	outliers	(they	can	make	|vi|	big	if	sign(wTxi)	is	very	wrong).

36

“Robust”	Logistic	Regression
• A	recent	idea:	add	a	“fudge	factor”	vi for	each	example.

• If	wTxi gets	the	sign	wrong,	we	can	“correct”	the	mis-classification	
by	modifying	vi.

• A	problem	is	that	we	can	ignore	the	‘w’	and	get	a	tiny	training	error	
by	just	updating	the	vi variables.

• But	we	want	most	vi to	be	zero,	so	“robust	logistic	regression”	puts	
an	L1-regularizer	on	the	vi values:

• You	would	probably	also	want	to	regularize	the	‘w’	with	different	λ.
37

Maximum-Margin	Classifier
• Consider	a	linearly-separable	dataset.
– Maximum-margin classifier:	choose	the	farthest	from	both	classes.

38

Maximum-Margin	Classifier
• Consider	a	linearly-separable	dataset.
– Maximum-margin classifier:	choose	the	farthest	from	both	classes.

39

Maximum-Margin	Classifier
• Consider	a	linearly-separable	dataset.
– Maximum-margin classifier:	choose	the	farthest	from	both	classes.

40

Support	Vector	Machines
• For	linearly-separable data,	SVM	minimizes:

– Subject	to	the	constraints	that:
(see	Wikipedia/textbooks)

• But	most	data	is	not	linearly	separable.
• For	non-separable	data,	try	to	minimize	violation	of	constraints:

41

Support	Vector	Machines
• Try	to	maximizing	margin	and	also	minimizing	constraint	violation:

• We	typically	control	margin/violation	trade-off	with	parameter	“λ”:

• This	is	the	standard	SVM	formulation	(L2-regularized	hinge).
– Some	formulations	use	λ =	1	and	multiply	hinge	by	‘C’	(equivalent).

42

Support	Vector	Machines	for	Non-Separable
• Non-separable case:

43

Support	Vector	Machines	for	Non-Separable
• Non-separable case:

44

Support	Vector	Machines	for	Non-Separable
• Non-separable case:

45

Support	Vector	Machines	for	Non-Separable
• Non-separable case:

46

