
L2

January 8, 2018

1 Exploratory Data Analysis

CPSC 340: Machine Learning and Data Mining
The University of British Columbia
2017 Winter Term 2
Notebook by Mike Gelbart, based on slides by Mark Schmidt.

In [12]: # lecture imports / dependencies

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

import pandas as pd

import seaborn as sns

sns.set(style="ticks")

from sklearn.feature_extraction.text import CountVectorizer

from skimage.io import imread, imshow

1.1 Admin

• Get a CS ugrad account: https://www.cs.ubc.ca/getacct/
• Course website: https://github.ugrad.cs.ubc.ca/CPSC340-2017W-T2/home
• Course Piazza sign-up: https://piazza.com/class/j9uk5ecmb7e4ks
• Tutorials start next week
• The lectures will be a mix of PowerPoint and jupyter notebook (this)
• both will be available online
• you can view the "static" notebook directly on GitHub
• you can run the notebook locally and play around with it

1.2 Typical steps of ML

1. Identify question / task
2. Collect data
3. Clean and preprocess data
4. Exploratory data anlysis (EDA)
5. Feature and model selection
6. Train model
7. Evaluate and communicate results
8. Deploy working system

1

https://github.ugrad.cs.ubc.ca/CPSC340-2017W-T2/home/#cpsc-340-2017w2-schedule

(but not necessarily in this order...)
Today we’ll discuss steps (3) and (4)

1.3 What does data look like?

Often, it is tabular (but certainly not always!).

In [13]: titanic = sns.load_dataset("titanic")

titanic.head()

Out[13]: survived pclass sex age sibsp parch fare embarked class \

0 0 3 male 22.0 1 0 7.2500 S Third

1 1 1 female 38.0 1 0 71.2833 C First

2 1 3 female 26.0 0 0 7.9250 S Third

3 1 1 female 35.0 1 0 53.1000 S First

4 0 3 male 35.0 0 0 8.0500 S Third

who adult_male deck embark_town alive alone

0 man True NaN Southampton no False

1 woman False C Cherbourg yes False

2 woman False NaN Southampton yes True

3 woman False C Southampton yes False

4 man True NaN Southampton no True

• Each row is an object (or training example, or sample)
• Each column is a feature (or variable, covariate).

1.4 Types of features

• Categorical (e.g. survived, embark_town)
• Numerical (e.g. age, fare)
• Some are more ambiguous, like pclass: is this categorical or numerical?

Converting types:

• Many of our methods are meant to work with numerical features.
• We can convert categorical to numerical.

In [14]: pd.get_dummies(titanic, columns=["embarked"]).head()

Out[14]: survived pclass sex age sibsp parch fare class who \

0 0 3 male 22.0 1 0 7.2500 Third man

1 1 1 female 38.0 1 0 71.2833 First woman

2 1 3 female 26.0 0 0 7.9250 Third woman

3 1 1 female 35.0 1 0 53.1000 First woman

4 0 3 male 35.0 0 0 8.0500 Third man

adult_male deck embark_town alive alone embarked_C embarked_Q \

0 True NaN Southampton no False 0 0

2

1 False C Cherbourg yes False 1 0

2 False NaN Southampton yes True 0 0

3 False C Southampton yes False 0 0

4 True NaN Southampton no True 0 0

embarked_S

0 1

1 0

2 1

3 1

4 1

If we do this for all our features, we can now interpret objects as points in space.

In [15]: titanic_num = pd.get_dummies(titanic, columns=["sex","embarked","fare","class","who","adult_male","deck","embark_town","alive","alone"])

titanic_num.shape

Out[15]: (891, 280)

• So we now have 891 objects and 280 features.
• In other words, each object is a point in 280-dimensional space.
• This is why multivariable calculus is a prerequisite.

1.4.1 Other feature types: text data

In [16]: text = "The University of British Columbia (UBC) is a public research university with campuses and facilities in British Columbia, Canada."

One approach: bag of words features.

In [17]: cv = CountVectorizer()

feat = cv.fit_transform([text])

In [18]: for word, idx in cv.vocabulary_.items():

print("%-14s%d" % (word, feat[0,idx]))

the 1

university 2

of 1

british 2

columbia 2

ubc 1

is 1

public 1

research 1

with 1

campuses 1

and 1

facilities 1

in 1

canada 1

3

• Bag of words ignores the order of words but still can work well.
• You can interpret each document as a point in space, compute distances.

1.4.2 Other feature types: images

In [19]: img = imread("https://upload.wikimedia.org/wikipedia/commons/8/86/Irving_K._Barber_Library.jpg")

plt.xticks([])

plt.yticks([])

imshow(img);

Photo credit: Wikipedia: UBC by CjayD, CC BY 2.0.

In [20]: img.shape

Out[20]: (1344, 2048, 3)

In [21]: img[0:2,0:2,:]

Out[21]: array([[[45, 58, 90],

[45, 59, 88]],

[[45, 59, 88],

[45, 59, 88]]], dtype=uint8)

In [22]: img.flatten().shape

4

https://en.wikipedia.org/wiki/University_of_British_Columbia#/media/File:Irving_K._Barber_Library.jpg
https://www.flickr.com/people/85424459@N08/
http://creativecommons.org/licenses/by/2.0

Out[22]: (8257536,)

• Now, again, the image is a point in space.
• But now the space is 8,257,536-dimensional!
• We’ll talk about this towards the end of the course.

1.5 Data Cleaning

• ML+DM typically assume "clean" data.
• Ways that data might not be "clean":
• noise (e.g., distortion on phone).
• outliers (e.g., data entry or instrument error).
• missing values (no value available or not applicable)
• duplicated data (repetitions, or different storage formats).
• Any of these can lead to problems in analyses.
• want to fix these issues, if possible.
• some ML methods are robust to these.
• often, ML is the best way to detect/fix these.

1.6 How much data do we need?

• A difficult if not impossible question to answer.
• Usual answer: "more is better".
• With the warning: "as long as the quality doesn’t suffer".
• Another popular answer: "ten times the number of features".
• I don’t like this view. Features are not the enemy!

1.7 Feature aggregation

• Combine features to form new ones
• Useful if there are few examples of a particular case

In [23]: titanic['deck'].value_counts()

Out[23]: C 59

B 47

D 33

E 32

A 15

F 13

G 4

Name: deck, dtype: int64

In [24]: titanic_agg = titanic.copy()

aggregate decks A and B into the "upper" deck category

titanic_agg["upper"] = titanic_agg['deck'].isin(("A","B"))

titanic_agg.tail()

5

Out[24]: survived pclass sex age sibsp parch fare embarked class \

886 0 2 male 27.0 0 0 13.00 S Second

887 1 1 female 19.0 0 0 30.00 S First

888 0 3 female NaN 1 2 23.45 S Third

889 1 1 male 26.0 0 0 30.00 C First

890 0 3 male 32.0 0 0 7.75 Q Third

who adult_male deck embark_town alive alone upper

886 man True NaN Southampton no True False

887 woman False B Southampton yes True True

888 woman False NaN Southampton no False False

889 man True C Cherbourg yes True False

890 man True NaN Queenstown no True False

(Not shown: we should still fix up the NaNs here!)

1.8 Feature selection

In [25]: titanic_id = titanic.copy()

Adding an irrelevant feature

titanic_id['id'] = titanic_id.index

titanic_id.head()

Out[25]: survived pclass sex age sibsp parch fare embarked class \

0 0 3 male 22.0 1 0 7.2500 S Third

1 1 1 female 38.0 1 0 71.2833 C First

2 1 3 female 26.0 0 0 7.9250 S Third

3 1 1 female 35.0 1 0 53.1000 S First

4 0 3 male 35.0 0 0 8.0500 S Third

who adult_male deck embark_town alive alone id

0 man True NaN Southampton no False 0

1 woman False C Cherbourg yes False 1

2 woman False NaN Southampton yes True 2

3 woman False C Southampton yes False 3

4 man True NaN Southampton no True 4

• Remove features that are not relevant to the task.
• id probably not relevant for prediction.

1.9 Feature transformation

Discretization (binning): turn numerical data into categorical

In [26]: titanic['age'].head()

Out[26]: 0 22.0

1 38.0

6

2 26.0

3 35.0

4 35.0

Name: age, dtype: float64

In [27]: ages = pd.cut(titanic['age'], bins=(0,20,30,100))

ages_cat = pd.get_dummies(ages)

pd.concat([titanic['age'], ages_cat],axis=1).head()

Out[27]: age (0, 20] (20, 30] (30, 100]

0 22.0 0 1 0

1 38.0 0 0 1

2 26.0 0 1 0

3 35.0 0 0 1

4 35.0 0 0 1

Mathematical transformsations

• e.g. log, exp, square, sqrt, etc.
• also, scaling/normalization

In [28]: titanic_mod = titanic.copy()

fare --> sqrt(fare)

titanic_mod['fare'] = np.sqrt(titanic_mod['fare'])

titanic_mod.head()

Out[28]: survived pclass sex age sibsp parch fare embarked class \

0 0 3 male 22.0 1 0 2.692582 S Third

1 1 1 female 38.0 1 0 8.442944 C First

2 1 3 female 26.0 0 0 2.815138 S Third

3 1 1 female 35.0 1 0 7.286975 S First

4 0 3 male 35.0 0 0 2.837252 S Third

who adult_male deck embark_town alive alone

0 man True NaN Southampton no False

1 woman False C Cherbourg yes False

2 woman False NaN Southampton yes True

3 woman False C Southampton yes False

4 man True NaN Southampton no True

Example use case: something needs to be non-negative (exp) or shouldn’t be non-negative
(log).

1.10 Exploratory data analysis (EDA)

• You should always "look" at the data first.
• But how do you "look" at features and high-dimensional objects?
• Summary statistics
• Visualization
• ML + DM (later in course)

7

1.11 Categorical summary statistics

• Some summary statistics for a categorical variable:
• Frequencies of different classes.
• Mode: category that occurs most often.

In [29]: titanic['deck'].value_counts(normalize=True) # frequencies

Out[29]: C 0.290640

B 0.231527

D 0.162562

E 0.157635

A 0.073892

F 0.064039

G 0.019704

Name: deck, dtype: float64

In [30]: titanic['deck'].mode()[0]

Out[30]: 'C'

1.12 Continuous summary statistics

• Measures of location:
• Mean: average value.
• Median: value such that half points are larger/smaller.
• Quantiles: value such that t fraction of points are smaller.
• Measures of spread:
• Range: minimum and maximum values.
• Variance: measures how far values are from mean.

– Square root of variance is standard deviation.

• Intequantile ranges: difference between quantiles

In [31]: titanic['fare'].mean()

Out[31]: 32.2042079685746

In [32]: titanic['fare'].median()

Out[32]: 14.4542

In [33]: titanic['fare'].quantile((0.25,0.5,0.75))

Out[33]: 0.25 7.9104

0.50 14.4542

0.75 31.0000

Name: fare, dtype: float64

In [34]: titanic['fare'].min()

8

Out[34]: 0.0

In [35]: titanic['fare'].max()

Out[35]: 512.32920000000001

In [36]: titanic['fare'].var()

Out[36]: 2469.436845743117

In [37]: titanic['fare'].std()

Out[37]: 49.693428597180905

Notice that the mean and std are sensitive to extreme values:

In [38]: data = [0,1,2,3,3,5,7,8,9,10,14,15,17,200] # the "200" is an outlier

print("Mean with outlier :", np.mean(data))

print("Mean without outlier:", np.mean(data[:-1]))

Mean with outlier : 21.0

Mean without outlier: 7.23076923077

In [39]: print("Std with outlier :", np.std(data))

print("Std without outlier:", np.std(data[:-1]))

Std with outlier : 49.9127810714

Std without outlier: 5.35154680952

Whereas the median is not:

In [40]: print("Median with outlier :", np.median(data))

print("Median without outlier:", np.median(data[:-1]))

Median with outlier : 7.5

Median without outlier: 7.0

1.13 Distances and similarities

• There are also summary statistics between features.
• Hamming distance:

– Number of elements in the vectors that aren’t equal.

• Euclidean distance:

– How far apart are the vectors?

• Correlation:

– Does one increase/decrease linearly as the other increases?
– Between -1 and 1.

9

1.14 Limitations of summary statistics

• Summary statistics can be misleading
• A famous example is Anscombe’s quartet, four datasets with:
• Almost same means.
• Almost same variances.
• Almost same correlations.
• Almost same linear fits.
• Look completely different.

In [41]: # Code below from seaborn documentation: https://seaborn.pydata.org/examples/anscombes_quartet.html

Load the example dataset for Anscombe's quartet

anscombe = sns.load_dataset("anscombe")

Show the results of a linear regression within each dataset

sns.lmplot(x="x", y="y", col="dataset", hue="dataset", data=anscombe,

col_wrap=2, ci=None, palette="muted", size=4,

scatter_kws={"s": 50, "alpha": 1});

10

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

1.15 Visualization

• You can learn a lot from 2D plots of the data:

• Patterns, trends, outliers, unusual patterns.

• We’ll use the matplotlib library to do most of our basic plotting.

• For fancier plots, you can try seaborn.

1.16 Basic plot

In [42]: x = np.linspace(0,10,1000)

plt.plot(x, np.cos(x));

11

In [43]: iris = sns.load_dataset("iris") # iris flowers, a classic dataset

iris.head()

Out[43]: sepal_length sepal_width petal_length petal_width species

0 5.1 3.5 1.4 0.2 setosa

1 4.9 3.0 1.4 0.2 setosa

2 4.7 3.2 1.3 0.2 setosa

3 4.6 3.1 1.5 0.2 setosa

4 5.0 3.6 1.4 0.2 setosa

1.17 Histogram

In [44]: plt.hist(iris['sepal_length'])

plt.xlabel('sepal length')

plt.ylabel('frequency');

sns.distplot(iris["sepal_length"]);

12

1.18 Box plot

In [45]: sns.boxplot(x="survived", y="fare", data=titanic);

13

1.19 Scatterplot

In [46]: plt.scatter(iris['sepal_length'], iris['petal_length'])

plt.xlabel('sepal length')

plt.ylabel('petal length');

1.20 Scatterplot array

In [48]: sns.pairplot(iris, hue="species");

14

1.21 CPSC 340 meta-discussion

• This is the only CPSC 340 lecture on data cleaning and EDA.
• That is not representative of the time typically devoted to these tasks.
• In fact, data cleaning is often the most time intensive step.
• This is a weakness of the course.
• But not as bad if you’re aware of it.

1.22 Summary

• Typical data mining steps:
• Involves data collection, preprocessing, analysis, and evaluation.
• Object-feature representation and categorical/numerical features.
• Transforming non-vector objects to vector representations.
• Feature transformations:
• To address coupon collecting or simplify relationships between variables.

15

• Exploring data:
• Summary statistics and data visualization.
• Post-lecture bonus slides: other visualization methods.

16

	Exploratory Data Analysis
	Admin
	Typical steps of ML
	What does data look like?
	Types of features
	Other feature types: text data
	Other feature types: images

	Data Cleaning
	How much data do we need?
	Feature aggregation
	Feature selection
	Feature transformation
	Exploratory data analysis (EDA)
	Categorical summary statistics
	Continuous summary statistics
	Distances and similarities
	Limitations of summary statistics
	Visualization
	Basic plot
	Histogram
	Box plot
	Scatterplot
	Scatterplot array
	CPSC 340 meta-discussion
	Summary

