
CPSC	340:
Machine	Learning	and	Data	Mining

Linear	Classifiers:	multi-class

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart. 1



Admin
• Assignment	4:
– Due	in	a	week

• Midterm:
– The	deadline	has	passed	for	grading	clarifications
– All	issues	should	soon	be	fixed	in	your	grades	repos

2



Motivation:	Part	of	Speech	(POS)	Tagging
• Consider	problem	of	finding	the	verb	in	a	sentence:
– “The	340	students	jumped	at	the	chance	to	hear	about	POS	features.”

• Part	of	speech	(POS)	tagging	is	the	problem	of	labeling	all	words.
– 45	common	syntactic	POS	tags.
– Current	systems	have	~97%	accuracy.
– You	can	achieve	this	by	applying	“word-level”	classifier	to	each	word.

• What	features	of	a	word	should	we	use	for	POS	tagging?

3



But	first…
• Recall	we	can	convert	categorical	feature	to	set	of	binary	features:

• This	how	we	use	a	categorical	feature	(“city”)	in	regression	models.

Age City Income

23 Van 22,000.00
23 Bur 21,000.00
22 Van 0.00
25 Sur 57,000.00
19 Bur 13,500.00
22 Van 20,000.00

Age Van Bur Sur Income

23 1 0 0 22,000.00
23 0 1 0 21,000.00
22 1 0 0 0.00
25 0 0 1 57,000.00
19 0 1 0 13,500.00
22 1 0 0 20,000.00

4



POS	Features
• Regularized multi-class	logistic	regression	with	19	features	gives	~97%	accuracy:

– Categorical	features	whose	domain	is	all	words (“lexical”	features):
• The	word	(e.g.,	“jumped”	is	usually	a	verb).
• The	previous	word (e.g.,	“he”	hit	vs.	“a”	hit).
• The	previous	previous word.
• The	next	word.
• The	next	next word.

– Categorical	features	whose	domain	is	combinations	of	letters (“stem”	features):
• Prefix	of	length	1	(“what	letter	does	the	word	start	with?”)
• Prefix	of	length	2.
• Prefix	of	length	3.
• Prefix	of	length	4	(“does	it	start	with	JUMP?”)
• Suffix	of	length	1.
• Suffix	of	length	2.
• Suffix	of	length	3	(“does	it	end	in	ING?”)
• Suffix	of	length	4.

– Binary	features (“shape”	features):
• Does	word	contain	a	number?
• Does	word	contain	a	capital?
• Does	word	contain	a	hyphen?

5



Multi-Class	Linear	Classification
• We’ve	been	considering	linear	models	for	binary	classification:

• E.g.,	is	there	a	cat	in	this	image	or	not?

6



Multi-Class	Linear	Classification
• Today	we’ll	discuss	linear	models	for	multi-class	classification:

• In	POS	classification	we	have	43	possible	labels	instead	of	2.
– This	was	natural	for	methods	of	Part	1	(decision	trees,	naïve	Bayes,	KNN).
– For	linear	models,	we	need	some	new	notation.

7



“One	vs	All”	Classification
• One	vs	all method	for	turns	binary	classifier	into	multi-class.

• Training phase:
– For	each	class	‘c’,	train	binary	classifier	to	predict	whether	example	is	a	‘c’.
– So	if	we	have	‘k’	classes,	this	gives	‘k’	classifiers.

• Prediction phase:
– Apply	the	‘k’	binary	classifiers	to	get	a	“score”	for	each	class	‘c’.
– Return	the	‘c’	with	the	highest	score.

8



“One	vs	All”	Classification
• “One	vs	all”	logistic	regression	for	classifying	as	cat/dog/person.
– Train	a	separate	classifier	for	each	class.

• Classifier	1	tries	to	predict	+1	for	“cat”	images	and	-1	for	“dog”	and	“person”	images.
• Classifier	2	tries	to	predict	+1	for	“dog”	images	and	-1	for	“cat”	and	“person”	images.
• Classifier	3	tries	to	predict	+1	for	“person”	images	and	-1	for	“cat”	and	“dog”	images.

– This	gives	us	a	weight	vector	wc for	each	class	‘c’:
• Weights	wc try	to	predict	+1	for	class	‘c’	and	-1	for	all	others.
• We’ll	use	‘W’	as	a	matrix	with	the	wc as	rows:

9



“One	vs	All”	Classification
• “One	vs	all”	logistic	regression	for	classifying	as	cat/dog/person.
– Prediction	on	example	xi given parameters	‘W’	:

– For	each	class	‘c’,	compute wc
Txi.

• Ideally,	we’ll	get	sign(wc
Txi)	=	+1	for	one	class	and	sign(wc

Txi)	=	-1	for	all	others.
• In	practice,	it	might	be	+1	for	multiple	classes	or	no	class.

– To	predict	class,	we	take	maximum	value	of	wc
Txi (“most	confident”).

10



Shape	of	Decision	Boundaries
• Multi-class	linear	classifier	is	intersection	of	these	“half-spaces”:
– This	divides	the	space	into	convex	regions	(like	k-means):

– Could	be	non-convex	with	kernels	or	change	of	basis.



Digression:	Multi-Label	Classification
• A	related	problem	is	multi-label	classification:

• Which	of	the	‘k’	objects	are	in	this	image?
– There	may	be	more	than	one	“correct”	class	label.
– Here	we	can	also	fit	‘k’	binary	classifiers.

• But	we	would	take	all	sign(wc
Txi)=+1	as	the	labels. 12



“One	vs	All”	Multi-Class	Classification
• Back	to	multi-class	classification where	we	have	1	“correct”	label:

• We’ll	use	‘				’	as	classifier	c=yi (row	wc of	correct	class	label).
• Problem:	We	didn’t	train	the	wc so	that	the	largest	wc

Txi would	be					Txi.
– Each	classifier	is	just	trying	to	get	the	sign	right.

13



Multi-Class	Linear	Classifiers
• Can	we	define	a	loss	that	encourages	largest	wc

Txi to	be	 Txi?

• Yes!
– We’ll	go	into	detail	for	logistic	regression.
– See	bonus	slides	for	SVM.

14



Multi-Class	Logistic	Regression:	Predictions
• How	do	we	make	predictions?	Let’s	try	to	get	probabilities	again.
– Compute	wc

Txi for	each	class	‘c’
– Make	them	positive:	taking	exp(wc

Txi)	solves	this
– Make	them	add	up	to	1:	dividing	by	the	sum	solves	this

• This	is	the	softmax function.

15

P (yi = c) =
exp(wT

c xi)Pk
c=1 exp(w

T
c xi)



Multi-Class	Logistic	Regression:	Loss	function
• We	want	the	raw	model	output	of	the	true	class	to	be	largest:

• Let’s	smooth	the	max	with	the	log-sum-exp:

• We	want	this	to	be	as	small	as	possible,	so	let’s	minimize	it.
• This	is	the	softmax loss (which	goes	by	several	names)

16



Multi-Class	Logistic	Regression:	Loss	function
• We	sum	the	loss	over	examples	and	add	regularization:

• This	objective	is	convex	(should	be	clear	for	1st and	3rd terms).
– It’s	differentiable so	you	can	use	gradient	descent.

• When	k=2,	equivalent	to	binary	logistic.
– Not	obvious	since	it	has	twice	as	many	parameters.

17



Digression:	Frobenius Norm
• The	Frobenius norm of	a	matrix	‘W’	is	defined	by:

• We	can	write	regularizer in	matrix	notation	using:

18



Summary
• Word	features:	lexical,	stem,	shape.
• One	vs	all	turns	a	binary	classifier	into	a	multi-class	classifier.
• Multi-class	SVMs	exist	but	we	didn’t	cover	them.
• Softmax loss	is	a	multi-class	version	of	the	logistic	loss.

19



Multi-Class	SVMs
• Can	we	define	a	loss	that	encourages	largest	wc

Txi to	be	 Txi?

• Recall	our	derivation	of	the	hinge	loss (SVMs):
– We	wanted	yiwTxi >	0	for	all	‘i’.
– We	avoided	non-degeneracy	by	aiming	for	yiwTxi ≥	1.
– We	used	the	constraint	violation	as	our	loss:	max{0,1-yiwTxi}.

• We	can	derive	multi-class	SVMs	using	the	same	steps…

20



Multi-Class	SVMs
• Can	we	define	a	loss	that	encourages	largest	wc

Txi to	be					Txi?

• For	here,	there	are	two	ways	to	measure	constraint	violation:

21



Multi-Class	SVMs
• Can	we	define	a	loss	that	encourages	largest	wc

Txi to	be					Txi?

• For	each	training	example	‘i’:
– “Sum”	rule	penalizes	for	each	‘c’ that	violates	the	constraint.
– “Max”	rule	penalizes	for	one	‘c’	that	violates	the	constraint	the	most.

• “Sum”	gives	a	penalty	of	‘k’	for	W=0,	“max”	gives	a	penalty	of	‘1’.

• If	we	add	L2-regularization,	both	are	called	multi-class	SVMs:
– “Max”	rule	is	more	popular,	“sum”	rule	usually	works	better.
– Both	are	convex	upper	bounds	on	the	0-1	loss.

22



Softmax Loss	Function
• What	we	want	is	
– yi is	the	true	class	of	example	‘i'

• We	can	rewrite	this	as
– If	these	are	equal	then	you’ve	classified	example	i correctly	

• So	we	minimize	the	difference	between	these	two	things:

– fi(W)	=	0	if	example	i is	classified	correctly
– fi(W)	>	0	if	example	i is	classified	incorrectly
– So	minimizing	f	indeed	pushes	us	toward	correct	classification!

• We	invoke	the	log-sum-exp approximation	of	max	examples
23

argmax
c

{wT
c xi} = yi

max{wT
1 xi, . . . , w

T
k xi} = wT

yi
xi

fi(W ) = max{wT
1 xi, . . . , w

T
k xi}� wT

yi
xi



Softmax Loss	Function

• Because	max	is	non-smooth	with	invoke	the	log-sum-exp
approximation	of	the	max	function	(hence	smooth	or	“soft”	max)

• Applying	this	we	get:

• Finally,	we	sum	over	all	examples	to	get	the	softmax loss

24

max{z1, . . . , zn} ⇡ log

 
nX

i=1

exp(zi)

!

fi(W ) = max{wT
1 xi, . . . , w

T
k xi}� wT

yi
xi

fi(W ) = log

 
kX

c=1

exp(wT
c xi)

!
� wT

yi
xi

f(W ) =
nX

i=1

log

 
kX

c=1

exp(wT
c xi)

!
� wT

yi
xi



Motivation:	Dog	Image	Classification
• Suppose	we’re	classifying	images	of	dogs	into	breeds:

• What	if	we	have	images	where	class	label	isn’t	obvious?
– Syberian husky	vs.	Inuit	dog?

https://www.slideshare.net/angjoo/dog-breed-classification-using-part-localization
https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements

25



Learning	with	Preferences
• Do	we	need	to	throw	out	images	where	label	is	ambiguous?
– We	don’t	have	the	yi.

– We	want	classifier	to	prefer	Syberian husky	over	bulldog,	Chihuahua,	etc.
• Even	though	we	don’t	know if	these	are	Syberian huskies	or	Inuit	dogs.

– Can	we	design	a	loss	that	enforces	preferences	rather	than	“true”	labels?
https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements

26



Learning	with	Pairwise	Preferences	(Ranking)
• Instead	of	yi,	we’re	given	list	of	(c1,c2)	preferences	for	each	‘i’:

• Multi-class	classification	is	special	case	of	choosing	(yi,c)	for	all	‘c’.

• By	following	the	earlier	steps,	we	can	get	objectives	for	this	setting:

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements
27



Learning	with	Pairwise	Preferences	(Ranking)
• Pairwise	preferences	for	computer	graphics:
– We	have	a	smoke	simulator,	with	several	parameters:

– Don’t	know	what	the	optimal	parameters	are,	but	we	can	ask	the	artist:
• “Which	one	looks	more	like	smoke”?

https://circle.ubc.ca/bitstream/handle/2429/30519/ubc_2011_spring_brochu_eric.pdf?sequence=3
28



Learning	with	Pairwise	Preferences	(Ranking)
• Pairwise	preferences	for	humour:
– New	Yorker	caption	contest:

– “Which	one	is	funnier”?

https://homes.cs.washington.edu/~jamieson/resources/next.pdf
29



Feature	Engineering
• “…some	machine	learning	projects	succeed	and	some	fail.	What	
makes	the	difference?	Easily	the	most	important	factor	is	the	
features	used.”
– Pedro	Domingos

• “Coming	up	with	features	is	difficult,	time-consuming,	requires	
expert	knowledge.	"Applied	machine	learning"	is	basically	feature	
engineering.”
– Andrew	Ng

30



Feature	Engineering
• Better	features	usually	help	more	than	a	better	model.

• Good	features	would	ideally:
– Capture	most	important	aspects	of	problem.
– Generalize	to	new	scenarios.
– Allow	learning	with	few	examples, be	hard	to	overfit with	many	examples.

• There	is	a	trade-off	between	simple	and	expressive	features:
– With	simple	features	overfitting	risk	is	low,	but	accuracy	might	be	low.	
– With	complicated	features	accuracy	can	be	high,	but	so	is	overfitting	risk.

31



Feature	Engineering
• The	best	features	may	be	dependent	on	the	model	you	use.

• For	counting-based	methods	like	naïve	Bayes	and	decision	trees:
– Need	to	address	coupon	collecting,		but	separate	relevant	“groups”.

• For	distance-based	methods	like	KNN:
– Want	different	class	labels	to	be	“far”.

• For	regression-based	methods	like	linear	regression:
– Want	labels	to	have	a	linear	dependency	on	features.

32



Discretization	for	Counting-Based	Methods
• For	counting-based	methods:
– Discretization:	turn	continuous	into	discrete.

– Counting	age	“groups”	could	let	us	learn	more	quickly than	exact	ages.
• But	we	wouldn’t	do	this	for	a	distance-based	method.

Age

23
23
22
25
19
22

<	20 >=	20,	<	25 >=	25

0 1 0
0 1 0
0 1 0
0 0 1
1 0 0
0 1 0

33



Standardization	for	Distance-Based	Methods
• Consider	features	with	different	scales:

• Should	we	convert	to	some	standard	‘unit’?
– It	doesn’t	matter	for	counting-based	methods.

• It	matters	for	distance-based	methods:
• KNN	will	focus	on	large	values	more	than	small	values.
• Often	we	“standardize”	scales	of	different	variables	(e.g.,	convert	everything	to	grams).

Egg	(#) Milk	(mL) Fish	(g) Pasta
(cups)

0 250 0 1
1 250 200 1
0 0 0 0.5
2 250 150 0

34



Non-Linear	Transformations	for	Regression-Based

• Non-linear	feature/label	transforms	can	make	things	more	linear:
– Polynomial,	exponential/logarithm,	sines/cosines,	RBFs.

www.google.com/finance
35



Discussion	of	Feature	Engineering
• The	best	feature	transformations	are	application-dependent.
– It’s	hard	to	give	general	advice.

• My	advice:	ask	the	domain	experts.
– Often	have	idea	of	right	discretization/standardization/transformation.

• If	no	domain	expert,	cross-validation	will	help.
– Or	if	you	have	lots	of	data,	use	deep	learning	methods	from	Part	5.

36



“All-Pairs”	and	ECOC	Classification
• Alternative	to	“one	vs.	all”	to	convert	binary	classifier	to	multi-class	is	
“all	pairs”.
– For	each	pair	of	labels	‘c’	and	‘d’,	fit	a	classifier	that	predicts	+1	for	examples	of	
class	‘c’	and	-1	for	examples	of	class	‘d’	(so	each	classifier	only	trains	on	examples	
from	two	classes).

– To	make	prediction,	take	a	vote	of	how	many	of	the	(k-1)	classifiers	for	class	‘c’	
predict	+1.

– Often	works	better	than	“one	vs.	all”,	but	not	so	fun	for	large	‘k’.
• A	variation	on	this	is	using	“error	correcting	output	codes”	from	
information	theory	(see	Math	342).
– Each	classifier	trains	to	predict	+1	for	some	of	the	classes	and	-1	for	others.
– You	setup	the	+1/-1	code	so	that	it	has	an	“error	correcting”	property.

• It	will	make	the	right	decision	even	if	some	of	the	classifiers	are	wrong.
37


