
CPSC	340:
Machine	Learning	and	Data	Mining

Kernel	Trick

1Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.



Admin
• Assignment	4:
– Due	Friday.
– Hint	for	Q3.3	posted	(and	pinned)	on	Piazza.

• Final	exam:
– Saturday,	April	14,	3:30pm-6pm
– Location	TBD
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Digression:	the	“other”	Normal	Equations
• Recall	the	L2-regularized	least	squares	objective:

• We	showed	that	the	minimum	is	given	by

(in	practice	you	don’t	actually	invert	the	matrix	because	of	numerical	stability	– see	CPSC	302)

• With	some	work	(bonus	slides),	this	can	equivalently	be	written	as:

• This	is	faster	if	d	>>	n:
– Cost	is	O(n2d	+	n3)	instead	of	O(nd2 +	d3).
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Gram	Matrix
• The	matrix	XXT is	called	the	Gram	matrix K.

• K contains	the	inner	products	between	all	training	examples.
– Similar	to	‘Z’	in	RBFs,	but	using	dot	product	as	“similarity”	instead	of	distance.
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Jupyter demo	(part	1)
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Multi-Dimensional	Polynomial	Basis
• Recall	fitting	polynomials when	we	only	have	1	feature:

• We	can	fit	these	models	using	a	change	of	basis:

• How	can	we	do	this	when	we	have	a	lot	of	features?
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Multi-Dimensional	Polynomial	Basis
• Polynomial	basis	for	d=2	and	p=2:

• With	d=4	and	p=3,	the	polynomial	basis	would	include:
– Bias	variable	and	the	xij:	1,	xi1,	xi2,	xi3,	xi4.
– The	xij squared	and	cubed:	(xi1)2,	(xi2)2,	(xi3)2,	(xi4)2,	(xi1)3,	(xi2)3,	(xi3)3,	(xi4)3.
– Two-term	interactions:	xi1xi2,	xi1xi3,	xi1xi4,	xi2xi3,	xi2xi4,	xi3xi4.
– Cubic	interactions:	xi1xi2xi3,	xi1xi2,xi4,	xi1xi3,xi4,	xi2xi3xi4
xi12xi2,	xi12xi3,	xi12xi4,	xi1xi22,	xi22xi3,	xi22xi4,	xi1xi32,	xi2xi32,xi32xi4,	xi1xi42,	xi2xi42,	xi3xi42. 7



Kernel	Trick
• If	we	go	to	degree	p=5,	we’ll	have	O(d5)	quintic terms:

– In	general	we	have	O(dp)	terms	(see	bonus	slides)
– For	large	‘d’	and	‘p’,	we	can’t	even	store	‘Z’	or	‘w’.

• But,	even	though	dimension	of	the	basis,	‘k’,	grows	very	rapidly	with	‘d’	
and	‘p’,	for	medium	‘n’	we	can	use	this	basis	efficiently with	the	kernel	
trick.

• Basic	idea:
– We	can	sometimes	efficiently	compute	dot	product	ziTzj directly	from	xi and	xj.
– Use	this	to	make	the	Gram	matrix	ZZT and	make	predictions	using	the	“other”	
normal	equations.
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Kernel	Trick
• Given	test	data	𝑋",	predict	𝑦$ by	forming	and	𝑍"using:

• Key	observation	behind	kernel	trick:
– Predictions 𝑦$ only	depend	on	features	through	K	and	𝐾'.
– If	we	have	a	function	that	computes	K	and	𝐾',	we	don’t	need	the	features.
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Kernel	Trick
• ‘K’	contains	the	inner	products	between	all	training	examples.
– Intuition:	inner	product	can	be	viewed	as	a	measure	of	similarity,	
so	this	matrix	gives	a	similarity	between	each	pair	of	examples.

• ‘𝐾'’	contains	the	inner	products	between	training	and	test	examples.

• Kernel	trick	summary:
– I	want	to	use	a	basis	zi that	is	too	huge	to	store	(very	large	‘k’).
– But	I	only	need	zi to	compute	Gram	matrix	K	=	ZZT and	𝐾( =	𝑍)ZT.

• The	sizes	of	these	matrices	are	independent	of	k.
• Everything	we	need	to	know	about	zi is	summarized	by	the	n2 values	of	ziTzj.	

– I	can	use	this	basis	if	I	have	a	kernel	function	that	computes	k(xi,xj)	=	ziTzj.
• I	don’t	need	to	compute	the	k-dimensional	basis zi explicitly. 10



Example:	Degree-2	Kernel
• Consider	two	examples	xi and	xj with	d=2:

• And	consider	a	particular	basis	with	k=3:

• We	can	compute	inner	product	ziTzj without	forming	zi and	zj:
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Polynomial	Kernel	with	Higher	Degrees
• Let’s	add	a	bias	and	linear	terms	to	our	degree-2	basis:

• I	can	compute	inner	products	using:
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Polynomial	Kernel	with	Higher	Degrees
• To	get	all	degree-4	“monomials”	I	can	use:

• To	also	get	lower-order	terms	use	ziTzj =	(1	+	xiTxj)4

• The	general	degree-p	polynomial	kernel	function:

– Works	for	any	number	of	features	‘d’.
– But	cost	of	computing	one	ziTzj is	O(d)	instead	of	O(dp).
– Take-home	message:	I	can	compute	dot-products	without	the	features. 13



Kernel	Trick	with	Polynomials
• Using	polynomial	basis	of	degree	‘p’	with	the	kernel	trick:
– Compute	K	and	𝐾'	using:

– Make	predictions	using:

• Training	cost	is	only	O(n2d	+	n3),	despite	using	k=O(dp)	features.
– We	can	form	‘K’	in	O(n2d),	and	we	need	to	“invert”	an	‘n	x	n’	matrix.
– Testing	cost	is	O(ndt),	cost	to	form	𝐾'. 14



Linear	Regression	vs.	Kernel	Regression
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Linear	Regression

Training
1. Form	basis	Z	from	X
2. Compute	w=(ZTZ+λI)-1(ZTy)

Kernel	Regression

Training
1. Form	inner	products	K	from	X.
2. Compute	v=(K+λI)-1y



Gaussian-RBF	Kernel
• Most	common	kernel	is	the	Gaussian	RBF kernel:

• Same	formula	and	behaviour	as	RBF	basis,	but	not	identical:
– Before	we	used	RBFs	as	a	basis,	now	we’re	using	them	as	inner-product.

• Basis	zi giving	Gaussian	RBF	kernel	is	infinite-dimensional:
– If	d=1	and	σ=1,	it	corresponds	to	using	this	basis	(bonus	slide):
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Kernel	Trick	for	Non-Vector	Data
• Kernel	trick	lets	us	fit	regression	models	without	explicit	features:
– We	can	interpret	k(xi,xj)	as	a	“similarity”	between	objects	xi and	xj.
– We	don’t	need	features if	we	can	compute	‘similarity’	between	objects.
– There	are	“string	kernels”,	“image	kernels”,	“graph	kernels”,	and	so	on.
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Kernel	Trick	for	Other	Methods
• Besides	L2-regularized	least	squares,	when	can	we	use	kernels?
– We	can	compute	Euclidean	distance	with	kernels:

– All	of	our	distance-based	methods	have	kernel	versions:
• Kernel	k-nearest	neighbours.
• Kernel	clustering	k-means	(allows	non-convex	clusters)
• Kernel	density-based	clustering.
• Kernel	hierarchical	clustering.
• Kernel	distance-based	outlier	detection.
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Kernel	Trick	for	Other	Methods
• Besides	L2-regularized	least	squares,	when	can	we	use	kernels?
– “Representer theorems”	(bonus	slide)	have	shown	that

any	L2-regularized	linear	model	can	be	kernelized:
• L2-regularized	robust	regression.
• L2-regularized	brittle	regression.
• L2-regularized	logistic	regression.
• L2-regularized	hinge	loss	(SVMs).
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Kernel	trick	continued
• Because	of	the	support	vectors,	kernels	are	used	with	SVMs	quite	
often,	and	much	less	so	with	logistic	regression.	



Jupyter demo	(part	2)
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Summary
• High-dimensional	bases allows	us	to	separate	non-separable	data.
• Kernel	trick	allows	us	to	use	high-dimensional	bases	efficiently.
– Write	model	to	only	depend	on	inner	products	between	features	vectors.

• Kernels	let	us	use	similarity	between	objects,	rather	than	features.
– Allows	some	exponential- or	infinite-sized	feature	sets.
– Applies	to	L2-regularized	linear	models	and	distance-based	models.
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Support	Vector	Machines	for	Non-Separable
• What	about	data	that	is	not	even	close	to	separable?

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes
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Support	Vector	Machines	for	Non-Separable
• What	about	data	that	is	not	even	close	to	separable?
– It	may	be	separable	under	change	of	basis (or	closer	to	separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes
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Support	Vector	Machines	for	Non-Separable
• What	about	data	that	is	not	even	close	to	separable?
– It	may	be	separable	under	change	of	basis	(or	closer	to	separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes
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Motivation:	Finding	Gold
• Kernel	methods	first	came	from	mining	engineering	(“Kriging”):
– Mining	company	wants	to	find	gold.
– Drill	holes,	measure	gold	content.
– Build	a	kernel	regression	model	(typically	use	RBF	kernels).

http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php
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Why	is	inner	product	a	similarity?
• It	seems	weird	to	think	of	the	inner-product	as	a	similarity.
• But	consider	this	decomposition	of	squared	Euclidean	distance:

• If	all	training	examples	have	the	same	norm,	then	minimizing	
Euclidean	distance	is	equivalent	to	maximizing	inner	product.
– So	“high	similarity”	according	to	inner	product	is	like	“small	Euclidean	
distance”.

– The	only	difference	is	that	the	inner	product	is	biased	by	the	norms	of	the	
training	examples.

– Some	people	explicitly	normalize	the	xi by	setting	xi =	(1/||xi||)xi,	so	that	
inner	products	act	like	the	negation	of	Euclidean	distances. 27



Kernel	Trick	for	Non-Vector	Data
• Consider	data	that	doesn’t	look	like	this:

• But	instead	looks	like	this:

• Kernel	trick	lets	us	fit	regression	models	without	explicit	features:
– We	can	interpret	k(xi,xj)	as	a	“similarity”	between	objects	xi and	xj.
– We	don’t	need	features if	we	can	compute	‘similarity’	between	objects.
– There	are	“string	kernels”,	“image	kernels”,	“graph	kernels”,	and	so	on. 28



Valid	Kernels
• What	kernel	functions	k(xi,xj)	can	we	use?

• Kernel	‘k’	must	be	an	inner	product	in	some	space:
– There	must	exist	a	mapping	from	xi to	some	zi such	that	k(xi,xj)	=	ziTzj.

• It	can	be	hard	to	show	that	a	function	satisfies	this.
– Infinite-dimensional	eigenvalue	equation.

• But	like	convex	functions,	there	are	some	simple	rules	for	
constructing	“valid”	kernels	from	other	valid	kernels	(bonus	slide).
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Logistic	Regression	with	Kernels
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Number	of	polynomials	of	degree	p
• We	have	‘d’	features,	plus	a	“dummy”	feature	that’s	1.
• Now	for	each	term	we	get	to	pick	‘p’	of	these	d+1	possibilities,	with	
repetition	allowed.	
– For	example,	if	I	pick	feature	1	twice,	that	means	I	have	(xi1)2	in	my	term
– The	dummy	feature	allows	for	lower	order	terms	(total	degree	less	than	p)

• How	many	times	can	we	pick	‘p’	objects	from	a	set	of	d+1	distinct	
choices	with	replacement,	where	order	doesn’t	matter?
– See	https://en.wikipedia.org/wiki/Combination#Number_of_combinations_with_repetition

• In	their	notation,	n=d+1	and	k=p
– Answer:	d+p choose	p,	which	is	(d+p)!/d!p!	or	approximately	dp/p!.	We	call	
this	O(dp)	which	is	true,	and	also	a	reasonable	boundwhen	d>>p,	although	
perhaps	O((d/p)p)	would	be	better.
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RBF	kernel	vs	RBF	features
• Like	the	RBF	features,	the	RBF	kernel…
– can	learn	any	decision	boundary	given	enough	data
– as	a	result	it	is	prone	to	overfitting,	so	we	need	to	use	regularization
– σ parameter	controls	smoothness:	larger	σ means	smoother	boundaries

• This	is	called	”gamma”	in	sklearn and	it’s	1/σ

– λ parameter	controls	regularization:	larger	λ means	more	regularization
• This	is	called	“C”	in	sklearn and	it’s	1/λ

• The	RBF	features	are	finite-dimensional	(n	features)
• The	RBF	kernel	corresponds	to	infinitely	many	features
• Both	are	non-parametric	methods


