CPSC 340:
Machine Learning and Data Mining

Kernel Trick

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.



Admin

* Assignment 4:
— Due Friday.
— Hint for Q3.3 posted (and pinned) on Piazza.

* Final exam:
— Saturday, April 14, 3:30pm-6pm
— Location TBD



Digression: the “other” Normal Equations

Recall the L2-regularized least squares objective:
L) = iyt + Al
We showed that the minimum is given by
w= KX+ 407K
"

d x
(in practice you don’t actually invert the matrix because of numerical stability — see CPSC 302)

With some work (bonus slides), this can equivalently be written as:

w=XT(XXT+2I) "y
—_

This is faster if d >> n: nxn
— Cost is O(n%d + n3) instead of O(nd? + d3).



Gram Matrix

e The matrix XX" is called the Gram matrix K.

1 -r

(= XK= | —x— 1
X Xy - X
P T x T ey Ty
)('_.Y' Ix.\ - y| Yn
‘ 1, - _ —__ T
= Xa X Xy Xa Xn
L XV,T)(\ Xh"y)_ e =T Xv\-,{hJ

* K contains the inner products between all training examples.
— Similar to ‘Z" in RBFs, but using dot product as “similarity” instead of distance.



Jupyter demo (part 1)



Multi-Dimensional Polynomial Basis

e Recall fitting polynomials when we only have 1 feature:

A
>/-\ = W, W X + W,zxi‘z

* We can fit these models using a change of basis:

X

-

(02 )
—095
|

_Ll.J

‘Z::

~102 (0
I 05  (-05)?
| 1 (1t

oy (W)

e How can we do this when we have a lot of features?



Multi-Dimensional Polynomial Basis

* Polynomial basis for d=2 and p=2:

T 0.2 03 C1 02 g (02)* (0% ©@DW03)
X=| | os |— 25 1 e (R (g5 (NOS)
| ~05 -0 ,‘ s ~pr (0 (- G0N

* With d=4 and p=3, the polynomial basis would include:
— Bias variable and the x;: 1, X;, Xi, Xi3, Xig-
— The x; squared and cubed: (x;1)%, (x5)% (X3)% (Xia)?, (%i2)®, (%2)3, (Xi3)3, (Xi4)°.
— Two-term interactions: X;;Xi,, Xi;Xi3, XiyXiz, Xi5Xi3, XisXis, Xi3Xiz-
— Cubic interactions: X;;Xi;Xi3, Xi1Xi5,Xig, Xi1Xi3,Xig, XinXi3Xiz

2 2 2 2y 2 2 2 2y 2 2 2 2
Xi1 Xi2s Xi1"Xi3, Xi1" Xigr XiaXi2™s Xip " Xiz, Xi"Xijas Xi1Xi3%, XioXi3™, Xi3"Xias Xj1Xi4", XioXia™) XizXjs™



Kernel Trick

* |f we go to degree p=5, we’ll have O(d®) quintic terms:

Y 4 Y 3 2 3 2 3 2 U | e
Xid

g
Xn7x'., )(;17 Xil Y37..-7¥n Y;J7 Xt Xigo Xy "’:5,---7711 Xid 7...7)(:17)(:.2 X‘.37. cee ey

— In general we have O(dP) terms (see bonus slides)
— For large ‘d’” and ‘p’, we can’t even store ‘Z" or ‘w’.

* But, even though dimension of the basis, ‘k’, grows very rapidly with ‘d’
and ‘p’, for medium ‘n” we can use this basis efficiently with the kernel

trick.

* Basicidea:
— We can sometimes efficiently compute dot product zisz directly from x; and x..
— Use this to make the Gram matrix ZZ" and make predictions using the “other”

normal equations.



Kernel Trick

* Given test data X, predict § by forming and Zusing:

=22z AT)y
r

0= Ry

e Key observation behind kernel trick:

— Predictions y only depend on features through K and K.

— If we have a function that computes K and K, we don’t need the features.




Kernel Trick

e ‘K’ contains the inner products between all training examples.

— Intuition: inner product can be viewed as a measure of similarity,
so this matrix gives a similarity between each pair of examples.

~

e ‘K’ contains the inner products between training and test examples.

e Kernel trick summary:
— | want to use a basis z, that is too huge to store (very large ‘k’).

— But | only need z, to compute Gram matrix K = ZZ"and K = Z7".
* The sizes of these matrices are independent of k.
* Everything we need to know about z; is summarized by the n* values of z,'z;.
— | can use this basis if | have a kernel function that computes k(xi,xj) = zisz.

* | don’t need to compute the k-dimensional basis z; explicitly.
10



Example: Degree-2 Kernel

* Consider two examples x; and x; with d=2:
Xi= (Xu))(;z) Xy = )l))‘)2>
* And consider a particular basis with k=3:
_ (.2 2 _ [, 2
4= (x-., 7\‘7 Xn"u;"&) Z’ B ("J' )HXJ")?]‘Z))S-?)

* We can compute mner product z;'z; without formlng z;and z;:

Zi Z)' - Xn o (r L X X :1)(r X;z) T X;Z XJ;
— (X(l XJI * Xi:lle)z I,C(er'efinj fhe 57«40,,9 '
Xi %

= ()( )()2 é/ /VO ﬂffl {\or 2, 7t0 COMrmfe 2’—72'

N



Polynomial Kernel with Higher Degrees

* Let’s add a bias and linear terms to our degree-2 basis:
A [/ \Elx,. ﬁxiz x”z J_z‘x,-,xq Y/zz]'
* | can compute inner products using:
(| + x,-7x\-))l =]+ Ay (YiTlﬁ)l

2.2 | 22
= | + 2%, t 2xg %2 X X + %%z iz oY

el
ﬁ’%/j

:Ll ‘riXil ﬁm an \HYHXQ X,'Z:z) {3):31
\/—N\ — Tl;(j.x,)




Polynomial Kernel with Higher Degrees

* To get all degree-4 “monomials” | can use:

y
25-173' = (X,Txﬁ

E w'v:alef’“f fo wsing o 2. wit ' X
Z: wiTh ‘ | x2 <53 }
f1 19 ) Wi We'j“t’é Versions of X,‘,7Xi/ X.'z)xn X/;(/(«'/X'Z) Xiz 5~ -

* To also get lower-order terms use z,'z; = (1 + x;'x;)*
* The general degree-p polynomial kernel function:

k(x,'7>g>: (= X;7J/)->()

— Works for any number of features ‘d’.
— But cost of computing one z;'z; is O(d) instead of O(dP).
— Take-home message: | can compute dot-products without the features.



Kernel Trick with Polynomials

* Using polynomial basis of degree ‘p’ with the kernel trick:
— Compute K and K using:

() K075
I<U - (/ + XITXJ) ( :)( X[)/? Tmm ’C)Ovv.//e

— Make predictions using: if:jmr
vV
(K+4I) "\
y= K
L/ {\;J n Xn :‘él

tx\

* Training cost is only O(n?d + n3), despite using k=O(dP) features.
— We can form ‘K’ in O(n?d), and we need to “invert” an ‘n x n” matrix.

— Testing cost is O(ndt), cost to form K.



Linear Regression vs. Kernel Regression

Linear Regression Kernel Regression
Training Training
1. Form basis Z from X 1. Form inner products K from X.
2. Compute w=(ZTZ+AI)L(ZTy) 2. Compute v=(K+Al) 1y
N on~ parame Fric
. Tasting 7’

1 e basis 2 fom X | Fom e produts K fom X oud X
1 (ow\ru\"e y ZW 2 Com‘uﬂe 7’ = Kv



Gaussian-RBF Kernel

e Most common kernel is the Gaussian RBF kernel:

k(X,7 J)" ex ( “f'_—-thz)

202

« Same formula and behaviour as RBF basis, but not identical:

— Before we used RBFs as a basis, now we’re using them as inner-product.

* Basis z, giving Gaussian RBF kernel is infinite-dimensional:

— If d=1 and o0=1, it corresponds to using this basis (bonus slide):

thex((")(f)E] T X E—TMQ EX,-S % y,-Ll C. :I



Kernel Trick for Non-Vector Data

* Kernel trick lets us fit regression models without explicit features:
— We can interpret k(x;x;) as a “similarity” between objects x; and x..
— We don’t need features if we can compute ‘similarity’ between objects.

” )«

— There are “string kernels”, “image kernels”, “graph kernels”, and so on.

17



Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— We can compute Euclidean distance with kernels:
“2; - 2)‘“2 = Z,'-izi ‘22;72 ' k()(:) ) 2’\()(,))(> ’\/ )yJ)

— All of our distance-based methods have kernel versions:
Kernel k-nearest neighbours.

Kernel clustering k-means (allows non-convex clusters)

Kernel density-based clustering.

Kernel hierarchical clustering.

Kernel distance-based outlier detection.



Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:
L2-regularized robust regression.

L2-regularized brittle regression.

L2-regularized logistic regression.
L2-regularized hinge loss (SVMs).

Wiﬂ\ a ,t)ar’/écular )M///M@’l ‘/a‘//on)
can reduce (’predic/i‘m (ost

{from  0(ndd) To O(wdt)
(//VW'VILP( o-p

support vectors:




Kernel trick continued

Because of the support vectors, kernels are used with SVMs quite
often, and much less so with logistic regression.

sklearn.svm.SVC

class sklearn.svm. SVC (C=1.4, kernel="bf\ legree=3, gamma='auto’, coef0=0.0, shrinking=True, probability=False,
tol=0.001, cache_size=200, class = rrerrm=ie verbose=False, max_iter=-1, decision_function_shape=None,
random_state=None) [source]

sklearn.linear model.LogisticRegression

class sklearn.linear model. LogisticRegression (penalty=12' dual=False, tol=0.0001, C=1.0, fit_intercept=True,
intercept_scaling=1, class_weight=None, random_state=None, solver="iblinear’, max_iter=100, multi_class='ovr’,
verbose=0, warm_start=False, n_jobs=1) [source]



Jupyter demo (part 2)



Summary

* High-dimensional bases allows us to separate non-separable data.
* Kernel trick allows us to use high-dimensional bases efficiently.

— Write model to only depend on inner products between features vectors.
A -
>/ = k(K+721) 'y

txn Mat ¢ ix %/27 C0ﬂ+ain}nc} infer @ﬂtlwbéj L"> h*n matriy ZZ] (—OW}U‘M;"") i””f"_'ﬂvJV\d} befween

bﬁfwe(n "}e;'/ exam,,’e; an f—r.\[mr[) -examrlfj_ O\—” ffﬂml"k’ eyanf/ef

* Kernels let us use similarity between objects, rather than features.
— Allows some exponential- or infinite-sized feature sets.
— Applies to L2-regularized linear models and distance-based models.

22



Support Vector Machines for Non-Separable

 What about data that is not even close to separable?

23



Support Vector Machines for Non-Separable

 What about data that is not even close to separable?

— |t may be separable under change of basis (or closer to separable).

Xiz2

2 2 P
AX” Z.= W, Xy T w0ty T wky
X X
X
X X
o X
X
J x
3 X
J X
40 X 2
» - x X"
ﬁ X1 Xiq

24



Support Vector Machines for Non-Separable

 What about data that is not even close to separable?

— |t may be separable under change of basis (or closer to separable).

Xiz2

2 2 L2
X X
X
X
N\ x * x
AN X
N X
-J\) X
X
» J\\ X
< \J J\ X 2
- X
ﬁxu‘xil

\ o
\ ‘

25



Motivation: Finding Gold

* Kernel methods first came from mining engineering (“Kriging”):
— Mining company wants to find gold.
— Drill holes, measure gold content.
— Build a kernel regression model (typically use RBF kernels).

Input Process Output

.o Ordinary
. 'f ﬁ

Kriging

26



Why is inner product a similarity?

* |t seems weird to think of the inner-product as a similarity.
* But consider this decomposition of squared Euclidean distance:

-
l

Ll ;112 = £ el = x g Ly 12

 If all training examples have the same norm, then minimizing
Euclidean distance is equivalent to maximizing inner product.

— So “high similarity” according to inner product is like “small Euclidean
distance”.

— The only difference is that the inner product is biased by the norms of the
training examples.

— Some people explicitly normalize the x; by setting x. = (1/] | x.| | )x,, so that
inner products act like the negation of Euclidean distances.



Kernel Trick for Non-Vector Data

Consider data that doesn’t look like this:

[ 0.5377  0.3188  3.5784 | [+1]
¥ 1.8339 —1.3077 2.7694 -1
~ | -2.2588 —0.4336 —1.3499|°> YT [—1
| 0.8622 0.3426 3.0349 | [ +1 ]
* But instead looks like this:
[ Do you want to go for a drink sometime? | (1]
J'achete du pain tous les jours. —1
X = LY = :
Fais ce que tu veux. —1
| There are inner products between sentences? | | +1 ]

* Kernel trick lets us fit regression models without explicit features:
— We can interpret k(x;x;) as a “similarity” between objects x; and x..
— We don’t need features if we can compute ‘similarity’ between objects.

— There are “string kernels”, “image kernels”, “graph kernels”, and so on.



Valid Kernels

What kernel functions k(x;x;) can we use?

Kernel ‘k” must be an inner product in some space:

— There must exist a mapping from x; to some z; such that k(x;x;) = z;'z,

It can be hard to show that a function satisfies this.

— Infinite-dimensional eigenvalue equation.

But like convex functions, there are some simple rules for
constructing “valid” kernels from other valid kernels (bonus slide).



Logistic Regression with Kernels

Linear Logistic Regression Kernel-Linear Logistic Regression

-1 -0.5 0.9 1 -1 -0.5 0 0.9 1

30



Bonus Slide: Equivalent Form of Ridge Regression

Note that X and Y are the same on the left and right side, so we only need to show that
(XTX + A 7'XT = XT(XXT 42D, (1)
A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is
(E-FH'G)'FH '=FE'F(H-GE 'F) .

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write
the left side of (1) as

(XTXAAD)TIXT = ( AT+ XT X)X = A4 XTI1X) XY = WM =-XT(-DX)7'XT = -\ =-XT (=D X)) 'XT(-D)
Now apply the matrix inversion with £ = X (so E~' = (§) 1), F= X", H = —I (so H™' = —I too), and
G=X:

. — P N 1\ vy
~(\I = X" (=DX) ' X" (=1) = (X" (-1 - X (X) xT)-1,

Now use that (1/a)A~" = (aA)™!, to push the (=1/)) inside the sum as —),

:

T
~(IXT (-1 - X (,\

) XYV = XTI+ XXT) ' = XT(XXT 4 A1),

31



Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

2
T — X
k(xi,z;) = exp (— i = ;| ) :

o2

e What function ¢(x) would lead to this as the inner-product?
o To simplify, assume d =1 and o =1,

: 2
k(zi, ;) = exp(—z; + 2z — )
2 2
= exp(—z;) exp(2z;x;) exp(—r7),
so we need ¢(z;) = exp(—z7)z; where z;2; = exp(2z;x;).
o For this to work for all ; and z;, z; must be infinite-dimensional.
o |f we use that

2, 2kgfak
exp(2zix;) = Z T
k=0 '

then we obtain

o(x;) = exp(—z7) [1 NE L BRY, 22—?1:22 \/ 23—?1:? ] :

32



Constructing Valid Kernels

o If ki(zi,z;) and ka(x;, x;) are valid kernels, then the following are valid kernels:

o ki(op(ws), p(x5)).
o aky(x;,x;)+ Bka(wi,x;) fora>0and g > 0.

o} kl(iz.ij)kQ(Lz,LJ)
o O(xi)ky (i, x5)p(x;).
o exp(ki(x,x4)).
e Example: Gaussian-RBF kernel:

2
Ty — Ty
k(xi,rj) = exp (—” i 7 )

o2

2 / \ 2
= exp (— ||$7’2” ) exp | — mT:U] exp (— H%QH ) :
o o

~ qs?;) - \ >0 valld/ ~ ¢F:;) -

NG /

exp(valld) .



Representer Theorem
Consider linear model differentiable with losses f; and L2-regularization,
. A
argmin »  fi(w"x;) + §||w||2-
weR4 i=1

Setting the gradient equal to zero we get
n
0= Z flwlzy)z; + \w.
i=1

So any solution w™* can written as a linear combination of features z;,

n

* 1 - *
w' = —+ Y A ) =)z
1=1 1=1
= X7,

This is called a representer theorem (true under much more general conditions):



Representer Theorem

o Using representer theorem we can use w = X'z in original problem,

A
argmin > (0", + 2wl

weR4 i—1

A
—argmmez (X + 2K
z€R™

Tqu

o Now defining f(2) =Y.', fi(z;) for a vector z we have

A
—argmin f(XXT2)+ 221X X2

z€ER™ 2
. A T
=argmin f(Kz) + Kz.
z€R™ 2

e Similarly, at test time we can use the n variables z,

Xw=XXTy,=Kz.

35



Number of polynomials of degree p

 We have ‘d’ features, plus a “dummy” feature that’s 1.

* Now for each term we get to pick ‘p’ of these d+1 possibilities, with
repetition allowed.
— For example, if | pick feature 1 twice, that means | have (x.;)2in my term
— The dummy feature allows for lower order terms (total degree less than p)

e How many times can we pick ‘p’ objects from a set of d+1 distinct
choices with replacement, where order doesn’t matter?

— See https://en.wikipedia.org/wiki/Combination#Number of combinations with repetition
* In their notation, n=d+1 and k=p

— Answer: d+p choose p, which is (d+p)!/d!p! or approximately d?/p!. We call
this O(dP) which is true, and also a reasonable bound when d>>p, although
perhaps O((d/p)P) would be better.




RBF kernel vs RBF features

e Like the RBF features, the RBF kernel...
— can learn any decision boundary given enough data
— as a result it is prone to overfitting, so we need to use regularization
— 0 parameter controls smoothness: larger c means smoother boundaries

* This is called “gamma” in sklearn and it’s 1/o

— A parameter controls regularization: larger A means more regularization
* This is called “C” in sklearn and it’s 1/A

 The RBF features are finite-dimensional (n features)
 The RBF kernel corresponds to infinitely many features
* Both are non-parametric methods



