
CPSC	340:
Machine	Learning	and	Data	Mining

Kernel	Trick

1Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.



Admin
• Assignment	4:
– Due	Friday.
– Hint	for	Q3.3	posted	(and	pinned)	on	Piazza.

• Final	exam:
– Saturday,	April	14,	3:30pm-6pm
– Location	TBD

2



Digression:	the	“other”	Normal	Equations
• Recall	the	L2-regularized	least	squares	objective:

• We	showed	that	the	minimum	is	given	by

(in	practice	you	don’t	actually	invert	the	matrix	because	of	numerical	stability	– see	CPSC	302)

• With	some	work	(bonus	slides),	this	can	equivalently	be	written	as:

• This	is	faster	if	d	>>	n:
– Cost	is	O(n2d	+	n3)	instead	of	O(nd2 +	d3).

3



Gram	Matrix
• The	matrix	XXT is	called	the	Gram	matrix K.

• K contains	the	inner	products	between	all	training	examples.
– Similar	to	‘Z’	in	RBFs,	but	using	dot	product	as	“similarity”	instead	of	distance.

4



Jupyter demo	(part	1)

5



Multi-Dimensional	Polynomial	Basis
• Recall	fitting	polynomials when	we	only	have	1	feature:

• We	can	fit	these	models	using	a	change	of	basis:

• How	can	we	do	this	when	we	have	a	lot	of	features?

6



Multi-Dimensional	Polynomial	Basis
• Polynomial	basis	for	d=2	and	p=2:

• With	d=4	and	p=3,	the	polynomial	basis	would	include:
– Bias	variable	and	the	xij:	1,	xi1,	xi2,	xi3,	xi4.
– The	xij squared	and	cubed:	(xi1)2,	(xi2)2,	(xi3)2,	(xi4)2,	(xi1)3,	(xi2)3,	(xi3)3,	(xi4)3.
– Two-term	interactions:	xi1xi2,	xi1xi3,	xi1xi4,	xi2xi3,	xi2xi4,	xi3xi4.
– Cubic	interactions:	xi1xi2xi3,	xi1xi2,xi4,	xi1xi3,xi4,	xi2xi3xi4
xi12xi2,	xi12xi3,	xi12xi4,	xi1xi22,	xi22xi3,	xi22xi4,	xi1xi32,	xi2xi32,xi32xi4,	xi1xi42,	xi2xi42,	xi3xi42. 7



Kernel	Trick
• If	we	go	to	degree	p=5,	we’ll	have	O(d5)	quintic terms:

– In	general	we	have	O(dp)	terms	(see	bonus	slides)
– For	large	‘d’	and	‘p’,	we	can’t	even	store	‘Z’	or	‘w’.

• But,	even	though	dimension	of	the	basis,	‘k’,	grows	very	rapidly	with	‘d’	
and	‘p’,	for	medium	‘n’	we	can	use	this	basis	efficiently with	the	kernel	
trick.

• Basic	idea:
– We	can	sometimes	efficiently	compute	dot	product	ziTzj directly	from	xi and	xj.
– Use	this	to	make	the	Gram	matrix	ZZT and	make	predictions	using	the	“other”	
normal	equations.

8



Kernel	Trick
• Given	test	data	𝑋",	predict	𝑦$ by	forming	and	𝑍"using:

• Key	observation	behind	kernel	trick:
– Predictions 𝑦$ only	depend	on	features	through	K	and	𝐾'.
– If	we	have	a	function	that	computes	K	and	𝐾',	we	don’t	need	the	features.

9



Kernel	Trick
• ‘K’	contains	the	inner	products	between	all	training	examples.
– Intuition:	inner	product	can	be	viewed	as	a	measure	of	similarity,	
so	this	matrix	gives	a	similarity	between	each	pair	of	examples.

• ‘𝐾'’	contains	the	inner	products	between	training	and	test	examples.

• Kernel	trick	summary:
– I	want	to	use	a	basis	zi that	is	too	huge	to	store	(very	large	‘k’).
– But	I	only	need	zi to	compute	Gram	matrix	K	=	ZZT and	𝐾( =	𝑍)ZT.

• The	sizes	of	these	matrices	are	independent	of	k.
• Everything	we	need	to	know	about	zi is	summarized	by	the	n2 values	of	ziTzj.	

– I	can	use	this	basis	if	I	have	a	kernel	function	that	computes	k(xi,xj)	=	ziTzj.
• I	don’t	need	to	compute	the	k-dimensional	basis zi explicitly. 10



Example:	Degree-2	Kernel
• Consider	two	examples	xi and	xj with	d=2:

• And	consider	a	particular	basis	with	k=3:

• We	can	compute	inner	product	ziTzj without	forming	zi and	zj:

11



Polynomial	Kernel	with	Higher	Degrees
• Let’s	add	a	bias	and	linear	terms	to	our	degree-2	basis:

• I	can	compute	inner	products	using:

12



Polynomial	Kernel	with	Higher	Degrees
• To	get	all	degree-4	“monomials”	I	can	use:

• To	also	get	lower-order	terms	use	ziTzj =	(1	+	xiTxj)4

• The	general	degree-p	polynomial	kernel	function:

– Works	for	any	number	of	features	‘d’.
– But	cost	of	computing	one	ziTzj is	O(d)	instead	of	O(dp).
– Take-home	message:	I	can	compute	dot-products	without	the	features. 13



Kernel	Trick	with	Polynomials
• Using	polynomial	basis	of	degree	‘p’	with	the	kernel	trick:
– Compute	K	and	𝐾'	using:

– Make	predictions	using:

• Training	cost	is	only	O(n2d	+	n3),	despite	using	k=O(dp)	features.
– We	can	form	‘K’	in	O(n2d),	and	we	need	to	“invert”	an	‘n	x	n’	matrix.
– Testing	cost	is	O(ndt),	cost	to	form	𝐾'. 14



Linear	Regression	vs.	Kernel	Regression

15

Linear	Regression

Training
1. Form	basis	Z	from	X
2. Compute	w=(ZTZ+λI)-1(ZTy)

Kernel	Regression

Training
1. Form	inner	products	K	from	X.
2. Compute	v=(K+λI)-1y



Gaussian-RBF	Kernel
• Most	common	kernel	is	the	Gaussian	RBF kernel:

• Same	formula	and	behaviour	as	RBF	basis,	but	not	identical:
– Before	we	used	RBFs	as	a	basis,	now	we’re	using	them	as	inner-product.

• Basis	zi giving	Gaussian	RBF	kernel	is	infinite-dimensional:
– If	d=1	and	σ=1,	it	corresponds	to	using	this	basis	(bonus	slide):

16



Kernel	Trick	for	Non-Vector	Data
• Kernel	trick	lets	us	fit	regression	models	without	explicit	features:
– We	can	interpret	k(xi,xj)	as	a	“similarity”	between	objects	xi and	xj.
– We	don’t	need	features if	we	can	compute	‘similarity’	between	objects.
– There	are	“string	kernels”,	“image	kernels”,	“graph	kernels”,	and	so	on.

17



Kernel	Trick	for	Other	Methods
• Besides	L2-regularized	least	squares,	when	can	we	use	kernels?
– We	can	compute	Euclidean	distance	with	kernels:

– All	of	our	distance-based	methods	have	kernel	versions:
• Kernel	k-nearest	neighbours.
• Kernel	clustering	k-means	(allows	non-convex	clusters)
• Kernel	density-based	clustering.
• Kernel	hierarchical	clustering.
• Kernel	distance-based	outlier	detection.

18



Kernel	Trick	for	Other	Methods
• Besides	L2-regularized	least	squares,	when	can	we	use	kernels?
– “Representer theorems”	(bonus	slide)	have	shown	that

any	L2-regularized	linear	model	can	be	kernelized:
• L2-regularized	robust	regression.
• L2-regularized	brittle	regression.
• L2-regularized	logistic	regression.
• L2-regularized	hinge	loss	(SVMs).

19



Kernel	trick	continued
• Because	of	the	support	vectors,	kernels	are	used	with	SVMs	quite	
often,	and	much	less	so	with	logistic	regression.	



Jupyter demo	(part	2)

21



Summary
• High-dimensional	bases allows	us	to	separate	non-separable	data.
• Kernel	trick	allows	us	to	use	high-dimensional	bases	efficiently.
– Write	model	to	only	depend	on	inner	products	between	features	vectors.

• Kernels	let	us	use	similarity	between	objects,	rather	than	features.
– Allows	some	exponential- or	infinite-sized	feature	sets.
– Applies	to	L2-regularized	linear	models	and	distance-based	models.

22



Support	Vector	Machines	for	Non-Separable
• What	about	data	that	is	not	even	close	to	separable?

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes
23



Support	Vector	Machines	for	Non-Separable
• What	about	data	that	is	not	even	close	to	separable?
– It	may	be	separable	under	change	of	basis (or	closer	to	separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes
24



Support	Vector	Machines	for	Non-Separable
• What	about	data	that	is	not	even	close	to	separable?
– It	may	be	separable	under	change	of	basis	(or	closer	to	separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes
25



Motivation:	Finding	Gold
• Kernel	methods	first	came	from	mining	engineering	(“Kriging”):
– Mining	company	wants	to	find	gold.
– Drill	holes,	measure	gold	content.
– Build	a	kernel	regression	model	(typically	use	RBF	kernels).

http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php
26



Why	is	inner	product	a	similarity?
• It	seems	weird	to	think	of	the	inner-product	as	a	similarity.
• But	consider	this	decomposition	of	squared	Euclidean	distance:

• If	all	training	examples	have	the	same	norm,	then	minimizing	
Euclidean	distance	is	equivalent	to	maximizing	inner	product.
– So	“high	similarity”	according	to	inner	product	is	like	“small	Euclidean	
distance”.

– The	only	difference	is	that	the	inner	product	is	biased	by	the	norms	of	the	
training	examples.

– Some	people	explicitly	normalize	the	xi by	setting	xi =	(1/||xi||)xi,	so	that	
inner	products	act	like	the	negation	of	Euclidean	distances. 27



Kernel	Trick	for	Non-Vector	Data
• Consider	data	that	doesn’t	look	like	this:

• But	instead	looks	like	this:

• Kernel	trick	lets	us	fit	regression	models	without	explicit	features:
– We	can	interpret	k(xi,xj)	as	a	“similarity”	between	objects	xi and	xj.
– We	don’t	need	features if	we	can	compute	‘similarity’	between	objects.
– There	are	“string	kernels”,	“image	kernels”,	“graph	kernels”,	and	so	on. 28



Valid	Kernels
• What	kernel	functions	k(xi,xj)	can	we	use?

• Kernel	‘k’	must	be	an	inner	product	in	some	space:
– There	must	exist	a	mapping	from	xi to	some	zi such	that	k(xi,xj)	=	ziTzj.

• It	can	be	hard	to	show	that	a	function	satisfies	this.
– Infinite-dimensional	eigenvalue	equation.

• But	like	convex	functions,	there	are	some	simple	rules	for	
constructing	“valid”	kernels	from	other	valid	kernels	(bonus	slide).

29



Logistic	Regression	with	Kernels

30



31



32



33



34



35



Number	of	polynomials	of	degree	p
• We	have	‘d’	features,	plus	a	“dummy”	feature	that’s	1.
• Now	for	each	term	we	get	to	pick	‘p’	of	these	d+1	possibilities,	with	
repetition	allowed.	
– For	example,	if	I	pick	feature	1	twice,	that	means	I	have	(xi1)2	in	my	term
– The	dummy	feature	allows	for	lower	order	terms	(total	degree	less	than	p)

• How	many	times	can	we	pick	‘p’	objects	from	a	set	of	d+1	distinct	
choices	with	replacement,	where	order	doesn’t	matter?
– See	https://en.wikipedia.org/wiki/Combination#Number_of_combinations_with_repetition

• In	their	notation,	n=d+1	and	k=p
– Answer:	d+p choose	p,	which	is	(d+p)!/d!p!	or	approximately	dp/p!.	We	call	
this	O(dp)	which	is	true,	and	also	a	reasonable	boundwhen	d>>p,	although	
perhaps	O((d/p)p)	would	be	better.

36



RBF	kernel	vs	RBF	features
• Like	the	RBF	features,	the	RBF	kernel…
– can	learn	any	decision	boundary	given	enough	data
– as	a	result	it	is	prone	to	overfitting,	so	we	need	to	use	regularization
– σ parameter	controls	smoothness:	larger	σ means	smoother	boundaries

• This	is	called	”gamma”	in	sklearn and	it’s	1/σ

– λ parameter	controls	regularization:	larger	λ means	more	regularization
• This	is	called	“C”	in	sklearn and	it’s	1/λ

• The	RBF	features	are	finite-dimensional	(n	features)
• The	RBF	kernel	corresponds	to	infinitely	many	features
• Both	are	non-parametric	methods


