CPSC 340: Machine Learning and Data Mining

Kernel Trick

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1

Admin

- Assignment 4:
 - Due Friday.
 - Hint for Q3.3 posted (and pinned) on Piazza.
- Final exam:
 - Saturday, April 14, 3:30pm-6pm
 - Location TBD

Digression: the "other" Normal Equations

• Recall the L2-regularized least squares objective:

$$f(w) = \frac{1}{2} ||X_w - y||^2 + \frac{1}{2} ||u||^2$$

• We showed that the minimum is given by

$$w = (X^{T}X + \lambda I)^{-1}X^{T}y$$

(in practice you don't actually invert the matrix because of numerical stability – see CPSC 302)

• With some work (bonus slides), this can equivalently be written as:

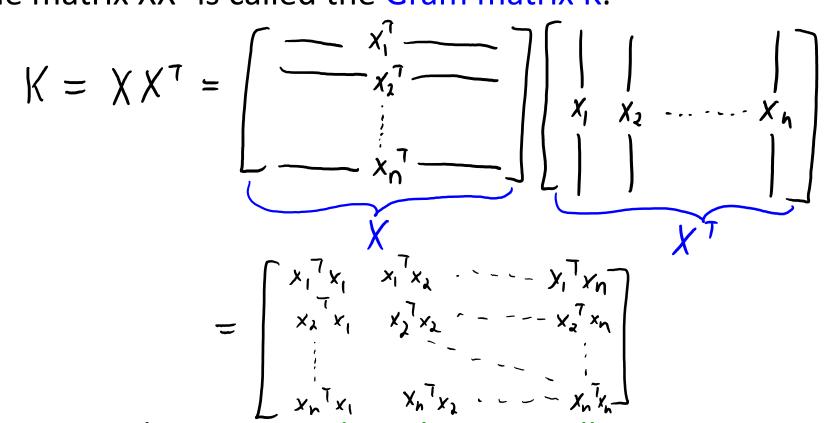
$$w = \chi^{T} (\chi \chi^{T} + \lambda I)^{-1} y$$

• This is faster if d >> n:

- Cost is $O(n^2d + n^3)$ instead of $O(nd^2 + d^3)$.

Gram Matrix

• The matrix XX^T is called the Gram matrix K.



• K contains the inner products between all training examples.

- Similar to 'Z' in RBFs, but using dot product as "similarity" instead of distance.

Jupyter demo (part 1)

Multi-Dimensional Polynomial Basis

• Recall fitting polynomials when we only have 1 feature:

$$\dot{y}_{i} = w_{0} + w_{1}x_{i} + w_{2}x_{i}^{2}$$

• We can fit these models using a change of basis:

• How can we do this when we have a lot of features?

Multi-Dimensional Polynomial Basis

Polynomial basis for d=2 and p=2:

$$X = \begin{bmatrix} 0.2 & 0.3 \\ 1 & 0.5 \\ -0.5 & -0.1 \end{bmatrix} \longrightarrow Z = \begin{bmatrix} 1 & 0.2 & 0.3 & (0.2)^2 & (0.3)^2 & (0.1)(0.3) \\ 1 & 1 & 0.5 & (1)^2 & (0.5)^2 & (1) & (0.5) \\ 1 & 0.5 & -0.1 & (0.5)^2 & (-0.1)^2 & (-0.5)(-0.1) \end{bmatrix}$$

$$\lim_{higs} X_{i1} X_{i2} & (X_{i1})^2 & (X_{i1})^2 & (X_{i1})(X_{i2})$$

- With d=4 and p=3, the polynomial basis would include:
 - Bias variable and the x_{ij} : 1, x_{i1} , x_{i2} , x_{i3} , x_{i4} .
 - The x_{ij} squared and cubed: $(x_{i1})^2$, $(x_{i2})^2$, $(x_{i3})^2$, $(x_{i4})^2$, $(x_{i1})^3$, $(x_{i2})^3$, $(x_{i3})^3$, $(x_{i4})^3$.
 - Two-term interactions: $x_{i1}x_{i2}$, $x_{i1}x_{i3}$, $x_{i1}x_{i4}$, $x_{i2}x_{i3}$, $x_{i2}x_{i4}$, $x_{i3}x_{i4}$.
 - Cubic interactions: $x_{i1}x_{i2}x_{i3}$, $x_{i1}x_{i2}x_{i4}$, $x_{i1}x_{i3}x_{i4}$, $x_{i2}x_{i3}x_{i4}$ $x_{i1}^2x_{i2}$, $x_{i1}^2x_{i3}$, $x_{i1}^2x_{i4}$, $x_{i1}x_{i2}^2$, $x_{i2}^2x_{i3}$, $x_{i2}^2x_{i4}$, $x_{i1}x_{i3}^2$, $x_{i2}x_{i3}^2x_{i4}$, $x_{i1}x_{i4}^2$, $x_{i2}x_{i4}^2$, $x_{i3}x_{i4}^2$.

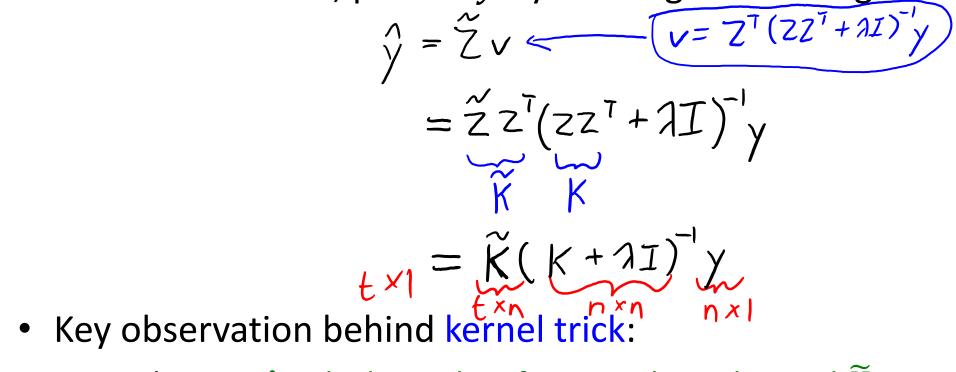
Kernel Trick

• If we go to degree p=5, we'll have O(d⁵) quintic terms:

- In general we have O(d^p) terms (see bonus slides)
- For large 'd' and 'p', we can't even store 'Z' or 'w'.
- But, even though dimension of the basis, 'k', grows very rapidly with 'd' and 'p', for medium 'n' we can use this basis efficiently with the kernel trick.
- Basic idea:
 - We can sometimes efficiently compute dot product $z_i^T z_j$ directly from x_i and x_j .
 - Use this to make the Gram matrix ZZ^T and make predictions using the "other" normal equations.

Kernel Trick

• Given test data \tilde{X} , predict \hat{y} by forming and \tilde{Z} using:



- - Predictions \hat{y} only depend on features through K and \tilde{K} .
 - If we have a function that computes K and \widetilde{K} , we don't need the features.

Kernel Trick

- 'K' contains the inner products between all training examples.
 - Intuition: inner product can be viewed as a measure of similarity, so this matrix gives a similarity between each pair of examples.
- ' \widetilde{K} ' contains the inner products between training and test examples.
- Kernel trick summary:
 - I want to use a basis z_i that is too huge to store (very large 'k').
 - But I only need z_i to compute Gram matrix $K = ZZ^T$ and $\hat{K} = \hat{Z}Z^T$.
 - The sizes of these matrices are independent of k.
 - Everything we need to know about z_i is summarized by the n² values of $z_i^T z_j$.
 - I can use this basis if I have a kernel function that computes $k(x_i, x_j) = z_i^T z_j$.
 - I don't need to compute the k-dimensional basis z_i explicitly.

Example: Degree-2 Kernel

• Consider two examples x_i and x_j with d=2:

$$\chi_{j} = (x_{i_{1}}, x_{i_{2}})$$
 $x_{j} = (x_{j_{1}}, x_{j_{2}})$

• And consider a particular basis with k=3:

$$Z_{i} = (x_{i1}^{2} \sqrt{2} x_{i1} x_{i2} x_{i2}^{2}) \qquad Z_{j} = (x_{j1}^{2} \sqrt{2} x_{j1} x_{j2} x_{j2}^{2})$$

• We can compute inner product $z_i^T z_j$ without forming z_i and z_j : $Z_i^T z_j = x_{i1}^2 x_{j1}^2 + (\sqrt{2} x_{i1} x_{i2})(\sqrt{2} x_{j1} x_{j2}) + x_{j2}^2 x_{j2}^2$ $= (x_{i1} x_{j1} + x_{i2} x_{j2})^2$ "completing the square"

$$= (x_i^{T}x_j)^2 \qquad No \quad need for \quad 2i \quad to \quad compute \quad 2i^{T}z_j$$

Polynomial Kernel with Higher Degrees

• Let's add a bias and linear terms to our degree-2 basis:

$$Z_{i} = \begin{bmatrix} 1 & \sqrt{2}x_{i1} & \sqrt{2}x_{i2} & x_{i1}^{2} & \sqrt{2}x_{i1}x_{i2} & x_{i2}^{2} \end{bmatrix}$$

• I can compute inner products using:

$$\begin{aligned} [1 + x_{i}^{T}x_{j}^{T})^{2} &= 1 + 2x_{i}^{T}x_{j}^{T} + (x_{i}^{T}x_{j}^{T})^{2} \\ &= 1 + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} + x_{i1}^{2}x_{j1}^{2} + 2x_{i1}x_{i2}x_{j1}x_{j2} + x_{i2}^{2}x_{j2}^{2} \\ &= \left[1 + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} + x_{i1}^{2} + 2x_{i1}x_{i2} + x_{i2}^{2} + 2x_{i1}x_{i2} + x_{i2}^{2}x_{j2} + x_{i2}^{2}x_{j2$$

Polynomial Kernel with Higher Degrees

• To get all degree-4 "monomials" I can use:

$$Z_{i}^{T}z_{j} = (x_{i}^{T}x_{j})^{4}$$
Equivalent to using a z_{i} with weighted versions of $x_{i1}^{4}x_{i1}^{3}x_{i2}x_{i1}x_{i2}x_{i1}x_{i2}x_{i2}x_{i1}x_{i2}x_{i$

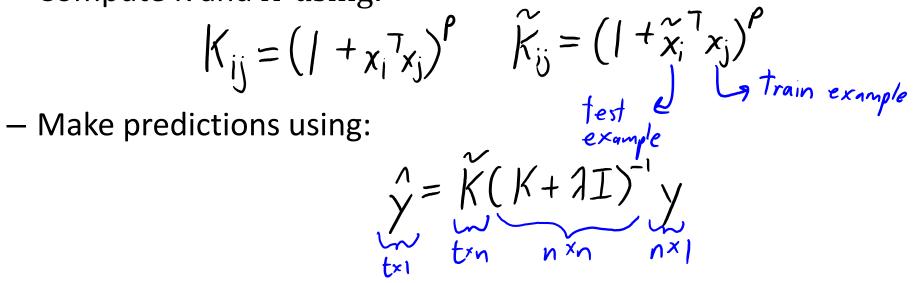
- To also get lower-order terms use $z_i^T z_j = (1 + x_i^T x_j)^4$
- The general degree-p polynomial kernel function:

$$k(x_{i}, x_{j}) = (1 + x_{i}^{T} x_{j})^{p}$$

- Works for any number of features 'd'.
- But cost of computing one $z_i^T z_i$ is O(d) instead of O(d^p).
- Take-home message: I can compute dot-products without the features.

Kernel Trick with Polynomials

- Using polynomial basis of degree 'p' with the kernel trick:
 - Compute K and \widetilde{K} using:



- Training cost is only O(n²d + n³), despite using k=O(d^p) features.
 - We can form 'K' in $O(n^2d)$, and we need to "invert" an 'n x n' matrix.
 - Testing cost is O(ndt), cost to form \widetilde{K} .

Linear Regression vs. Kernel Regression

Linear Regression

Kernel Regression

Training

- 1. Form basis Z from X
- 2. Compute $w = (Z^T Z + \lambda I)^{-1} (Z^T y)$

<u>Training</u>

- 1. Form inner products K from X.
- 2. Compute $v=(K+\lambda I)^{-1}y$

Testing
1. Form basis
$$\widetilde{Z}$$
 from \widetilde{X}
2. (ompute $\widehat{y} = \widetilde{Z}w$

Testing:
1. Form inner products
$$\tilde{K}$$
 from X and \tilde{X}
2. Compute $\hat{y} = \tilde{K}v$

1

1/ -

Gaussian-RBF Kernel

• Most common kernel is the Gaussian RBF kernel:

$$k(x_{i_1}, x_{j_1}) = exp(-\frac{||x_{i_1} - x_{j_1}||^2}{2\sigma^2})$$

- Same formula and behaviour as RBF basis, but not identical:
 - Before we used RBFs as a basis, now we're using them as inner-product.

• Basis z_i giving Gaussian RBF kernel is infinite-dimensional:

- If d=1 and σ =1, it corresponds to using this basis (bonus slide):

$$Z_{i} = e_{x_{i}}(-x_{i}^{2}) \left[1 \int_{f_{i}}^{2} x_{i} \int_{\frac{2^{2}}{3^{2}}}^{2} x_{i}^{2} \int_{\frac{2^{2}}{3^{2}}}^{2^{4}} x_{i}^{4} \int_{\frac{2^{4}}{3^{2}}}^{2^{4}} x_{i}^{4} x_{i}^{4} \int_{\frac{2^{4}}{3^{2}}}^{2^{4}} x_{i}^{4} x_{i}^{4} \int_{\frac{2^{4}}{3^{2}}}^{2^{4}} x_{i}^{4} x_{i}^{4} \int_{\frac{2^{4}}{3^{2}}}^{2^{4}} x_{i}^{4} x_{i}^{4} x_{i}^{4} x_{i}$$

Kernel Trick for Non-Vector Data

- Kernel trick lets us fit regression models without explicit features:
 - We can interpret $k(x_i, x_j)$ as a "similarity" between objects x_i and x_j .
 - We don't need features if we can compute 'similarity' between objects.
 - There are "string kernels", "image kernels", "graph kernels", and so on.

Kernel Trick for Other Methods

- Besides L2-regularized least squares, when can we use kernels?
 - We can compute Euclidean distance with kernels:

$$||z_{i} - z_{j}||^{2} = z_{i}^{T} z_{i} - 2 z_{i}^{T} z_{j} + z_{j}^{T} z_{j} = k(x_{i}, x_{i}) - 2k(x_{i}, x_{j}) + k(x_{j}, x_{j})$$

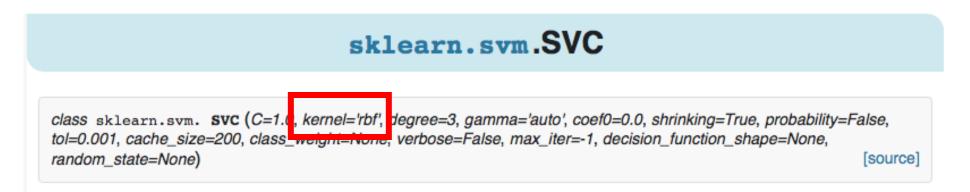
- All of our distance-based methods have kernel versions:
 - Kernel k-nearest neighbours.
 - Kernel clustering k-means (allows non-convex clusters)
 - Kernel density-based clustering.
 - Kernel hierarchical clustering.
 - Kernel distance-based outlier detection.

Kernel Trick for Other Methods

- Besides L2-regularized least squares, when can we use kernels?
 - "Representer theorems" (bonus slide) have shown that any L2-regularized linear model can be kernelized:
 - L2-regularized robust regression.
 - L2-regularized brittle regression.
 - L2-regularized logistic regression.
 - L2-regularized hinge loss (SVMs).

Kernel trick continued

• Because of the support vectors, kernels are used with SVMs quite often, and much less so with logistic regression.



sklearn.linear_model.LogisticRegression

class sklearn.linear_model. LogisticRegression (penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=1)

Jupyter demo (part 2)

Summary

- High-dimensional bases allows us to separate non-separable data.
- Kernel trick allows us to use high-dimensional bases efficiently.

Write model to only depend on inner products between features vectors.

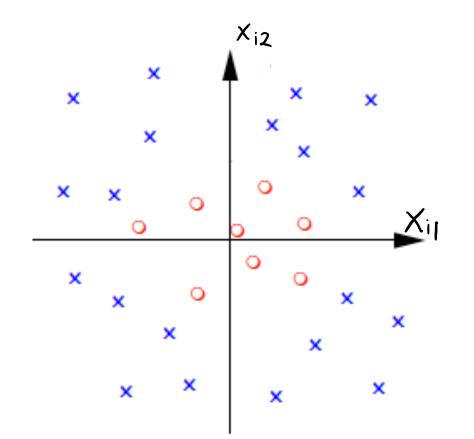
$$\hat{y} = \tilde{k}(K + \lambda I)^{-1}y$$

$$t \times n \text{ matrix } \tilde{Z}Z \text{ containing in ner products between between test examples and training examples.
$$f \times n \xrightarrow{r} n \xrightarrow{r} n \xrightarrow{r} Z \xrightarrow{r} Containing in \underline{ner products between all training examples.}$$$$

- Kernels let us use similarity between objects, rather than features.
 - Allows some exponential- or infinite-sized feature sets.
 - Applies to L2-regularized linear models and distance-based models.

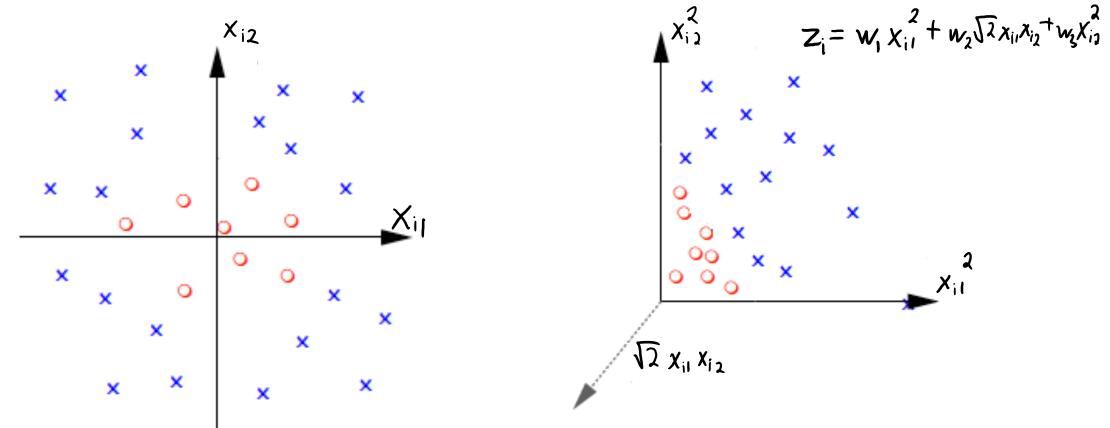
Support Vector Machines for Non-Separable

• What about data that is not even close to separable?



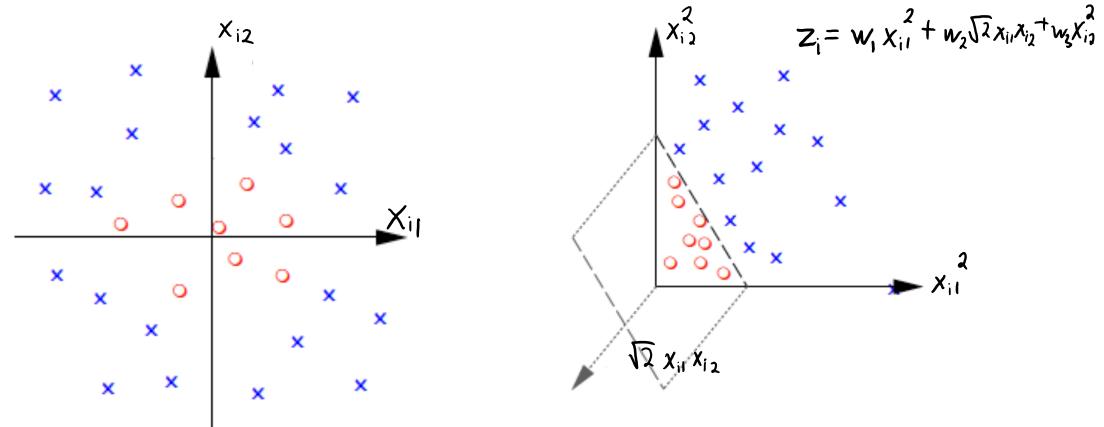
Support Vector Machines for Non-Separable

- What about data that is not even close to separable?
 - It may be separable under change of basis (or closer to separable).



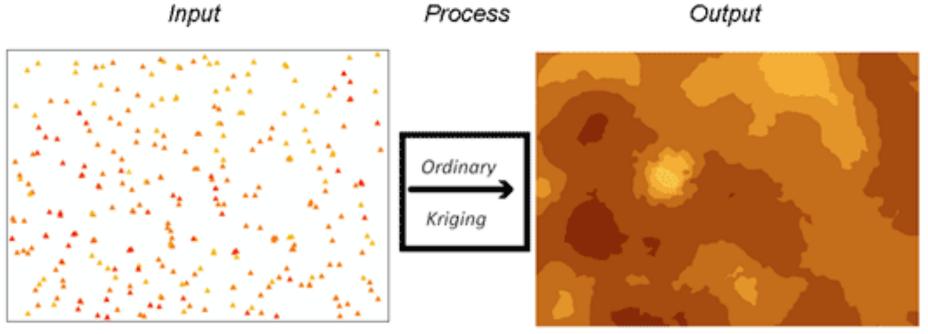
Support Vector Machines for Non-Separable

- What about data that is not even close to separable?
 - It may be separable under change of basis (or closer to separable).



Motivation: Finding Gold

- Kernel methods first came from mining engineering ("Kriging"):
 - Mining company wants to find gold.
 - Drill holes, measure gold content.
 - Build a kernel regression model (typically use RBF kernels).



Why is inner product a similarity?

- It seems weird to think of the inner-product as a similarity.
- But consider this decomposition of squared Euclidean distance:

$$\frac{1}{2} ||x_i - x_j||^2 = \frac{1}{2} ||x_i||^2 - x_i^T x_j + \frac{1}{2} ||x_j||^2$$

- If all training examples have the same norm, then minimizing Euclidean distance is equivalent to maximizing inner product.
 - So "high similarity" according to inner product is like "small Euclidean distance".
 - The only difference is that the inner product is biased by the norms of the training examples.
 - Some people explicitly normalize the x_i by setting $x_i = (1/||x_i||)x_i$, so that inner products act like the negation of Euclidean distances.

27

Kernel Trick for Non-Vector Data

• Consider data that doesn't look like this:

$$X = \begin{bmatrix} 0.5377 & 0.3188 & 3.5784 \\ 1.8339 & -1.3077 & 2.7694 \\ -2.2588 & -0.4336 & -1.3499 \\ 0.8622 & 0.3426 & 3.0349 \end{bmatrix}, \quad y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix},$$

• But instead looks like this:

$$X = \begin{bmatrix} \text{Do you want to go for a drink sometime?} \\ \text{J'achète du pain tous les jours.} \\ \text{Fais ce que tu veux.} \\ \text{There are inner products between sentences?} \end{bmatrix}, y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix}$$

- Kernel trick lets us fit regression models without explicit features:
 - We can interpret $k(x_i, x_i)$ as a "similarity" between objects x_i and x_i .
 - We don't need features if we can compute 'similarity' between objects.
 - There are "string kernels", "image kernels", "graph kernels", and so on.

Valid Kernels

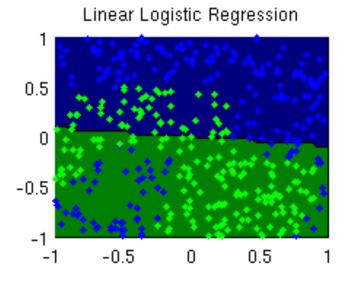
- What kernel functions k(x_i,x_i) can we use?
- Kernel 'k' must be an inner product in some space:

- There must exist a mapping from x_i to some z_i such that $k(x_i, x_i) = z_i^T z_i$.

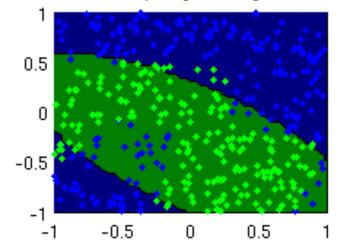
- It can be hard to show that a function satisfies this.
 - Infinite-dimensional eigenvalue equation.

• But like convex functions, there are some simple rules for constructing "valid" kernels from other valid kernels (bonus slide).

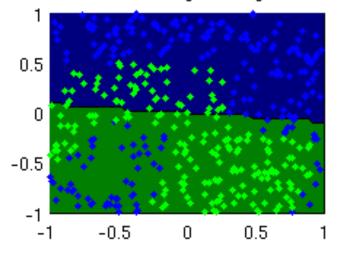
Logistic Regression with Kernels



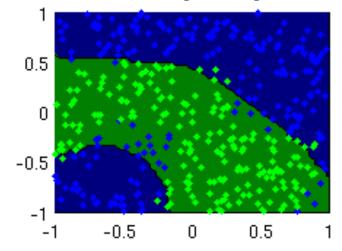
Kernel-Poly Logistic Regression



Kernel-Linear Logistic Regression



Kernel-RBF Logistic Regression



Bonus Slide: Equivalent Form of Ridge Regression

Note that \hat{X} and Y are the same on the left and right side, so we only need to show that

$$(X^{T}X + \lambda I)^{-1}X^{T} = X^{T}(XX^{T} + \lambda I)^{-1}.$$
(1)

A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is

$$(E - FH^{-1}G)^{-1}FH^{-1} = E^{-1}F(H - GE^{-1}F)^{-1}.$$

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write the left side of (1) as

$$(X^{T}X + \lambda I)^{-1}X^{T} = (\lambda I + X^{T}X)^{-1}X^{T} = (\lambda I + X^{T}IX)^{-1}X^{T} = (\lambda I - X^{T}(-I)X)^{-1}X^{T} = -(\lambda I - X^{T}(-I)X)^{-1}X^{T}(-I)X^{-1}X^{T} = -(\lambda I - X^{T}(-I)X)^{-1}X^{T}(-I)X^{-1}X^{T} = -(\lambda I - X^{T}(-I)X)^{-1}X^{T} = -(\lambda I - X^{T}$$

Now apply the matrix inversion with $E = \lambda I$ (so $E^{-1} = \left(\frac{1}{\lambda}\right) I$), $F = X^T$, H = -I (so $H^{-1} = -I$ too), and G = X:

$$-(\lambda I - X^{T}(-I)X)^{-1}X^{T}(-I) = -(\frac{1}{\lambda})IX^{T}(-I - X\left(\frac{1}{\lambda}\right)X^{T})^{-1}.$$

Now use that $(1/\alpha)A^{-1} = (\alpha A)^{-1}$, to push the $(-1/\lambda)$ inside the sum as $-\lambda$,

$$-(\frac{1}{\lambda})IX^{T}(-I - X\left(\frac{1}{\lambda}\right)X^{T})^{-1} = X^{T}(\lambda I + XX^{T})^{-1} = X^{T}(XX^{T} + \lambda I)^{-1}.$$

Guasian-RBF Kernels

• The most common kernel is the Gaussian-RBF (or 'squared exponential') kernel,

$$k(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{\sigma^2}\right)$$

• What function $\phi(x)$ would lead to this as the inner-product?

• To simplify, assume d = 1 and $\sigma = 1$,

$$k(x_i, x_j) = \exp(-x_i^2 + 2x_i x_j - x_j^2)$$

= $\exp(-x_i^2) \exp(2x_i x_j) \exp(-x_j^2),$

so we need $\phi(x_i) = \exp(-x_i^2)z_i$ where $z_i z_j = \exp(2x_i x_j)$. • For this to work for all x_i and x_j , z_i must be infinite-dimensional. • If we use that

$$\exp(2x_i x_j) = \sum_{k=0}^{\infty} \frac{2^k x_i^k x_j^k}{k!},$$

then we obtain

$$\phi(x_i) = \exp(-x_i^2) \begin{bmatrix} 1 & \sqrt{\frac{2}{1!}} x_i & \sqrt{\frac{2^2}{2!}} x_i^2 & \sqrt{\frac{2^3}{3!}} x_i^3 & \cdots \end{bmatrix}.$$

Constructing Valid Kernels

- If $k_1(x_i, x_j)$ and $k_2(x_i, x_j)$ are valid kernels, then the following are valid kernels:
 - $k_1(\phi(x_i), \phi(x_j)).$
 - $\alpha k_1(x_i, x_j) + \beta k_2(x_i, x_j)$ for $\alpha \ge 0$ and $\beta \ge 0$.
 - $k_1(x_i, x_j)k_2(x_i, x_j)$.
 - $\phi(x_i)k_1(x_i, x_j)\phi(x_j)$.
 - $\exp(k_1(x_i, x_j)).$
- Example: Gaussian-RBF kernel:

$$k(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{\sigma^2}\right)$$
$$= \underbrace{\exp\left(-\frac{\|x_i\|^2}{\sigma^2}\right)}_{\phi(x_i)} \underbrace{\exp\left(\frac{2}{\sigma^2}\underbrace{x_i^T x_j}_{\alpha \ge 0}\right)}_{\exp(\mathsf{valid})} \underbrace{\exp\left(-\frac{\|x_j\|^2}{\sigma^2}\right)}_{\phi(x_j)}.$$

Representer Theorem

• Consider linear model differentiable with losses f_i and L2-regularization,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n f_i(w^T x_i) + \frac{\lambda}{2} \|w\|^2.$$

• Setting the gradient equal to zero we get

$$0 = \sum_{i=1}^{n} f_i'(w^T x_i) x_i + \lambda w.$$

• So any solution w^* can written as a linear combination of features x_i ,

$$w^* = -\frac{1}{\lambda} \sum_{i=1}^n f'_i((w^*)^T x_i) x_i = \sum_{i=1}^n z_i x_i$$

= $X^T z$.

• This is called a representer theorem (true under much more general conditions).4

Representer Theorem

• Using representer theorem we can use $w = X^T z$ in original problem,

$$\begin{aligned} \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} & \sum_{i=1}^n f_i(w^T x_i) + \frac{\lambda}{2} \|w\|^2 \\ = \underset{z \in \mathbb{R}^n}{\operatorname{argmin}} & \sum_{i=1}^n f_i(\underbrace{z^T X x_i}_{x_i^T X^T z}) + \frac{\lambda}{2} \|X^T z\|^2 \end{aligned}$$

• Now defining $f(z) = \sum_{i=1}^{n} f_i(z_i)$ for a vector z we have

$$= \underset{z \in \mathbb{R}^{n}}{\operatorname{argmin}} f(XX^{T}z) + \frac{\lambda}{2} z^{T}XX^{T}z$$
$$= \underset{z \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{f(Kz)}{2} + \frac{\lambda}{2} z^{T}Kz.$$

• Similarly, at test time we can use the n variables z,

$$\hat{X}w = \hat{X}X^T z = \hat{K}z$$

Number of polynomials of degree p

- We have 'd' features, plus a "dummy" feature that's 1.
- Now for each term we get to pick 'p' of these d+1 possibilities, with repetition allowed.
 - For example, if I pick feature 1 twice, that means I have $(x_{i1})^2$ in my term
 - The dummy feature allows for lower order terms (total degree less than p)
- How many times can we pick 'p' objects from a set of d+1 distinct choices with replacement, where order doesn't matter?
 - See https://en.wikipedia.org/wiki/Combination#Number_of_combinations_with_repetition
 - In their notation, n=d+1 and k=p
 - Answer: d+p choose p, which is (d+p)!/d!p! or approximately d^p/p!. We call this O(d^p) which is true, and also a reasonable bound when d>>p, although perhaps O((d/p)^p) would be better.

RBF kernel vs RBF features

- Like the RBF features, the RBF kernel...
 - can learn any decision boundary given enough data
 - as a result it is prone to overfitting, so we need to use regularization
 - σ parameter controls smoothness: larger σ means smoother boundaries
 - This is called "gamma" in sklearn and it's $1/\sigma$
 - λ parameter controls regularization: larger λ means more regularization
 - This is called "C" in sklearn and it's $1/\lambda$
- The RBF features are finite-dimensional (n features)
- The RBF kernel corresponds to infinitely many features
- Both are non-parametric methods