
CPSC	340:
Machine	Learning	and	Data	Mining

Stochastic	Gradient

1Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.



Motivation:	Big-n	Problems
• Consider	fitting	a	least	squares	model:

• Gradient	methods	are	effective	when	‘d’	is	very	large.
– O(nd)	per	iteration	instead	of	O(nd2 +	d3)	to	solve	as	linear	system.

• But	what	if	number	of	training	examples	‘n’	is	very	large?
– All	Gmails,	all	products	on	Amazon,	all	homepages,	all	images,	etc.
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Gradient	Descent	vs.	Stochastic	Gradient
• Common	solution	to	this	problem	is	stochastic	gradient	algorithm:

• Uses	the	gradient	of	a	randomly-chosen	training	example:

• Cost	of	computing	this	one	gradient	is	independent	of	‘n’.
– Iterations	are	‘n’	times	faster	than	gradient	descent	iterations.
– With	1	billion	training	examples,	this	iteration	is	1	billion	times	faster.
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Stochastic	Gradient	(SG)
• Stochastic	gradient	is	an	iterative	optimization	algorithm:
– We	start	with	some	initial	guess,	w0.
– Generate	new	guess	by	moving	in	the	negative	gradient	direction:

• For	a random	training	example	‘i’.

– Repeat	to	successively	refine	the	guess:

• For	a	random	training	example	‘i’.
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Stochastic	Gradient	(SG)
• Stochastic	gradient	applies	when	minimizing	averages:

• Basically,	all	our	regression	losses	except	“brittle”	regression.
– Multiplying	be	positive	constant	doesn’t	change	location	of	optimal	‘w’.
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Intuition:	per-example	gradients
• The	gradient	(derivative)	and	summation	are	both	linear	operators
– This	means	we	can	switch	the	order of	the	gradient	and	the	summation

• The	losses	we	use	are	an	average	of	per-example	losses:

• That	means	the	gradient	is	an	average	of	per-example	gradients:

• With	SG	we	are	randomly	sampling one	of	these	gradients instead	of	
averaging	all	of	them
– This	is	an	estimate of	the	average	that	is	faster	to	compute
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Why	Does	Stochastic	Gradient	Work	/	Not	Work?

• Main	problem	with	stochastic	gradient:
– Gradient	of	random	example	might	point	in	the	wrong	direction.

• Does	this	have	any	hope	of	working?
– The	average	of	the	random	gradients	is	the	full	gradient.

– The	algorithm	is	going	in	the	right	direction	on	average.
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Gradient	Descent	vs.	Stochastic	Gradient	(SG)
• Gradient	descent:

• Stochastic	gradient:
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Gradient	Descent	in	Action
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Stochastic	Gradient	in	Action
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Stochastic	Gradient	in	Action
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Stochastic	Gradient	in	Action
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Stochastic	Gradient	in	Action
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Stochastic	Gradient	in	Action
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Effect	of	‘w’	Location	on	Progress

• We’ll	still	make	good	progress	if	most	gradients	points	in	right	direction.
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Variance	of	the	Random	Gradients
• The	“confusion”	is	captured	by	a	kind	of	variance	of	the	gradients:

• If	the	variance	is	0,	every	step	goes	in	the	right	direction.
– We’re	outside	of	region	of	confusion.

• If	the	variance	is	small,	most	steps	point	in	the	direction.
– We’re	just	inside	region	of	confusion.

• If	the	variance	is	large,	many	steps	will	point	in	the	wrong	direction.
– Middle	of	region	of	confusion,	where	w* lives.
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Effect	of	the	Step-Size
• We	can	reduce	the	effect	of	the	variance	with	the	step	size.
– Variance	slows	progress	by	amount	proportional	to	square	of	step-size.
– So	as	the	step	size	gets	smaller,	the	variance	has	less	of	an	effect.

• For	a	fixed	step-size,	SG	makes	progress	until	variance	is	too	big.
• This	leads	to	two	“phases”	when	we	use	a	constant	step-size:

1. Rapid	progress	when	we	are	far		from	the	solution.
2. Erratic	behaviour	confined	to	a	“ball”	around	solution.

(Radius	of	ball	is	proportional	to	the	step-size.)
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Stochastic	Gradient	with	Constant	Step	Size
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Stochastic	Gradient	with	Constant	Step	Size
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Stochastic	Gradient	with	Decreasing	Step	Sizes
• To	get	convergence,	we	need	a	decreasing	step	size.
– Shrinks	size	of	ball	to	zero	so	we	converge	to	w*.

• But	it	can’t	shrink	too	quickly:
– Otherwise,	we	don’t	move	fast	enough	to	reach	the	ball.

• Classic	solution	to	this	problem	is	step-sizes	αt satisfying:

• We	can	achieve	this	by	using	a	step-size	sequence	like		αt =	O(1/t).
– E.g.,	αt =	.001/t. 20



Stochastic	Gradient	Methods	in	Practice
• Unfortunately,	setting	αt =	O(1/t)	works	badly	in	practice:
– Initial	steps	can	be	very	large.
– Later	steps	get	very	tiny.

• Practical	tricks:
– Some	authors	add	extra	parameters	like	αt =	γ/(t	+	Δ).
– Theory	and	practice	support	using	steps	that	go	to	zero	more	slowly:

• But	return	a	weighted	average	of	the	iterations:
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Stochastic	Gradient	with	Averaging
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Summry:	Stochastic	Gradient
• Stochastic	gradient	minimizes	average	of	smooth	functions:

– Function	fi(w)	is	error	for	example	‘i’.

• Iterations	perform	gradient	descent	on	one	random	example	‘i’:

– Cheap	iterations	even	when	‘n’	is	large,	but	doesn’t	always	decrease	‘f’.
– But	solves problem	if	αt goes	to	0 at	an	appropriate	rate.

• Theory	says	use	αt =	O(1/t),	in	practice	you	need	to	experiment.
23



Summary:	Stochastic	Gradient
• Stochastic	gradient	converges	very	slowly:
– But	if	your	dataset	is	too	big,	there	may	not	be	much	you	can	do.

• Practical	tricks	to	improve	performance:
– Constant	or	slowly-decreasing	step-sizes	and/or	average	the	wt.
– Binary	search	for	step	size,	stop	using	validation	error (bonus	slides).

• You	can	also	improve	performance	by	reducing	the	variance:
– Using	“mini-batches”	or	random	samples	rather	than	1	random	sample.
– New	“variance-reduced”	methods	(SAG,	SVRG)	for	finite	training	sets.
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Summary
• Global	vs.	local	features	allow	“personalized”	predictions.
• Stochastic	gradient	methods	let	us	use	huge	datasets.
• Step-size	in	stochastic	gradient	is	a	huge	pain:
– Needs	to	go	to	zero	to	get	convergence,	but	this	works	badly.
– Constant	step-size	works	well,	but	only	up	to	a	certain	point.

• SAG and	other	newer	methods	fix	convergence	for	finite	datasets.
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Linear	Models	with	Binary	Features
• What	is	the	effect	of	a	binary	feature	on	linear	regression?

• Adding	a	bias	β,	our	linear	model	is:

• The	‘gender’	variable	causes	a	change	in	y-intercept:

Year Gender

1975 1

1975 0

1980 1

1980 0

Height

1.85

2.25

1.95

2.30

http://www.medalinframe.com/athletes/sara-simeoni/
http://www.at-a-lanta.nl/weia/Progressie.html
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Linear	Models	with	Binary	Features
• What	if	different	genders	have	different	slopes?
– You	can	use	gender-specific	features.

http://www.at-a-lanta.nl/weia/Progressie.html
http://www.wikiwand.com/it/Udo_Beyer
http://women-s-rights.blogspot.ca/

Bias
(gender =	1)

Year	
(gender =	1)

Bias	
(gender	=	0)

Year
(gender	=	0)

1 1975 0 0

0 0 1 1975

1 1980 0 0

0 0 1 1980

Year Gender

1975 1

1975 0

1980 1

1980 0
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Linear	Models	with	Binary	Features
• To	share	information	across	genders,	include	a	“global”	version.

• “Global”	year	feature:	influence	of	time	on	both	genders.
– E.g.,	improvements	in	technique.

• “Local”	year	feature:	gender-specific	deviation	from	global	trend.
– E.g.,	different	effects	of	performance-enhancing	drugs.

Year	(any gender) Year	(if gender =	1) Year	(if gender	=	0)

1975 1975 0

1975 0 1975

1980 1980 0

1980 0 1980

Year Gender

1975 1

1975 0

1980 1

1980 0
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Motivation:	“Personalized”	Important	E-mails
• Recall	that	we	discussed	identifying	‘important’	e-mails?

• There	might	be	some	“globally”	important	messages:
– “This	is	your	mother,	something	terrible	happened,	give	me	a	call	ASAP.”

• But	your	“important”	message	may	be	unimportant	to	others.
– Similar	for	spam:	“spam”	for	one	user	could	be	“not	spam”	for	another. 29



The	Big	Global/Local	Feature	Table	for	E-mails
• Each	row	is	one	e-mail	(there	are	lots	of	rows):
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Predicting	Importance	of	E-mail	For	New	User
• Consider	a	new	user:
– We	start	out	with	no	information	about	them.
– So	we	use	global features	to	predict	what	is	important	to	a	generic	user.

• With	more	data,	update	global features	and	user’s	local	features:
– Local features	make prediction	personalized.

– What	is	important	to	this user?
• G-mail	system:	classification	with	logistic	regression.
– Trained	with	a	variant	of	stochastic	gradient.
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Gradient	Descent	vs.	Stochastic	Gradient
• Recall	the	gradient	descent	algorithm:

• For	least	squares,	our	gradient	has	the	form:

• Notice	that	it’s	cheaper	than	O(nd)	if	the	xi are	very	sparse:
– Each	e-mail	has	a	limited	number	of	non-zero	features,
– Each	e-mail	only	has	“global”	features	and	“local”	features	for	one	user.

• But	the	cost	of	computing	the	gradient	is	linear	in	‘n’.
– As	‘n’	gets	large,	gradient	descent	iterations	become	expensive. 32



Stochastic	Gradient	with	Infinite	Data
• Amazing	property	of	stochastic	gradient:
– The	classic	convergence	analysis	does	not	rely	on	‘n’	being	finite.

• Consider	an	infinite	sequence	of	IID	samples.
– Or	any	dataset	that	is	so	large	we	cannot	even	go	through	it	once.

• Approach	1	(gradient	descent):
– Stop	collecting	data	once	you	have	a	very	large	‘n’.
– Fit	a	regularized	model	on	this	fixed	dataset.

• Approach	2	(stochastic	gradient):
– Perform	a	stochastic	gradient	iteration	on	each	example	as	we	see	it.
– Never	re-visit	any	example,	always	take	a	new	one.
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Stochastic	Gradient	with	Infinite	Data
• Approach	2	only	looks	at	a	data	point	once:
– Each	example	is	an	unbiased	approximation	of	test	data.

• So	Approach	2	is	doing	stochastic	gradient	on	test	error:
– It	cannot	overfit.

• Up	to	a	constant,	Approach	2	achieves	test	error	of	Approach	1.
– This	is	sometimes	used	to	justify	SG	as	the	“ultimate”	learning	algorithm.

• “Optimal	test	error	by	computing	gradient	of	each	example	once!”
– In	practice,	Approach	1	usually	gives	lower	test	error.

• The	constant	factor	matters!
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Gradient	Descent	vs.	Stochastic	Gradient

• 2012:	methods	with	cost	of	stochastic	gradient,	progress	of	full	gradient.
– Key	idea:	if	‘n’	is	finite,	you	can	use	a	memory	instead	of	having	αt go	to	zero.
– First	was	stochastic	average	gradient	(SAG),	“low-memory”	version	is	SVRG.

full	gradientlo
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https://www.ubyssey.ca/science/schmidt-sloan-fellowship/
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A	Practical	Strategy	For	Choosing	the	Step-Size
• All	these	step-sizes	have	a	constant	factor	in	the	“O”	notation.
– E.g.,

• We	don’t	know	how	to	set	step	size	as	we	go	in	the	stochastic	case.
– And	choosing	wrong	γ can	destroy	performance.

• Common	practical	trick:
– Take	a	small	amount	of	data	(maybe	5%	of	the	original	data).
– Do	a binary	search	for	γ that	most	improves	objective	on	this	subset.
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A	Practical	Strategy	for	Deciding	When	to	Stop
• In	gradient	descent,	we	can	stop	when	gradient	is	close	to	zero.

• In	stochastic	gradient:
– Individual	gradients	don’t	necessarily	go	to	zero.
– We	can’t	see	full	gradient,	so	we	don’t	know	when	to	stop.

• Practical	trick:
– Every	‘k’	iterations	(for	some	large	‘k’),	measure	validation	set	error.
– Stop	if	the	validation	set	error	isn’t	improving.
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More	Practical	Issues
• Does	it	make	sense	to	use	more	than	1	random	example?
– Yes,	you	can	use	a	“mini-batch”	of	examples.

– The	variance	is	inversely	proportional	to	the	mini-batch	size.
• You	can	use	bigger	step	size	as	the	batch	size	increases.
• Big	gains	for	going	from	1	to	2,	less	big	gains	from	going	from	100	to	101.

– Useful	for	vectorizing/parallelizing	code.
• Evaluate	one	gradient	on	each	core.
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Linear	Models	with	Binary	Features
Feature	1 Feature 2
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