CPSC 340: Machine Learning and Data Mining

MLE and MAP

Admin

Assignment 4:

Due tonight.

Assignment 5:

- Will be released soon, maybe Tuesday.
- Due 2 weeks from today (Mar 23).
- Don't forget to request partnerships ASAP.

Assignment 6:

- Will be the last assignment.
- May be more open-ended (stay tuned).

Generative vs. Discriminative Models

- Previously we saw naïve Bayes:
 - Uses Bayes rule and model $p(x_i|y_i)$ to predict $p(y_i|x_i)$.

$$p(y_i|x_i) \propto p(x_i|y_i)p(y_i)$$

- This strategy is called a generative model.
 - It "models how the features are generated".
 - Often works well with lots of features but small 'n'.
- Previously we saw logistic regression:
 - Directly model $p(y_i | x_i)$ to predict $p(y_i | x_i)$.
 - No need to model x_i, so we can use complicated features.
 - Tends to work better with large 'n' or when naïve assumptions aren't satisfied.
 - This strategy is called a discriminative model.

Model for logistic regression

With logistic regression, the model was:

$$p(y_i|x_i) = h(w^T x_i)$$

• Where 'h' is the sigmoid function:

$$h(z_i) = \frac{1}{1 + \exp(-z_i)}$$

We trained the 'w' with the logistic loss:

$$f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i))$$

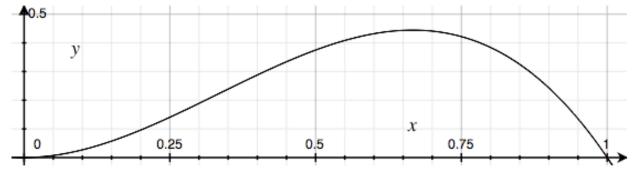
 Today we'll see a new interpretation of this loss as a maximum likelihood estimate (MLE)

What is likelihood?

- Say we have a coin with heads probability, 'w'.
- What's the probability that we see 'k' heads in 'n' flips, given 'w'? - It's $p(k|w,n) = \binom{n}{k} w^k (1-w)^{n-k}$
- This is a probability distribution that's defined for any 'k'
- It behaves like probability distributions do, like summing to 1
- But what if we don't know 'w'?
- Let's make it concrete: you observed HHT in 3 flips.
 - What do you think 'w' was? Was it 0? Was it 1? 0.5???
- $p(D/w) = 3w^2(1-w)$ where 'D' is general notation for observed data
- Likelihood: think of this quantity as a function of 'w' instead of 'D'

What is likelihood? (continued)

- You observed HHT in 3 flips. Then $p(D/w)=3w^2(1-w)$
- We can plot this as a function of 'w'



- This makes sense! w=0 is impossible, w=1 is impossible
- argmax of this function is the maximum likelihood estimate of 'w'
 - In this case, \hat{w} = 2/3, and in general k/n for the binomial distribution
- When viewed as a function of 'w', this thing is not a probability distribution (it's a likelihood function)
 - Look at the plot above: we can see the area under the curve is less than 1

Maximum Likelihood Estimation (MLE)

- Maximum likelihood estimation (MLE) for fitting probabilistic models.
 - We have a dataset D.
 - We want to pick parameters 'w'.
 - We define the likelihood as a probability mass/density function p(D | w).
 - We choose the model \widehat{w} that maximizes the likelihood:

Appealing "consistency" properties as n goes to infinity (take STAT 4XX).

Minimizing the Negative Log-Likelihood (NLL)

- To maximize likelihood, usually we minimize the negative "log-likelihood" (NLL):
 - "Log-likelihood" is short for "logarithm of the likelihood".

- Why are these equivalent?
 - Logarithm is monotonic: if $\alpha > \beta$, then $\log(\alpha) > \log(\beta)$.
 - Changing sign flips max to min.
- See "Max and Argmax" notes on webpage if this seems strange.

Minimizing the Negative Log-Likelihood (NLL)

We use logarithm because it turns multiplication into addition:

$$\log(\alpha\beta) = \log(\alpha) + \log(\beta)$$

- More generally: $|og(f_{i=1}^n a_i) = \int_{i=1}^n |og(a_i)|$
- If data is 'n' IID samples then $p(D|w) = \prod_{i=1}^{n} p(D_i, w)$ example 'i'

and our MLE is
$$\hat{W} \in \operatorname{argmax} \left\{ \frac{n}{11} \rho(0; l_w) \right\} \equiv \operatorname{argmin} \left\{ - \frac{2}{11} \log \left(\rho(0; l_w) \right) \right\}$$

MLE for Supervised Learning

The MLE in generative models (like naïve Bayes) maximizes:

- But discriminative models directly model p(y | X, w).
 - We treat features X as fixed don't care about their distribution.
 - So the MLE maximizes the conditional likelihood:

$$\rho(y|X,w)$$

of the targets 'y' given the features 'X' and parameters 'w'.

MLE Interpretation of Logistic Regression

For IID regression problems the conditional NLL can be written:

$$-\log(\rho(y|X,w)) = -\log(\prod_{j=1}^{n} \rho(y_j|X_{ij}w)) = -\sum_{j=1}^{n} \log(\rho(y_j|X_{ij}w))$$

$$= -\sum_{j=1}^{n} \log(\rho(y_j|X_{ij}w)) = -\sum_{j=1}^{n} \log(\rho(y_j|X_{ij}w))$$

$$= -\sum_{j=1}^{n} \log(\rho(y_j|X_{ij}w)) = -\sum_{j=1}^{n} \log(\rho(y_j|X_{ij}w))$$

Logistic regression assumes sigmoid(w^Tx_i) conditional likelihood:

$$p(y_i|x_{i,w}) = h(y_i w^7 x_i)$$
 where $h(z_i) = \frac{1}{1 + e \times p(-z_i)}$

Plugging in the sigmoid likelihood, the NLL is the logistic loss:

$$NLL(w) = -\frac{2}{5} \left[\log \left(\frac{1}{1 + exp(-y_i w^i x_i)} \right) = \frac{2}{5} \left[\log \left(1 + exp(-y_i w^i x_i) \right) \right]$$
(since $\log(1) = 0$)

MLE Interpretation of Logistic Regression

- We just derived the logistic loss from the perspective of MLE.
 - Instead of "smooth approximation of 0-1 loss", we now have that logistic regression is doing MLE in a probabilistic model.
 - The training and prediction would be the same as before.
 - We still minimize the logistic loss in terms of 'w'.
 - But MLE viewpoint gives us a justification for our predicted probabilities

Least Squares is Gaussian MLE

- It turns out that most objectives have an MLE interpretation:
 - For example, consider minimizing the squared error:

$$f(w) = \frac{1}{2} || \chi_w - \gamma ||^2$$

- This is MLE of a linear model under the assumption of IID Gaussian noise:

$$y_i = w^T x_i + \varepsilon_i$$

where each & is sampled independently from standard normal

Least Squares is Gaussian MLE (Gory Details)

• Let's assume that $y_i = w^T x_i + \varepsilon_i$, with ε_i following standard normal:

$$p(\mathcal{E}_i) = \frac{1}{\sqrt{2\pi}} exp(-\frac{\mathcal{E}_i^2}{2})$$

• This leads to a Gaussian likelihood for example 'i' of the form: $\rho(y_i \mid x_i, w) = \frac{1}{\sqrt{2\pi}} ex \rho\left(-\frac{(w^7 x_i - y_i)^2}{2}\right)$

$$\rho(y_i \mid x_{ij} w) = \frac{1}{2\pi} exp\left(-\frac{(w^7 x_i - y_i)^2}{2}\right)$$

• Finding MLE is equivalent to minimizing NLL:

• Finding IVILE is equivalent to minimizing IVIL:
$$f(w) = -\sum_{i=1}^{n} \log (p(y_i | w_i, x_i))$$

$$= -\sum_{i=1}^{n} \log (\frac{1}{\sqrt{2\pi}} \exp(-\frac{(w^T x_i - y_i)^2)}{2}))$$

$$= (constant) + \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2$$

$$= -\sum_{i=1}^{n} \log (\frac{1}{\sqrt{2\pi}}) + \log (\exp(-\frac{(w^T x_i - y_i)^2)}{2})$$

$$= (constant) + \frac{1}{2} || x_w - y_i|^2$$

$$= -\sum_{i=1}^{n} \log (\frac{1}{\sqrt{2\pi}}) + \log (\exp(-\frac{(w^T x_i - y_i)^2)}{2})$$

$$= (constant) + \frac{1}{2} || x_w - y_i|^2$$

Loss Functions and Maximum Likelihood Estimation

So least squares is MLE under Gaussian likelihood.

If
$$p(y_i|x_i,w) = \frac{1}{\sqrt{2\pi}} exp(-(\frac{w^2x_i-y_i)^2}{2})$$

then MLE of $|w|$ is minimum of $f(w) = \frac{1}{2}||Xw-y||^2$

With a Laplace likelihood you would get absolute error.

If
$$p(y_i|x_i,w) = \frac{1}{2} exp(-lw^Tx_i-y_i)$$

then MLE is minimum of $f(w) = ||Xw-y||_1$

- With sigmoid likelihood we got the binary logistic loss.
- You can derive softmax loss from the softmax likelihood (bonus).

(pause)

Maximum Likelihood Estimation and Overfitting

In our abstract setting with data D the MLE is:

- But conceptually MLE is a bit weird:
 - "Find the 'w' that makes 'D' have the highest probability given 'w'."
- And MLE often leads to overfitting:
 - Data could be very likely for some very unlikely 'w'.
 - For example, a complex model that overfits by memorizing the data.
- What we really want:
 - "Find the 'w' that has the highest probability given the data D."

Maximum a Posteriori (MAP) Estimation

Maximum a posteriori (MAP) estimate maximizes the reverse probability:

- This is what we want: the probability of 'w' given our data.
- MLE and MAP are connected by Bayes rule:

$$\rho(w|D) = \rho(D|w)\rho(w) \propto \rho(D|w)\rho(w)$$

$$\rho(D) = \rho(D|w)\rho(w) \propto \rho(D|w)\rho(w)$$

$$\rho(D|w)\rho(w) = \rho(D|w)\rho(w)$$

$$\rho(D|w)\rho(w) = \rho(D|w)\rho(w)$$

- So MAP maximizes the likelihood p(D|w) times the prior p(w):
 - Prior is our "belief" that 'w' is correct before seeing data.
 - Prior can reflect that complex models are likely to overfit.

MAP Estimation and Regularization

From Bayes rule, the MAP estimate with IID examples D_i is:

$$\widehat{\mathbf{w}} \in \operatorname{argmax} \left\{ p(\mathbf{w} | \mathbf{D}) \right\} \equiv \operatorname{argmax} \left\{ \prod_{i=1}^{n} \left[p(\mathbf{D}_{i} | \mathbf{u}) \right] p(\mathbf{w}) \right\}$$

By again taking the negative of the logarithm we get:

$$\hat{w}^{\epsilon}$$
 argmin $\{-\sum_{i=1}^{n} [\log (p(D_{i}|w))] - \log (p(w))\}$

- So we can view the negative log-prior as a regularizer:
 - Many regularizers are equivalent to negative log-priors.

L2-Regularization and MAP Estimation

We obtain L2-regularization under an independent Gaussian assumption:

• This implies that:

$$\rho(w) = \prod_{j=1}^{d} \rho(w_j) \propto \prod_{j=1}^{d} \exp(-\frac{\lambda}{2}w_j^2) = \exp(-\frac{\lambda}{2}\sum_{j=1}^{d}w_j^2)$$

$$e^{x}e^{\beta} = e^{x+\beta}$$

So we have that:

$$-\log(\rho(w)) = -\log(\exp(-\frac{2}{2}||w||^2)) + (constant) = \frac{2}{2}||w||^2 + (constant)$$

With this prior, the MAP estimate with IID training examples would be

$$\hat{w} \in \operatorname{argmin} \{\xi - \log(p(y|X_{jw})) - \log(p(w))\} \equiv \operatorname{argmin} \{\xi - \frac{2}{|\xi|}[\log(p(y_i|X_{ijw}))] + \frac{4}{3}\|w\|^2\}$$

MAP Estimation and Regularization

- MAP estimation gives link between probabilities and loss functions.
 - Gaussian likelihood and Gaussian prior give L2-regularized least squares.

If
$$p(y_i \mid x_{i,n}) \propto exp(-(\frac{w^2x_i - y_i}{2})^2)$$
 $p(w_j) \propto exp(-\frac{2}{2}w_j^2)$
then MAP estimation is equivalent to minimizing $f(w) = \frac{1}{2} ||Xw - y||^2 + \frac{2}{2} ||w||^2$

- Sigmoid likelihood and Gaussian prior give L2-regularized logistic regression:

If
$$p(y_1|x_1,w) = \frac{1}{1+exp(-y_1w^7x_1)}$$
 and $p(w_1) \propto exp(-\frac{2}{2}w_2^2)$
then MAP estimate is minimum of $f(w) = \frac{2}{2} \log(1+exp(-y_1w^7x_1)) + \frac{2}{2} ||w||^2$
As $n-900$ effect of prior tregularizer goes to 0

Summarizing the past few slides

- Many of our loss functions and regularizers have probabilistic interpretations.
 - Laplace likelihood leads to absolute error.
 - Laplace prior leads to L1-regularization.
- The choice of likelihood corresponds to the choice of loss.
 - Our assumptions about how the y_i -values can come from the x_i and 'w'.
- The choice of prior corresponds to the choice of regularizer.
 - Our assumptions about which 'w' values are plausible.
- Try not to confuse these things!

Summary

- Discriminative probabilistic models directly model $p(y_i \mid x_i)$.
 - Unlike naïve Bayes that models $p(x_i | y_i)$.
 - Usually, we use linear models and define "likelihood" of y_i given w^Tx_i .
- Maximum likelihood estimate viewpoint of common models.
 - Objective functions are equivalent to maximizing $p(y \mid X, w)$.
- MAP estimation directly models p(w | X, y).
 - Gives probabilistic interpretation to regularization.

Why do we care about MLE and MAP?

- Unified way of thinking about many of our tricks?
 - Laplace smoothing and L2-regularization are doing the same thing.
- Remember our two ways to reduce complexity of a model:
 - Model averaging (ensemble methods).
 - Regularization (linear models).
- "Fully"-Bayesian methods combine both of these (CPSC 540).
 - Average over all models, weighted by posterior (including regularizer).
 - Can use extremely-complicated models without overfitting.
- Sometimes it's easier to define a likelihood than a loss function.

"Parsimonious" Parameterization and Linear Models

- Challenge: $p(y_i \mid x_i)$ might still be really complicated:
 - If x_i has 'd' binary features, need to estimate $p(y_i \mid x_i)$ for 2^d input values.
- Practical solution: assume $p(y_i \mid x_i)$ has "parsimonious" form.
 - For example, we convert output of linear model to be a probability.
 - Only need to estimate the parameters of a linear model.
- In binary logistic regression, we did the following:
 - 1. The linear prediction w^Tx_i gives us a number in $(-\infty, \infty)$.
 - 2. We'll map w^Tx_i to a number in (0,1), with a map acting like a probability.

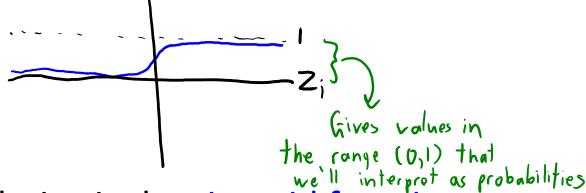
How should we transform $\mathbf{w}^\mathsf{T}\mathbf{x}_i$ into a probability?

- Let $z_i = w^T x_i$ in a binary logistic regression model:
 - If sign(z_i) = +1, we should have p(y_i = +1 | z_i) > $\frac{1}{2}$.
 - The linear model thinks $y_i = +1$ is more likely.
 - If sign(z_i) = -1, we should have p(y_i = +1 | z_i) < $\frac{1}{2}$.
 - The linear model thinks $y_i = -1$ is more likely, and $p(y_i = -1 \mid z_i) = 1 p(y_i = +1 \mid z_i)$.
 - If $z_i = 0$, we should have $p(y_i = +1 \mid z_i) = \frac{1}{2}$.
 - Both classes are equally likely.

- And we might want size of w^Tx_i to affect probabilities:
 - As z_i becomes really positive, we should have $p(y_i = +1 \mid z_i)$ converge to 1.
 - As z_i becomes really negative, we should have $p(y_i = +1 \mid z_i)$ converge to 0.

Sigmoid Function

• So we want a transformation of $z_i = w^T x_i$ that looks like this:



The most common choice is the sigmoid function:

$$h(z_i) = \frac{1}{1 + \exp(-z_i)}$$

Values of h(z_i) match what we want:

$$h(-1) = 0$$
 $h(-1) = 0.27$ $h(0) = 0.5$ $h(0.5) = 0.62$ $h(+1) = 0.73$ $h(+\infty) = 1$

Sigmoid: Transforming w^Tx_i to a Probability

• We'll define $p(y_i = +1 \mid z_i) = h(z_i)$, where 'h' is the sigmoid function.

So
$$p(y_i = -1|z_i) = 1 - p(y_i = +1|z_i)$$

 $= 1 - h(z_i)$ can show from $= h(-z_i)$ \in definition of 'h'

• We can write both cases as $p(y_i \mid z_i) = h(y_i z_i)$, so we convert $z=w^Tx_i$ into "probability of y_i " using:

$$\rho(y_i|w,x_i) = h(y_i|w_{x_i})$$

$$= \frac{1}{1 + e_{x_i}(-y_i|w_{x_i})}$$

Given this probabilistic perspective, how should we find best 'w'?

MLE for Naïve Bayes

A long time ago, I mentioned that we used MLE in naïve Bayes.

- We estimated that $p(y_i = "spam")$ as count(spam)/count(e-mails).
 - You derive this by minimizing the NLL under a "Bernoulli" likelihood.
 - Set derivative of NLL to 0, and solve for Bernoulli parameter.
- MLE of $p(x_{ij} | y_i = "spam")$ gives count(spam, x_{ij})/count(spam).
 - Also derived under a conditional "Bernoulli" likelihood.

The derivation is tedious, but if you're interested I put it here.

Regularizing Other Models

We can view priors in other models as regularizers.

- Remember the problem with MLE for naïve Bayes:
 - The MLE of p('lactase' = 1| 'spam') is: count(spam,lactase)/count(spam).
 - But this caused problems if count(spam, lactase) = 0.
- Our solution was Laplace smoothing:
 - Add "+1" to our estimates: (count(spam,lactase)+1)/(counts(spam)+2).
 - This corresponds to a "Beta" prior so Laplace smoothing is a regularizer.

Losses for Other Discrete Labels

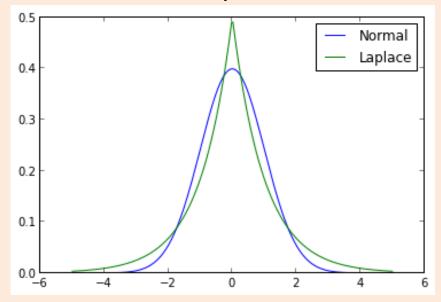
- MLE/MAP gives loss for classification with basic labels:
 - Least squares and absolute loss for regression.
 - Logistic regression for binary labels {"spam", "not spam"}.
 - Softmax regression for multi-class {"spam", "not spam", "important"}.
- But MLE/MAP lead to losses with other discrete labels:
 - Ordinal: {1 star, 2 stars, 3 stars, 4 stars, 5 stars}.
 - Counts: 602 'likes'.
 - Survival rate: 60% of patients were still alive after 3 years.
- Define likelihood of labels, and use NLL as the loss function.
- We can also use ratios of probabilities to define more losses (bonus):
 - Binary SVMs, multi-class SVMs, and "pairwise preferences" (ranking) models.

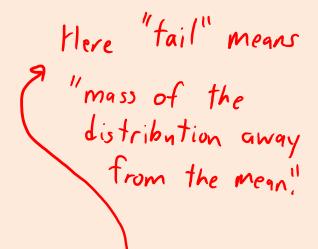
Discussion: Least Squares and Gaussian Assumption

- Classic justifications for the Gaussian assumption underlying least squares:
 - Your noise might really be Gaussian. (It probably isn't, but maybe it's a good enough approximation.)
 - The central limit theorem (CLT) from probability theory. (If you add up enough IID random variables, the estimate of their mean converges to a Gaussian distribution.)
- I think the CLT justification is wrong as we've never assumed that the x_{ij} are IID across 'j' values. We only assumed that the examples x_i are IID across 'i' values, so the CLT implies that our estimate of 'w' would be a Gaussian distribution under different samplings of the data, but this says nothing about the distribution of y_i given w^Tx_i .
- On the other hand, there are reasons *not* to use a Gaussian assumption, like it's sensitivity to outliers. This was (apparently) what lead Laplace to propose the Laplace distribution as a more robust model of the noise.
- The "student t" distribution from (published anonymously by Gosset while working at Guiness) is even more robust, but doesn't lead to a convex objective.

"Heavy" Tails vs. "Light" Tails

- We know that L1-norm is more robust than L2-norm.
 - What does this mean in terms of probabilities?





- Gaussian has "light tails": assumes everything is close to mean.
- Laplace has "heavy tails": assumes some data is far from mean.
- Student 't' is even more heavy-tailed/robust, but NLL is non-convex.

Multi-Class Logistic Regression

- Last time we talked about multi-class classification:
 - We want $w_{y_i}^T x_i$ to be the most positive among 'k' real numbers $w_c^T x_i$.
- We have 'k' real numbers $z_{c} = w_{c}^{T}x_{i}$, want to map z_{c} to probabilities.
- Most common way to do this is with softmax function:

$$\rho(\gamma=c|z_{1},z_{2},...,z_{k}) = \frac{e \times \rho(z_{y})}{\sum_{c=1}^{k} e \times \rho(z_{c})}$$

- Taking $exp(z_c)$ makes it non-negative, denominator makes it sum to 1.
- So this gives a probability for each of the 'k' possible values of 'c'.
- The NLL under this likelihood is the softmax loss.

Binary vs. Multi-Class Logistic

- How does multi-class logistic generalize the binary logistic model?
- We can re-parameterize softmax in terms of (k-1) values of z_c:

$$p(y|z_1,z_2,...,z_{k-1}) = \underbrace{\exp(z_y)}_{|+\stackrel{\times}{\xi}| exp(z_c)}; fy \neq K \text{ and } p(y|z_1,z_2,...,z_{k-1}) = \underbrace{|+\stackrel{\times}{\xi}|}_{c=1} exp(z_c)$$

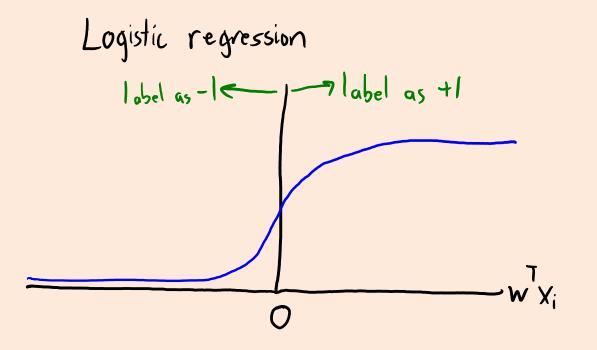
- This is due to the "sum to 1" property (one of the z_c values is redundant).
- So if k=2, we don't need a z_2 and only need a single 'z'.
- Further, when k=2 the probabilities can be written as:

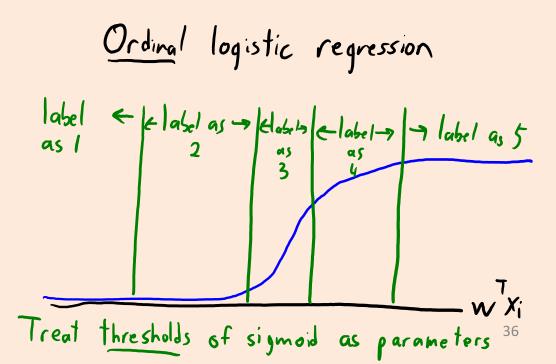
$$\rho(y=1|z) = \frac{exp(z)}{|+exp(z)|} = \frac{1}{|+exp(-z)|} \qquad p(y=2|z) = \frac{1}{|+exp(z)|}$$

- Renaming '2' as '-1', we get the binary logistic regression probabilities.

Ordinal Labels

- Ordinal data: categorical data where the order matters:
 - Rating hotels as {'1 star', '2 stars', '3 stars', '4 stars', '5 stars'}.
 - Softmax would ignore order.
- Can use 'ordinal logistic regression'.





Count Labels

- Count data: predict the number of times something happens.
 - For example, $y_i = "602"$ Facebook likes.
- Softmax requires finite number of possible labels.
- We probably don't want separate parameter for '654' and '655'.
- Poisson regression: use probability from Poisson count distribution.
 - Many variations exist.

Other Parsimonious Parameterizations

- Sigmoid isn't the only parsimonious $p(y_i \mid x_i, w)$:
 - Probit (uses CDF of normal distribution, very similar to logistic).
 - Noisy-Or (simpler to specify probabilities by hand).
 - Extreme-value loss (good with class imbalance).
 - Cauchit, Gosset, and many others exist...

Unbalanced Training Sets

- Consider the case of binary classification where your training set has 99% class -1 and only 1% class +1.
 - This is called an "unbalanced" training set
- Question: is this a problem?
- Answer: it depends!
 - If these proportions are representative of the test set proportions, and you care about both types of errors equally, then "no" it's not a problem.
 - You can get 99% accuracy by just always predicting -1, so ML can really help with the 1%.
 - But it's a problem if the test set is not like the training set (e.g. your data collection process was biased because it was easier to get -1's)
 - It's also a problem if you care more about one type of error, e.g. if mislabeling a
 +1 as a -1 is much more of a problem than the opposite
 - For example if +1 represents "tumor" and -1 is "no tumor"

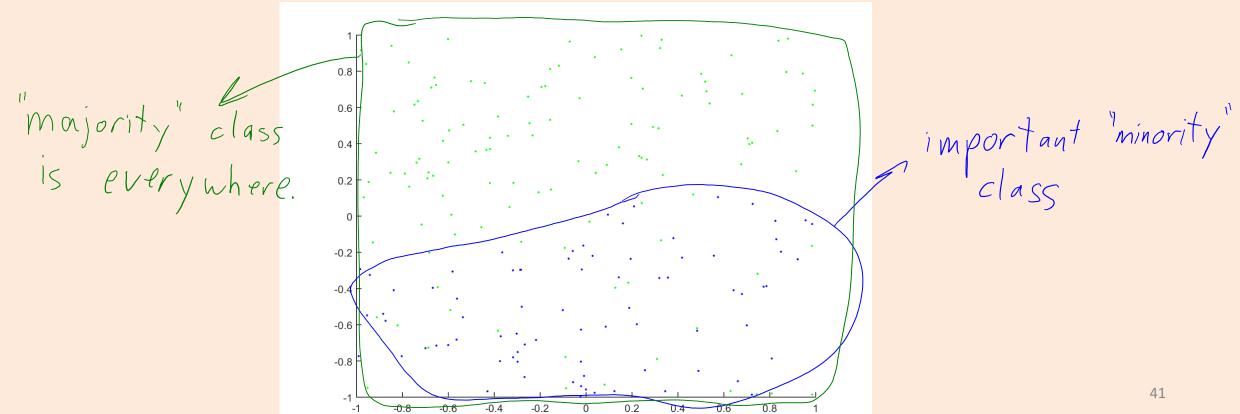
Unbalanced Training Sets

This issue comes up a lot in practice!

- How to fix the problem of unbalanced training sets?
 - One way is to build a "weighted" model, like you did with weighted least squares in your assignment (put higher weight on the training examples with y_i =+1)
 - This is equivalent to replicating those examples in the training set.
 - You could also subsample the majority class to make things more balanced.
 - Another option is to change to an asymmetric loss function that penalizes one type of error more than the other.

Unbalanced Data and Extreme-Value Loss

- Consider binary case where:
 - One class overwhelms the other class ('unbalanced' data).
 - Really important to find the minority class (e.g., minority class is tumor).

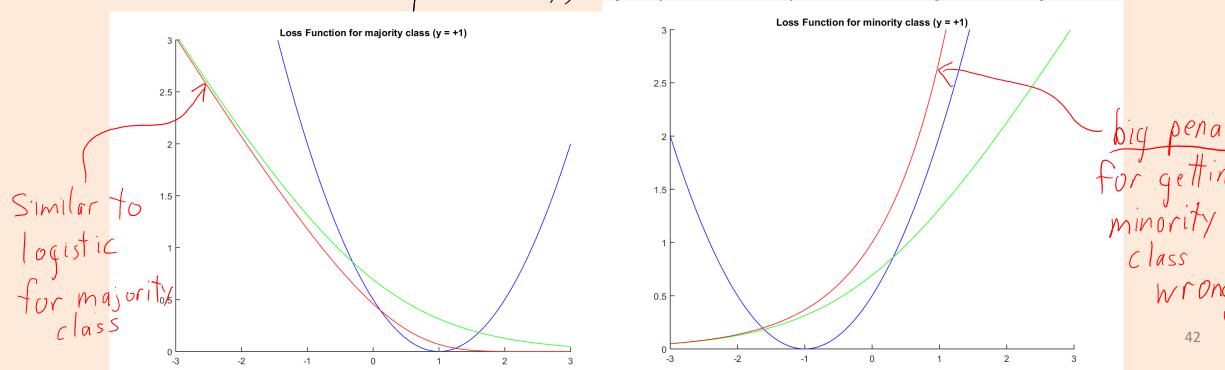


Unbalanced Data and Extreme-Value Loss

Extreme-value distribution:

$$p(y_i = +1|\hat{y}_i) = 1 - exp(-exp(\hat{y}_i)) \quad [+1 \text{ is majority class}] \quad \text{asymmetric}$$

$$To make it a probability, \quad p(y_i = -1|\hat{y}_i) = exp(-exp(\hat{y}_i))$$

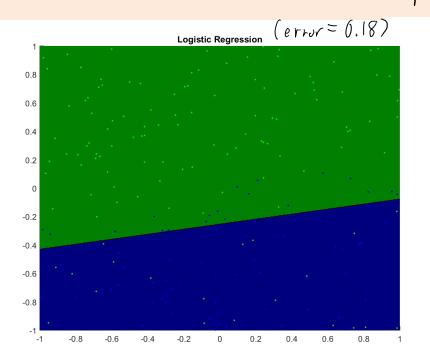


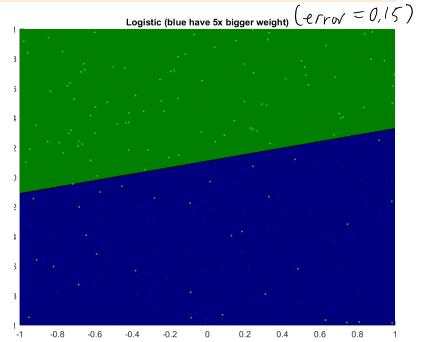
Unbalanced Data and Extreme-Value Loss

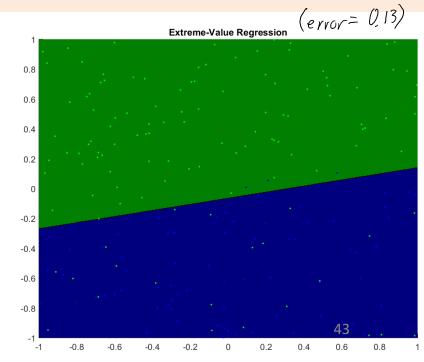
Extreme-value distribution:

$$p(y_i = +1|\hat{y}_i) = 1 - exp(-exp(\hat{y}_i)) \quad [+1 \text{ is majority class}] \quad \text{asymmetric}$$

$$To make it a probability, \quad p(y_i = -1|\hat{y}_i) = exp(-exp(\hat{y}_i))$$







- We've seen that loss functions can come from probabilities:
 - Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
- Most other loss functions can be derived from probability ratios.
 - Example: sigmoid => hinge.

$$\rho(y_i|x_{i,j}w) = \frac{1}{1 + exp(-y_iw^{T}x_i)} = \frac{exp(\frac{1}{2}y_iw^{T}x_i)}{exp(\frac{1}{2}y_iw^{T}x_i) + exp(-\frac{1}{2}y_iw^{T}x_i)} \propto exp(\frac{1}{2}y_iw^{T}x_i)$$
Same normalizing constant
for $y_i = +1$ and $y_i = -1$

- We've seen that loss functions can come from probabilities:
 - Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
- Most other loss functions can be derived from probability ratios.
 - Example: sigmoid => hinge.

$$p(y_i|x_{ijw}) \propto exp(\frac{1}{2}y_iw^Tx_i)$$

To classify y_i correctly, it's sufficient to have $\frac{p(y_i|x_{ijw})}{p(-y_i|x_{ijw})} > \beta$ for some $\beta > 1$

Notice that normalizing constant doesn't matter:

- We've seen that loss functions can come from probabilities:
 - Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
- Most other loss functions can be derived from probability ratios.
 - Example: sigmoid => hinge.

$$P(y_{i} \mid x_{i}, w) \propto exp(\frac{1}{2} y_{i} w^{T} x_{i})$$
We neel: $exp(\frac{1}{2} y_{i} w^{T} x_{i}) \geqslant \beta$

$$exp(-\frac{1}{2} y_{i} w^{T} x_{i}) \geqslant \beta$$

$$Take log: log(\beta) = 1)$$

$$log(\frac{exp(\frac{1}{2} y_{i} w^{T} x_{i})}{exp(-\frac{1}{2} y_{i} w^{T} x_{i})}) \geqslant log(\beta) \iff \frac{1}{2} y_{i} w^{T} x_{i} + \frac{1}{2} y_{i} w^{T} x_{i} \geqslant log(\beta)$$

- We've seen that loss functions can come from probabilities:
 - Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
- Most other loss functions can be derived from probability ratios.
 - Example: sigmoid => hinge.

$$P(y_i|x_{i,w}) \propto exp(\frac{1}{2}y_{i,w}^Tx_i)$$
We need: $exp(\frac{1}{2}y_{i,w}^Tx_i) > \beta$

$$exp(-\frac{1}{2}y_{i,w}^Tx_i)$$

Or equivalently:

$$y_i w^i x_i \ge 1$$
 (for $\beta = exp(1)$)

- General approach for defining losses using probability ratios:
 - 1. Define constraint based on probability ratios.
 - 2. Minimize violation of logarithm of constraint.
- Example: softmax => multi-class SVMs.

Assume:
$$p(y_i = c \mid x_i, w) \propto exp(w_c^T x_i^T)$$

Wanti $p(y_i \mid x_i, w) \Rightarrow \beta$ for all c^T

ond some $\beta \neq 1$

For $\beta = exp(1)$ equivalent to

 $w_{y_i}^T x_i = w_{c_i}^T x_i \Rightarrow 1$

for all $c^T \neq y_i$

Option 1: penalize all violations:

$$c' = 1$$

Option 2: penalize only $\max_{i} v_i = 1$

or $\max_{i} \{ x_i = w_i \} \}$

$$c' \neq c$$

$$c' \neq c$$

$$c' \neq c$$

The penalize all violations:

$$c' = 1$$

on $\max_{i} \{ x_i = w_i \} \}$

or $\max_{i} \{ x_i = w_i \} \}$

Supervised Ranking with Pairwise Preferences

- Ranking with pairwise preferences:
 - We aren't given any explicit y_i values.
 - Instead we're given list of objects (i,j) where $y_i > y_i$.

Assume $p(y; | X, w) \propto exp(w^7x;)$ is probability that object 'i' has highest rank.

Want:
$$p(y_i | X_i w) > \beta$$
 for all preferences (i,j)

For
$$\beta = \exp(1)$$
 equivalent to $W_{x_i} - W_{x_j} > 1$

for preferences (i,j)

We can use
$$f(n) = \sum_{(i,j) \in \mathbb{R}} \max \{0, 1 - w^{\gamma}, +w^{\gamma}\}$$

This approach can also be used to define losses for total/partial orderings. (but this information is 49hard to get)