
CPSC	340:
Machine	Learning	and	Data	Mining

MLE	and	MAP

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart. 1



Admin
• Assignment	4:
– Due	tonight.

• Assignment	5:
– Will	be	released	soon,	maybe	Tuesday.
– Due	2	weeks	from	today	(Mar	23).
– Don’t	forget	to	request	partnerships	ASAP.

• Assignment	6:
– Will	be	the	last	assignment.
– May	be	more	open-ended	(stay	tuned).
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Generative	vs.	Discriminative	Models
• Previously	we	saw	naïve	Bayes:
– Uses	Bayes	rule	and	model	p(xi|yi)	to	predict	p(yi |	xi).

– This	strategy	is	called	a	generative	model.
• It	“models	how	the	features	are	generated”.
• Often	works	well	with	lots	of	features	but	small	‘n’.

• Previously	we	saw	logistic	regression:
– Directly	model	p(yi |	xi) to	predict	p(yi |	xi).

• No	need	to	model	xi,	so	we	can	use	complicated	features.
• Tends	to	work	better	with	large	‘n’	or	when	naïve	assumptions	aren’t	satisfied.

– This	strategy	is	called	a	discriminative	model.
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• With	logistic	regression,	the	model	was:

• Where	‘h’	is	the	sigmoid	function:

• We	trained	the	‘w’	with	the	logistic	loss:

• Today	we’ll	see	a	new	interpretation	of	this	loss	as	a	maximum	
likelihood	estimate	(MLE)

Model	for	logistic	regression
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What	is	likelihood?
• Say	we	have	a	coin	with	heads	probability,	‘w’.
• What’s	the	probability	that	we	see	‘k’ heads	in	‘n’	flips,	given	‘w’?
– It’s	

• This	is	a	probability	distribution	that’s	defined	for	any	‘k’
• It	behaves	like	probability	distributions	do,	like	summing	to	1
• But	what	if	we	don’t	know	‘w’?
• Let’s	make	it	concrete:	you	observed	HHT	in	3	flips.	
– What	do	you	think	‘w’	was?	Was	it	0?	Was	it	1?	0.5???

• p(D|w)	=	3w2(1-w) where	‘D’	is	general	notation	for	observed	data
• Likelihood:	think	of	this	quantity	as	a	function	of	‘w’	instead	of	‘D’
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What	is	likelihood?	(continued)
• You	observed	HHT	in	3	flips.	Then	p(D|w)=3w2(1-w)
• We	can	plot	this	as	a	function	of	‘w’

• This	makes	sense!	w=0	is	impossible,	w=1	is	impossible
• argmax of	this	function	is	the	maximum	likelihood	estimate of	‘w’
– In	this	case,						=	2/3,	and	in	general	k/n	for	the	binomial	distribution

• When	viewed	as	a	function	of	‘w’,	this	thing is	not	a	probability	
distribution (it’s	a	likelihood	function)
– Look	at	the	plot	above:	we	can	see	the	area	under	the	curve	is	less	than	1 6
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Maximum	Likelihood	Estimation	(MLE)
• Maximum	likelihood	estimation (MLE)	for	fitting	probabilistic	models.
– We	have	a	dataset	D.
– We	want	to	pick	parameters	‘w’.
– We	define	the	likelihood as	a	probability	mass/density	function	p(D	|	w).
– We	choose	the	model	𝑤" that	maximizes	the	likelihood:

• Appealing	“consistency”	properties	as	n	goes	to	infinity	(take	STAT	4XX).
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Minimizing	the	Negative	Log-Likelihood	(NLL)
• To	maximize	likelihood,	

usually	we	minimize	the	negative	“log-likelihood”	(NLL):
• “Log-likelihood”	is	short	for	“logarithm	of	the	likelihood”.

• Why	are	these	equivalent?
– Logarithm	is	monotonic:	if	α >	β,	then	log(α)	>	log(β).
– Changing	sign	flips	max	to	min.

• See	“Max	and	Argmax”	notes	on	webpage	if	this	seems	strange. 8



Minimizing	the	Negative	Log-Likelihood	(NLL)
• We	use	logarithm	because	it	turns	multiplication	into	addition:

• More	generally:
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MLE	for	Supervised	Learning
• The	MLE	in	generative models	(like	naïve	Bayes)	maximizes:

• But	discriminative	models	directly	model	p(y	|	X,	w).
– We	treat	features	X	as	fixed	don’t	care	about	their	distribution.
– So	the	MLE	maximizes	the	conditional	likelihood:

of	the	targets	‘y’	given	the	features	‘X’	and	parameters	‘w’.
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MLE	Interpretation	of	Logistic	Regression
• For	IID	regression	problems	the	conditional	NLL	can	be	written:

• Logistic	regression	assumes	sigmoid(wTxi)	conditional	likelihood:

• Plugging	in	the	sigmoid	likelihood,	the	NLL	is	the	logistic	loss:
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MLE	Interpretation	of	Logistic	Regression
• We	just	derived	the	logistic	loss	from	the	perspective	of	MLE.
– Instead	of	“smooth	approximation	of	0-1	loss”,	we	now	have	that
logistic	regression	is	doing	MLE	in	a	probabilistic	model.

– The	training	and	prediction	would	be	the	same	as	before.
• We	still	minimize	the	logistic	loss	in	terms	of	‘w’.

– But	MLE	viewpoint	gives	us	a	justification	for	our	predicted	probabilities
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Least	Squares	is	Gaussian	MLE
• It	turns	out	that	most	objectives	have	an	MLE	interpretation:
– For	example,	consider	minimizing	the	squared	error:

– This	is	MLE	of	a	linear	model	under	the	assumption	of	IID	Gaussian	noise:
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Least	Squares	is	Gaussian	MLE	(Gory	Details)
• Let’s	assume	that	yi =	wTxi +	εi,	with	εi following	standard	normal:

• This	leads	to	a	Gaussian	likelihood	for	example	‘i’	of	the	form:

• Finding	MLE	is	equivalent	to	minimizing	NLL:
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Loss	Functions	and	Maximum	Likelihood	Estimation

• So	least	squares	is	MLE	under	Gaussian	likelihood.

• With	a	Laplace	likelihood	you	would	get	absolute	error.

• With	sigmoid	likelihood	we	got	the	binary	logistic	loss.
• You	can	derive	softmax loss	from	the	softmax likelihood (bonus).
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(pause)
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Maximum	Likelihood	Estimation	and	Overfitting
• In	our	abstract	setting	with	data	D	the	MLE is:

• But	conceptually	MLE	is	a	bit	weird:
– “Find	the	‘w’	that	makes	‘D’	have	the	highest	probability	given	‘w’.”

• And	MLE	often	leads	to	overfitting:	
– Data	could	be	very	likely	for	some	very	unlikely	‘w’.
– For	example,	a	complex	model	that	overfits by	memorizing	the	data.

• What	we	really	want:
– “Find	the	‘w’	that	has	the	highest	probability	given	the	data	D.”
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Maximum	a	Posteriori	(MAP)	Estimation
• Maximum	a	posteriori	(MAP)	estimate	maximizes	the	reverse	probability:

– This	is	what	we	want:	the	probability	of	‘w’	given	our	data.

• MLE	and	MAP	are	connected	by	Bayes	rule:

• So	MAP	maximizes	the	likelihood p(D|w)	times	the	prior p(w):
– Prior	is	our	“belief”	that	‘w’	is	correct	before	seeing	data.
– Prior	can	reflect	that	complex	models	are	likely	to	overfit.
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MAP	Estimation	and	Regularization
• From	Bayes	rule,	the	MAP	estimate	with	IID	examples	Di is:

• By	again	taking	the	negative	of	the	logarithm	we	get:

• So	we	can	view	the	negative	log-prior	as	a	regularizer:
– Many	regularizers are	equivalent	to	negative	log-priors.
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L2-Regularization	and	MAP	Estimation
• We	obtain	L2-regularization	under	an	independent	Gaussian	assumption:

• This	implies	that:

• So	we	have	that:

• With	this	prior,	the	MAP	estimate	with	IID	training	examples	would	be
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MAP	Estimation	and	Regularization
• MAP	estimation	gives	link	between	probabilities	and	loss	functions.
– Gaussian	likelihood	and	Gaussian	prior	give	L2-regularized	least	squares.

– Sigmoid	likelihood	and	Gaussian	prior	give	L2-regularized	logistic	regression:
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Summarizing	the	past	few	slides

• Many	of	our	loss	functions	and	regularizers have	probabilistic	interpretations.
– Laplace	likelihood	leads	to	absolute	error.
– Laplace	prior	leads	to	L1-regularization.

• The	choice	of	likelihood corresponds	to	the	choice	of	loss.
– Our	assumptions	about	how	the	yi-values	can	come	from	the	xi and	‘w’.

• The	choice	of	prior corresponds	to	the	choice	of	regularizer.
– Our	assumptions	about	which	‘w’	values	are	plausible.

• Try	not	to	confuse	these	things!
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Summary
• Discriminative	probabilistic	models directly	model	p(yi |	xi).
– Unlike	naïve	Bayes	that	models	p(xi |	yi).
– Usually,	we	use	linear	models	and	define	“likelihood”	of	yi given	wTxi.

• Maximum	likelihood	estimate	viewpoint	of	common	models.
– Objective	functions	are	equivalent	to	maximizing	p(y	|	X,	w).

• MAP	estimation	directly	models	p(w	|	X,	y).
– Gives	probabilistic	interpretation	to	regularization.
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Why	do	we	care	about	MLE	and	MAP?
• Unified	way	of	thinking	about	many	of	our	tricks?
– Laplace	smoothing	and	L2-regularization	are	doing	the	same	thing.

• Remember	our	two	ways	to	reduce	complexity	of	a	model:
– Model	averaging	(ensemble	methods).
– Regularization (linear	models).

• “Fully”-Bayesian	methods	combine	both	of	these	(CPSC	540).
– Average	over	all	models,	weighted	by	posterior	(including	regularizer).
– Can	use	extremely-complicated	models	without	overfitting.

• Sometimes	it’s	easier	to	define	a	likelihood	than	a	loss	function.
24



• Challenge:	p(yi |	xi)	might	still	be	really	complicated:
– If	xi has	‘d’	binary	features,	need	to	estimate	p(yi |	xi)	for	2d input	values.

• Practical	solution:	assume	p(yi |	xi)	has	“parsimonious”	form.
– For	example,	we	convert	output	of	linear	model	to	be	a	probability.

• Only	need	to	estimate	the	parameters	of	a	linear	model.

• In	binary	logistic	regression,	we	did	the	following:
1. The	linear	prediction	wTxi gives	us	a	number	in	(-∞,	∞).
2. We’ll	map	wTxi to	a	number	in	(0,1),	with	a	map	acting	like	a	probability.

“Parsimonious”	Parameterization	and	Linear	Models
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• Let	zi =	wTxi in	a	binary	logistic	regression	model:
– If	sign(zi)	=	+1,	we	should	have	p(yi =	+1	|	zi)	>	½.

• The	linear	model	thinks	yi =	+1	is	more	likely.

– If	sign(zi)	=	-1,	we	should	have	p(yi =	+1	|	zi)	<	½.
• The	linear	model	thinks	yi =	-1	is	more	likely,	and	p(yi =	-1	|	zi)	=	1	– p(yi =	+1	|	zi).

– If	zi =	0,	we	should	have	p(yi =	+1	|	zi)	=	½.
• Both	classes	are	equally	likely.

• And	we	might	want	size	of	wTxi to	affect	probabilities:
– As	zi becomes	really	positive,	we	should	have	p(yi =	+1	|	zi)	converge	to	1.
– As	zi becomes	really	negative,	we	should	have	p(yi =	+1	|	zi)	converge	to	0.

How	should	we	transform	wTxi into	a	probability?
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• So	we	want	a	transformation	of	zi =	wTxi that	looks	like	this:

• The	most	common	choice	is	the	sigmoid	function:

• Values	of	h(zi)	match	what	we	want:

Sigmoid	Function
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Sigmoid:	Transforming	wTxi to	a	Probability
• We’ll	define	p(yi =	+1	|	zi)	=	h(zi),	where	‘h’	is	the	sigmoid	function.

• We	can	write	both	cases	as	p(yi |	zi)	=	h(yizi),
so	we	convert	z=wTxi into	“probability	of	yi”	using:

• Given	this	probabilistic	perspective,	how	should	we	find	best	‘w’?
28



MLE	for	Naïve	Bayes
• A	long	time	ago,	I	mentioned	that	we	used	MLE	in	naïve	Bayes.

• We	estimated	that	p(yi =	“spam”)	as	count(spam)/count(e-mails).
– You	derive	this	by	minimizing	the	NLL	under	a	“Bernoulli”	likelihood.
– Set	derivative	of	NLL	to	0,	and	solve	for	Bernoulli	parameter.

• MLE	of	p(xij |	yi =	“spam”)	gives	count(spam,xij)/count(spam).
– Also	derived	under	a	conditional	“Bernoulli”	likelihood.

• The	derivation	is	tedious,	but	if	you’re	interested	I	put	it	here.
29



Regularizing	Other	Models
• We	can	view	priors	in	other	models	as	regularizers.

• Remember	the	problem	with	MLE	for	naïve	Bayes:
• The	MLE	of	p(‘lactase’	=	1|	‘spam’)	is:	count(spam,lactase)/count(spam).
• But	this	caused	problems	if	count(spam,lactase)	=	0.

• Our	solution	was	Laplace	smoothing:
– Add	“+1”	to	our	estimates:	(count(spam,lactase)+1)/(counts(spam)+2).
– This	corresponds	to	a	“Beta”	prior	so	Laplace	smoothing	is	a	regularizer.
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Losses	for	Other	Discrete	Labels
• MLE/MAP	gives	loss	for	classification	with	basic	labels:
– Least	squares	and	absolute	loss	for	regression.
– Logistic	regression	for	binary	labels	{“spam”,	“not	spam”}.
– Softmax regression	for	multi-class	{“spam”,	“not	spam”,	“important”}.

• But	MLE/MAP	lead	to	losses	with	other	discrete	labels:
– Ordinal:	{1	star,	2	stars,	3	stars,	4	stars,	5	stars}.
– Counts:	602	‘likes’.
– Survival	rate:	60%	of	patients	were	still	alive	after	3	years.

• Define	likelihood	of	labels,	and	use	NLL	as	the	loss	function.

• We	can	also	use	ratios	of	probabilities	to	define	more	losses (bonus):
– Binary	SVMs,	multi-class	SVMs,	and	“pairwise	preferences”	(ranking)	models.
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Discussion:	Least	Squares	and	Gaussian	Assumption
• Classic	justifications	for	the	Gaussian	assumption underlying	least	squares:

– Your	noise	might	really	be	Gaussian.	(It	probably	isn't,	but	maybe	it's	a	good	enough	
approximation.)

– The	central	limit	theorem	(CLT)	from	probability	theory.	(If	you	add	up	enough	IID	
random	variables,	the	estimate	of	their	mean	converges	to	a	Gaussian	distribution.)		

• I	think	the	CLT	justification	is	wrong	as	we've	never	assumed	that	the	xij are	IID	across	‘j’	
values.	We	only	assumed	that	the	examples	xi are	IID	across	‘i’	values,	so	the	CLT	implies	
that	our	estimate	of	‘w’ would	be	a	Gaussian	distribution	under	different	samplings	of	
the	data,	but	this	says	nothing	about	the	distribution	of	yi given	wTxi.

• On	the	other	hand,	there	are	reasons	*not*	to	use	a	Gaussian	assumption,	like	it's	
sensitivity	to	outliers.	This	was	(apparently)	what	lead	Laplace	to	propose	the	Laplace	
distribution	as	a	more	robust	model	of	the	noise.

• The	"student	t"	distribution	from	(published	anonymously	by	Gosset while	working	at	
Guiness)	is	even	more	robust,	but	doesn't	lead	to	a	convex	objective.
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“Heavy”	Tails	vs.	“Light”	Tails
• We	know	that	L1-norm	is	more	robust	than	L2-norm.
– What	does	this	mean	in	terms	of	probabilities?

– Gaussian	has	“light	tails”:	assumes	everything	is	close	to	mean.
– Laplace	has	“heavy	tails”:	assumes	some	data	is	far	from	mean.
– Student	‘t’	is	even	more	heavy-tailed/robust,	but	NLL	is	non-convex.

http://austinrochford.com/posts/2013-09-02-prior-distributions-for-bayesian-regression-using-pymc.html
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Multi-Class	Logistic	Regression
• Last	time	we	talked	about	multi-class	classification:
– We	want						Txi to	be	the	most	positive among	‘k’	real	numbers	wc

Txi.

• We	have	‘k’	real	numbers	zc	=	wc
Txi,	want	to	map	zc to	probabilities.

• Most	common	way	to	do	this	is	with	softmax function:

– Taking	exp(zc)	makes	it	non-negative,	denominator	makes	it	sum	to	1.
– So	this	gives	a	probability	for	each	of	the	‘k’	possible	values	of	‘c’.

• The	NLL	under	this	likelihood	is	the	softmax loss.
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Binary	vs.	Multi-Class	Logistic
• How	does	multi-class	logistic	generalize	the	binary	logistic	model?
• We	can	re-parameterize	softmax in	terms	of	(k-1)	values	of	zc:

– This	is	due	to	the	“sum	to	1”	property	(one	of	the	zc values	is	redundant).
– So	if	k=2,	we	don’t	need	a	z2 and	only	need	a	single	‘z’.
– Further,	when	k=2	the	probabilities	can	be	written	as:

– Renaming	‘2’	as	‘-1’,	we	get	the binary	logistic	regression probabilities.
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Ordinal	Labels
• Ordinal	data:	categorical	data	where	the	order	matters:
– Rating	hotels	as	{‘1	star’,	‘2	stars’,	‘3	stars’,	‘4	stars’,	‘5	stars’}.
– Softmax would	ignore	order.

• Can	use	‘ordinal	logistic	regression’.
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Count	Labels
• Count	data:	predict	the	number	of	times	something	happens.
– For	example,	yi =	“602”	Facebook	likes.

• Softmax requires	finite	number	of	possible	labels.
• We	probably	don’t	want	separate	parameter	for	‘654’	and	‘655’.
• Poisson	regression:	use	probability	from	Poisson	count	distribution.
– Many	variations	exist.

37



Other	Parsimonious	Parameterizations
• Sigmoid	isn’t	the	only	parsimonious	p(yi |	xi,	w):
– Probit (uses	CDF	of	normal	distribution,	very	similar	to	logistic).
– Noisy-Or	(simpler	to	specify	probabilities	by	hand).
– Extreme-value	loss	(good	with	class	imbalance).
– Cauchit,	Gosset,	and	many	others	exist…
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Unbalanced	Training	Sets
• Consider	the	case	of	binary	classification	where	your	training	set	has	
99%	class	-1	and	only	1%	class	+1.
– This	is	called	an	“unbalanced”	training	set

• Question:	is	this	a	problem?
• Answer:	it	depends!
– If	these	proportions	are	representative	of	the	test	set	proportions,	and	you	care	
about	both	types	of	errors	equally,	then	“no”	it’s	not	a	problem.
• You	can	get	99%	accuracy	by	just	always	predicting	-1,	so	ML	can	really	help	with	the	1%.

– But	it’s	a	problem	if	the	test	set	is	not	like	the	training	set	(e.g.	your	data	
collection	process	was	biased	because	it	was	easier	to	get	-1’s)

– It’s	also	a	problem	if	you	care	more	about	one	type	of	error,	e.g.	if	mislabeling	a	
+1	as	a	-1	is	much	more	of	a	problem	than	the	opposite
• For	example	if	+1	represents	“tumor”	and	-1	is	“no	tumor”		
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Unbalanced	Training	Sets
• This	issue	comes	up	a	lot	in	practice!

• How	to	fix	the	problem	of	unbalanced	training	sets?
– One	way	is	to	build	a	“weighted”	model,	like	you	did	with	weighted	least	
squares	in	your	assignment	(put	higher	weight	on	the	training	examples	
with	yi=+1)
• This	is	equivalent	to	replicating	those	examples	in	the	training	set.
• You	could	also	subsample	the	majority	class	to	make	things	more	balanced.

– Another	option	is	to	change	to	an	asymmetric	loss	function	that	penalizes	
one	type	of	error	more	than	the	other.
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Unbalanced	Data	and	Extreme-Value	Loss
• Consider	binary	case	where:
– One	class	overwhelms	the	other	class (‘unbalanced’	data).
– Really	important	to	find	the	minority	class (e.g.,	minority	class	is	tumor).
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Unbalanced	Data	and	Extreme-Value	Loss
• Extreme-value distribution:
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Unbalanced	Data	and	Extreme-Value	Loss
• Extreme-value distribution:
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Loss	Functions	from	Probability	Ratios
• We’ve	seen	that	loss	functions	can	come	from	probabilities:
– Gaussian	=>	squared	loss,	Laplace	=>	absolute	loss,	sigmoid	=>	logistic.

• Most	other	loss	functions	can	be	derived	from	probability	ratios.
– Example:	sigmoid	=>	hinge.
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Loss	Functions	from	Probability	Ratios
• We’ve	seen	that	loss	functions	can	come	from	probabilities:
– Gaussian	=>	squared	loss,	Laplace	=>	absolute	loss,	sigmoid	=>	logistic.

• Most	other	loss	functions	can	be	derived	from	probability	ratios.
– Example:	sigmoid	=>	hinge.
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Loss	Functions	from	Probability	Ratios
• We’ve	seen	that	loss	functions	can	come	from	probabilities:
– Gaussian	=>	squared	loss,	Laplace	=>	absolute	loss,	sigmoid	=>	logistic.

• Most	other	loss	functions	can	be	derived	from	probability	ratios.
– Example:	sigmoid	=>	hinge.
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Loss	Functions	from	Probability	Ratios
• We’ve	seen	that	loss	functions	can	come	from	probabilities:
– Gaussian	=>	squared	loss,	Laplace	=>	absolute	loss,	sigmoid	=>	logistic.

• Most	other	loss	functions	can	be	derived	from	probability	ratios.
– Example:	sigmoid	=>	hinge.
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Loss	Functions	from	Probability	Ratios
• General	approach	for	defining	losses	using	probability	ratios:

1. Define	constraint	based	on	probability	ratios.
2. Minimize	violation	of	logarithm	of	constraint.

• Example:	softmax =>	multi-class	SVMs.
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Supervised	Ranking	with	Pairwise	Preferences
• Ranking	with	pairwise	preferences:
– We	aren’t	given	any	explicit	yi values.
– Instead	we’re	given	list	of	objects	(i,j)	where	yi >	yj.
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