
CPSC	340:
Machine	Learning	and	Data	Mining

PCA:	the	model	(“predict”)

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart. 1



Admin
• Assignment	4:
– Solutions	posted

• Assignment	5:
– Coming	soon	(tomorrow?)
– Remember	to	request	partners

• 3rd Informal	lunch:
– Tomorrow,	12-1pm,	Agora	Café	(basement	of	Macmillan	building)

2



Last	Time:	MAP	Estimation
• MAP	estimation	maximizes posterior:

• Likelihood measures	probability	of	labels	‘y’	given	parameters	‘w’.
• Prior measures	probability	of	parameters	‘w’	before	we	see	data.
• For	IID	training	data	and	independent	priors,	equivalent	to	using:

• So	log-likelihood	is	an	error	function,	and	log-prior	is	a	regularizer.
– Squared	error	comes	from	Gaussian	likelihood.
– L2-regularization	comes	from	Gaussian	prior.

3



End	of	Part	3:	Key	Concepts
• Linear	models	predict	based	on	linear	combination(s)	of	features:

• We	model	non-linear	effects	using	a	change	of	basis:
– Replace	d-dimensional	xi with	k-dimensional	zi and	use	vTzi.
– Examples	include	polynomial	basis	and	(non-parametric)	RBFs.

• Regression is	supervised	learning	with	continuous	labels.
– Logical	error	measure	for	regression	is	squared	error:

– Can	be	solved	as	a	system	of	linear	equations.
4



End	of	Part	3:	Key	Concepts
• We	can	reduce	over-fitting	by	using	regularization:

• Squared	error	is	not	always	right	measure:
– Absolute	error	is	less	sensitive	to	outliers.
– Logistic	loss	and	hinge	loss	are	better	for	binary	yi.
– Softmax loss	is	better	for	multi-class	yi.

• MLE/MAP perspective:
– We	can	view	loss	as	log-likelihood	and	regularizer as	log-prior.
– Allows	us	to	define	losses	based	on	probabilities.

5



End	of	Part	3:	Key	Concepts
• Gradient	descent	finds	local	minimum	of	smooth	objectives.
– Converges	to	a	global	optimum	for	convex	functions.
– Can	use	smooth	approximations	(Huber,	log-sum-exp)

• Stochastic	gradient	methods	allow	huge/infinite	‘n’.
– Though	very	sensitive	to	the	step-size.

• Kernels let	us	use	similarity	between	examples,	instead	of	features.
– Let	us	use	some	exponential- or	infinite-dimensional	features.

• Feature	selection	is	a	messy	topic.
– Classic	method	is	forward	selection	based	on	L0-norm.
– L1-regularization	simultaneously	regularizes	and	selects	features.

6



The	Story	So	Far…
• Part	1:	Supervised	Learning.
– Methods	based	on	counting	and	distances.

• Part	2:	Unsupervised	Learning.
– Methods	based	on	counting	and	distances.

• Part	3:	Supervised	Learning	(just	finished).
– Methods	based	on	linear	models	and	gradient	descent.

• Part	4:	Unsupervised	Learning	(starting	today).
– Methods	based	on	linear	models	and	gradient	descent.

7



Part	4:	Latent-Factor	Models
• In	high	dimensions,	it	can	be	hard	to	find	a	good	basis.
• Part	4	is	about	learning	the	basis	from	the	data.

• Main	idea:	let’s	“distill”	the	information	from	X	down	into	Z
– We	do	this	by	learning	a	transformation
– It	will	be	a	linear	transformation	(for	now)
– The	mapping	will	be	stored	in	a	matrix	called	W
– The	mapped	values	will	be	stored	in	a	matrix	called	Z

8



Jupyter notebook	demo

9



The	Plan
• Rest	of	today’s	class:
– What	are	W	and	Z	exactly…	and	what	does	it	all	mean?

• Next	class:
– How	to	get	W	and	Z	given	X	(loss/training)?

10



Previously:	Vector	Quantization
• Recall	using	k-means	for	vector	quantization:
– Run	k-means	to	find	a	set	of	“means”	wc.
– This	gives	a	cluster	𝑦"i for	each	object	‘i’.
– Replace	features	xi by	mean	of	cluster:

• This	can	be	viewed	as	a	(really	bad)	latent-factor	model.	
11



Vector	Quantization	(VQ)	as	Latent-Factor	Model

• If	xi is	in	cluster	2,	VQ	approximates	xi by	mean	w2 of	cluster	2:

• So	in	this	example	we	would	have	zi =	[0 1 0 …	0].
– VQ	only	uses	one	factor	(the	particular	cluster	mean).

12



Vector	Quantization	vs.	PCA
• So	vector	quantization	is	a	latent-factor	model:

• But	it	only	uses	1	factor,	it’s	just	memorizing	‘k’	points	in	d-space.
– What	we	want	is	combinations	of	factors.

• PCA	is	a	generalization	that	allows	continuous	‘zi’:
– It	can	have	more	than	1	non-zero.
– It	can	use	fractional	weights	and	negative	weights. 13



Principal	Component	Analysis	Notation
• PCA takes	in	a	matrix	‘X’	and	an	input	‘k’,	and	outputs	two	matrices:

• For	row	‘c’	of	W,	we	use	the	notation	wc.
– Each	wc is	a	“part”	(also	called	a	“factor”	or	“principal	component”).

• For	row	‘i’	of	Z,	we	use	the	notation	zi.
– Each	zi is	a	set	of	“part	weights”	(or	“factor	loadings”	or	“features”).

• For	column	‘j’	of	W,	we	use	the	notation	wj.
– Index	‘j’	of	all	the	‘k’	“parts”	(value	of	pixel	‘j’	in	all	the	different	parts). 14



Principal	Component	Analysis	Notation
• PCA	takes	in	a	matrix	‘X’	and	an	input	‘k’,	and	outputs	two	matrices:

• With	this	notation,	we	can	write	our	approximation	of	one	xij as:

– K-means:	take	index	‘j’	of	closest	mean.	
– PCA:	use	zi to	weight	index	‘j’	of	all	“means”	(factors)

• We	can	write	approximation	of		the	vector	xi as:
15



Important	Stuff
• PCA	is	also	called	a	“matrix	factorization”	model:

• Punch	line:	PCA	learns	a	k-dimensional	subspace	of	the	original	d-
dimensional	space
– The	subspace	is	represented	by	k	basis	vectors
– The	basis	vectors	are	the	rows	of	W
– The	representations	in	the	new	basis	are	the	rows	of	Z

16



Digression:	PCA	only	makes	sense	for	k	<	d
• Remember	our	clustering	dataset	with	4	clusters:

• It	doesn’t	make	sense	to	use	PCA	with	k=4	on	this	dataset.
– We	only	need	two	vectors	[1	0]	and	[0	1]	to	exactly	represent	all	2d	points.

17



Doom	Overhead	Map	and	Latent-Factor	Models

• Original	“Doom”	video	game	included	an	“overhead	map”	feature:

• This	map	can	be	viewed	as	latent-factor	model	of	player	location.
https://en.wikipedia.org/wiki/Doom_(1993_video_game)
https://forum.minetest.net/viewtopic.php?f=5&t=9666 18



Overhead	Map	and	Latent-Factor	Models
• Actual	player	location	at	time	‘i’	can	be	described	by	3	coordinates:

• The	overhead	map	approximates	these	3	coordinates	with	only	2:

• Our	k=2	latent	factors	(basis	vectors)	are	the	following:

• So	our	approximation	of	xi is:
19



Overhead	Map	and	Latent-Factor	Models
• The	“overhead	map”	approximation	just	ignores	the	“height”.

– This	is	a	good	approximation	if	the	world	is	flat.
• Even	if	the	character	jumps,	the	first	two	features	will	approximate	location.

– But	it’s	a	poor	approximation	if	heights	are	different.

20



Overhead	Map	and	Latent-Factor	Models
• Consider	these	crazy	goats	trying	to	get	some	salt:
– Ignoring	height	gives	poor	approximation	of	goat	location.

• But	the	“goat	space”	is	basically	a	two-dimensional	plane.
– Better	k=2	approximation:	define	‘W’	so	that	combinations	give	the	plane.

www.momtastic.com/webecoist/2010/11/07/some-fine-dam-climbing-goats-scaling-steep-vertical-wall
21



Least	squares	vs.	PCA

22



Least	squares	vs.	PCA
• Least	squares	learns	a	d-dimensional	hyperplane
– We	think	of	this	as	living	inside	a	d+1	dimensional	space

• The	d	features,	plus	the	target
– The	goal	is	to	input	d	values	and	output	1	value
– This	is	supervised	learning

• PCA	learns	a	k-dimensional	hyperplane	for	any	integer	0<k<d
– When	d=2	then	it	must	be	that	k=1
– The	goal	is	to	input	d	values	and	output	k	values
– This	is	unsupervised	learning

23



PCA	applications
• Supervised	learning:	we	could	use	‘Z’	as	our	inputs.
• Outlier	detection:	it	might	be	an	outlier	if	isn’t	a	combination	of	
new	features.

• Dimension	reduction:	compress	data	into	limited	number	
dimensions.

• Visualization:	if	we	have	only	2	dimensions,	we	can	view	data	as	a	
scatterplot.

• Interpretation:	we	can	try	and	figure	out	what	the	new	features	
represent.

24



Summary
• Latent-factor	models:
– Try	to	learn	factors	W	from	training	examples	X.
– Usually,	the	zi are	coefficients	for	factors	wc.
– Useful	for	dimensionality	reduction,	visualization,	factor	discovery,	etc.

• Principal	component	analysis:	
– We	can	view	‘W’	as	best	lower-dimensional	hyper-plane.
– We	can	view	‘Z’	as	the	coordinates	in	the	lower-dimensional	hyper-plane.
– We	haven’t	completely	specified	PCA	yet	– will	finish	next	class.

25



Motivation:	Human	vs.	Machine	Perception
• Huge	difference	between	what	we	see	and	what	computer	sees:

• But	maybe images	shouldn’t	be	written	as	combinations	of	pixels.

What	we	see: What	the	computer	“sees”:

26



Motivation:	Pixels	vs.	Parts
• Can	view	28x28	image	as	weighted	sum	of	“single	pixel	on”	images:

– We	have	one	image	for	each	pixel.
– The	weights specify	“how	much	of	this	pixel	is	in	the	image”.

• A	weight	of	zero	means	that	pixel	is	white,	a	weight	of	1	means	it’s	black.

• This	is	non-intuitive,	isn’t	a	“3”	made	of	small	number	of	“parts”?

– Now	the	weights	are	“how	much	of	this	part	is	in	the	image”.
27



Motivation:	Pixels	vs.	Parts
• We	could	represent	other	digits	as	different	combinations	of	“parts”:

• Consider	replacing	images	xi by	the	weights	zi of	the	different	parts:
– The	784-dimensional	xi for	the	“5”	image	is	replaced	by	7	numbers:	zi =	[1 0 1	1	1 0 1].
– Features	like	this	could	make	learning	much	easier.

28



Principal	Component	Analysis	(PCA)	Applications

• Principal	component	analysis	(PCA)	has	been	invented	many	times:

https://en.wikipedia.org/wiki/Principal_component_analysis
29



• Applications	of	PCA:
– Dimensionality	reduction:	replace	‘X’	with	lower-dimensional	‘Z’.

• If	k	<<	d,	then	compresses	data.
• Often	better	approximation	than	vector	quantization.

PCA	Applications

https://monsterlegacy.net/2013/03/04/rancor-star-wars/
30



• Applications	of	PCA:
– Dimensionality	reduction:	replace	‘X’	with	lower-dimensional	‘Z’.

• If	k	<<	d,	then	compresses	data.
• Often	better	approximation	than	vector	quantization.

PCA	Applications

https://monsterlegacy.net/2013/03/04/rancor-star-wars/
31



• Applications	of	PCA:
– Outlier	detection:	if	PCA	gives	poor	approximation	of	xi,	could	be	‘outlier’.

• Though	due	to	squared	error	PCA	is	sensitive	to	outliers.

PCA	Applications

32



• Partial	least	squares:	uses	PCA	features	as	basis	for	linear	model.

Example	Application:	Supervised	Learning

33



PCA	with	d=3	and	k=2.
• With	d=3,	PCA	(k=2)	finds	plane	minimizing	squared	distance	to	xi.

• With	d=3,	PCA	(k=1)	finds	line	minimizing	squared	distance	to	xi.
http://www.nlpca.org/fig_pca_principal_component_analysis.png 34



• Applications	of	PCA:
– Dimensionality	reduction:	replace	‘X’	with	lower-dimensional	‘Z’.

• If	k	<<	d,	then	compresses	data.
• Often	better	approximation	than	vector	quantization.

PCA	Applications

35



• Applications	of	PCA:
– Data	visualization:	plot	zi with	k	=	2	to	visualize	high-dimensional	objects.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html

PCA	Applications

36



• Applications	of	PCA:
– Data	interpretation:	we	can	try	to	assign	meaning	to	latent	factors	wc.

• Hidden	“factors”	that	influence	all	the	variables.

https://new.edu/resources/big-5-personality-traits

PCA	Applications

37



PCA	with	d=2	and	k	=1

38



PCA	with	d=2	and	k	=1

39



PCA	with	d=2	and	k	=1


