CPSC 340:
Machine Learning and Data Mining

PCA: the model (“predict”)

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.

Admin

* Assignment 4:
— Solutions posted

* Assignment 5:
— Coming soon (tomorrow?)

— Remember to request partners

e 3 |nformal lunch:
— Tomorrow, 12-1pm, Agora Café (basement of Macmillan building)

Last Time: MAP Estimation

MAP estimation maximizes posterior

Xow) (w

{)051’6(10(I Ke “’\00,1 f"w,
Likelihood measures probability of labels ‘y’ given parameters ‘w’.
Prior measures probability of parameters ‘w’ before we see data.

For IID training data and independent priors, equivalent to using:

¥(W> = "é ,03(p()’i 'x,,w)) - :i ,mj (P(W)))

So log-likelihood is an error function, and log-prior is a regularizer.
— Squared error comes from Gaussian likelihood.
— L2-regularization comes from Gaussian prior.

End of Part 3: Key Concepts

* Linear models predict based on linear combination(s) of features:
T
WX = Wx, Fwyxa vy
* We model non-linear effects using a change of basis:

— Replace d-dimensional x, with k-dimensional z, and use v'z..
— Examples include polynomial basis and (non-parametric) RBFs.

e Regression is supervised learning with continuous labels.

— Logical error measure for regression is squared error:

‘C(W> ~ ‘;“)(W-y”l

— Can be solved as a system of linear equations.

End of Part 3: Key Concepts

* We can reduce over-fitting by using regularization:

(o) = 3 I 0= I+ 21

e Squared error is not always right measure:
— Absolute error is less sensitive to outliers.
— Logistic loss and hinge loss are better for binary y..
— Softmax loss is better for multi-class y..

* MLE/MAP perspective:

— We can view loss as log-likelihood and regularizer as log-prior.
— Allows us to define losses based on probabilities.

End of Part 3: Key Concepts

Gradient descent finds local minimum of smooth objectives.
— Converges to a global optimum for convex functions.
— Can use smooth approximations (Huber, log-sum-exp)

Stochastic gradient methods allow huge/infinite ‘n’.

— Though very sensitive to the step-size.

Kernels let us use similarity between examples, instead of features.

— Let us use some exponential- or infinite-dimensional features.

Feature selection is a messy topic.

— Classic method is forward selection based on LO-norm.
— L1-regularization simultaneously regularizes and selects features.

The Story So Far...

Part 1: Supervised Learning.
— Methods based on counting and distances.

Part 2: Unsupervised Learning.
— Methods based on counting and distances.

Part 3: Supervised Learning (just finished).
— Methods based on linear models and gradient descent.

Part 4: Unsupervised Learning (starting today).
— Methods based on linear models and gradient descent.

Part 4: Latent-Factor Models

* In high dimensions, it can be hard to find a good basis.
 Part 4 is about learning the basis from the data.

X AN |Latent = Facter 77 T\ ya

Maé{l

* Main idea: let’s “distill” the information from X down into Z
— We do this by learning a transformation
— It will be a linear transformation (for now)
— The mapping will be stored in a matrix called W
— The mapped values will be stored in a matrix called Z

Jupyter notebook demo

The Plan

e Rest of today’s class:
— What are W and Z exactly... and what does it all mean?

* Next class:
— How to get W and Z given X (loss/training)?

Previously: Vector Quantization

* Recall using k-means for vector quantization:
— Run k-means to find a set of “means” w..
— This gives a cluster y. for each object .
A\
— Replace features x, by mean of cluster: x; ~ Wi

v

o v
“ A A‘A,m v
Y ew A
A
A M A

* This can be viewed as a (really bad) latent-factor model.

11

Vector Quantization (VQ) as Latent-Factor Model

* If x,is in cluster 2, VQ approximates x. by mean w, of cluster 2:

X. % w, = Ow, + lwy T Owg* - +0w

* So in this example we would have z = [0 1 0 ... 0].

— VQ only uses one factor (the particular cluster mean).

Vector Quantization vs. PCA

* So vector quantization is a latent-factor model:

-90 -737 o (0100
= | 109 -90 | vedhr 7 N7=|0100
I;'] 9.3 qmaﬂfi;m"llun 0010
12,8 204 -. ‘,7 gc')g

'2:(Z ZQ(\; ‘\\“7”'0”’5” Whywie L

* Butit only uses 1 factor, it’s just memorizing ‘k’ points in d-space.

— What we want is combinations of factors.

* PCA s a generalization that allows continuous z;”: Vo-z 1(]
03 15

— It can have more than 1 non-zero. Z=6r-27

— It can use fractional weights and negative weights. Lm ’17

13

Principal Component Analysis Notation

PCA takes in a matrix ‘X’ and an input ‘k’, and outputs two matrices:

(— ZF*
72> ~z:-]§n We

IT-
L = 2h

\/-'\(/—/

—w,— 7

.—\N-———

7

For row ‘c’ of W, we use the notation w..

S——
——,

~

b’

|
Mlll \!ll‘(T e WJ g/‘/

\,T/

— Each w_is a “part” (also called a “factor” or “principal component”).

For row ‘i’ of Z, we use the notation z..

— Each z; is a set of “part weights” (or “factor loadings” or “features”).

For column ‘j’ of W, we use the notation w!.

— Index ‘j’ of all the 'k’ “parts” (value of pixel ‘j’ in all the different parts).

14

Principal Component Analysis Notation

* PCA takes in a matrix X’ and an input ‘k’, and outputs two matrices:

ﬁ— Z‘T\ r___,__ \A/‘”—_\’ (
= | —5T— = gt — |
Z 21]gn \/\/ wj }}(W \!,1 -,,-w;]g/‘/
.-/Izn'i_ vv\/v}\/—‘ _/l l
\/_;(/_/ k———\f\/ = _/_T/

* With this notation, we can write our approximation of one x; as:

/l ¢t S - S— k —— N 7
c=|

— K-means: take index ‘j’ of closest mean.
— PCA: use z to weight index ‘j’ of all “means” (factors) -

i 7
* We can write approximation of the vector x as:)’}; ,(8’,)).,22‘.

C{ x | _,\\A;&)-'Z.'

cl)(‘/ k)‘)

Important Stuff

e PCA is also called a “matrix factorization” model:

n*d nxk kxd

X~ 2ZW

* Punch line: PCA learns a k-dimensional subspace of the original d-
dimensional space
— The subspace is represented by k basis vectors
— The basis vectors are the rows of W
— The representations in the new basis are the rows of Z

16

Digression: PCA only makes sense for k< d

e Remember our clustering dataset with 4 clusters:

A v v
A‘ “ ‘A "*mr
A
ke)/
L

W,
_ -

o |

e |t doesn’t make sense to use PCA with k=4 on this dataset.

— We only need two vectors [1 0] and [0 1] to exactly represent all 2d points.

17

Doom Overhead Map and Latent-Factor Models

* Original “Doom” video game included an “overhead map” feature:

-

. g _

——— -

. |
" 1

rerorrrarweilis T g A

i ? N
7R} |

Vo o TS el o)
w et b , b2 8 &

e LLPUTS) Ih Rl o &
AMMOT | HEALTH | lAnME TABMOR 0/ 300

o
LELL

* This map can be viewed as latent-factor model of player location.

18

Overhead Map and Latent-Factor Models

Actual player location at time ‘i’ can be described by 3 coordinates:
X' | X & ”X“ (Oo/JiM\}P
) < [X]Z }&— ’lyn (Dovle\n"t
Xig)& "2" Coordinaly

The overhead map approximates these 3 coordinates with only 2:

2.1 & "x'l Coorcl‘*’wl"é
‘Z.|=

"\

_231 — n \/ (ao(l)lv\qu

Our k=2 latent factors (basis vectors) are the following:

{1 0 0
W-L..O' 0

. . .- A | (9
So our approximation of x. is: X =2 {%] + Zfz[(‘)]

19

Overhead Map and Latent-Factor Models

* The “overhead map” approximation just ignores the “height”.

— This is a good approximation if the world is flat.

* Even if the character jumps, the first two features will approximate location.

— But it’s a poor approximation if heights are different.

20

Overhead Map and Latent-Factor Models

* Consider these crazy goats trying to get some salt:

— lgnoring height gives poor approximation of goat location.

* But the “goat space” is basically a two-dimensional plane.

— Better k=2 approximation: define ‘W’ so that combinations give the plane.

Least squares vs. PCA

Le QAS S ?V\G/{_S Pr‘imc}f)q, COW\PMM“} ornq,ysis

/ \eq fw/@f_
Xiz |

&\

min/mjp .
vertical S quared

, X

c‘rlffqnct '
-y

)/ \/Ve assumé@

We orL’zcare Wi€an © O,

qLav.‘f ‘)Y’f!’ ic'//ft) i
PCA finds line W
Mihmizin 5(}0\61/?(.‘ oliﬂla‘“f

. 22
n ko "‘. dimengions.

Least squares vs. PCA

* Least squares learns a d-dimensional hyperplane

— We think of this as living inside a d+1 dimensional space
* The d features, plus the target

— The goal is to input d values and output 1 value
— This is supervised learning

* PCA learns a k-dimensional hyperplane for any integer O<k<d
— When d=2 then it must be that k=1

— The goal is to input d values and output k values
— This is unsupervised learning

PCA applications

Supervised learning: we could use Z’ as our inputs.

Outlier detection: it might be an outlier if isn’t a combination of
new features.

Dimension reduction: compress data into limited number
dimensions.

Visualization: if we have only 2 dimensions, we can view data as a
scatterplot.

Interpretation: we can try and figure out what the new features
represent.

Summary

* Latent-factor models:
— Try to learn factors W from training examples X.
— Usually, the z, are coefficients for factors w_.
— Useful for dimensionality reduction, visualization, factor discovery, etc.

* Principal component analysis:
— We can view ‘W’ as best lower-dimensional hyper-plane.

— We can view ‘Z’ as the coordinates in the lower-dimensional hyper-plane.
— We haven’t completely specified PCA yet — will finish next class.

Motivation: Human vs. Machine Perception

* Huge difference between what we see and what computer sees:

What we see: What the computer “sees”:

"W -' '

- -'.
Ly oS
_- -I

35 ﬁ

l-..ll

I_|..-.—.

* But maybe images shouldn’t be written as combinations of pixels.

26

Motivation: Pixels vs. Parts

* Canview 28x28 image as weighted sum of “single pixel on” images:

3:.- 1 T+ 0 r o + (6 +0| £

— We have one image for each pixel.
— The weights specify “how much of this pixel is in the image”.

* A weight of zero means that pixel is white, a weight of 1 means it’s black.

* This is non-intuitive, isn’t a “3” made of small number of “parts”?

3:)“+11+|_+1 +
i -

— Now the weights are “how much of this part is in the image”.

27

Motivation: Pixels vs. Parts

* We could represent other digits as different combinations of “parts”:

3 1l = Avt #] - g |+ 0| 4 |0
| -
: -

* Consider replacing images x; by the weights z. of the different parts:

— The 784-dimensional x; for the “5” image is replaced by 7 numbers: z,.=[101 110 1].
— Features like this could make learning much easier.

Principal Component Analysis (PCA) Applications

* Principal component analysis (PCA) has been invented many times:

PCA was invented in 1901 by Karl Pearson,m as an analogue of the principal axis theorem in standard deviation of 3 in roughly the

mechanics: it was later independently developed (and named) by Harold Hotelling in the (0.878, 0.478) direction and of 1 in th
orthogonal direction. The vectors

2] ; nation it i : :
1930s.*” Depending on the field of application, it is also named the discrete Kosambi e e e e oo [T

Karhunen—Loéve transform (KLT) in signal processing, the Hotelling transform in multivariate covariance matrix scaled by the squa
quality control, proper orthogonal decomposition (POD) in mechanical engineering, singular root of the corresponding eigenvalue,
and shifted so their tails are at the

value decomposition (SVD) of X (Golub and Van Loan, 1983), eigenvalue decomposition

(EVD) of XX in linear algebra, factor analysis (for a discussion of the differences between mean

PCA and factor analysis see Ch. 7 of [3]), Eckart-Young theorem (Harman, 1960), or Schmidt

—Mirsky theorem in psychometrics, empirical orthogonal functions (EOF) in meteorological science, empirical eigenfunction
decomposition (Sirovich, 1987), empirical component analysis (Lorenz, 1956), quasiharmonic modes (Brooks et al., 1988), spectral

decomposition in noise and vibration, and empirical modal analysis in structural dynamics.

29

PCA Applications

* Applications of PCA:

— Dimensionality reduction: replace ‘X’ with lower-dimensional Z’.
* If k << d, then compresses data.

e Often better approximation than vector quantization.

W

\(JOx'

~ \ —
£ xS0) — 500 106 c
vAS50K numbers T ~N00k numlocs

30

PCA Applications

* Applications of PCA:

— Dimensionality reduction: replace ‘X’ with lower-dimensional Z’.
* If k << d, then compresses data.
e Often better approximation than vector quantization.

31

* Applications of PCA:

PCA Applications

— Outlier detection: if PCA gives poor approximation of x,, could be ‘outlier’.

* Though due to squared error PCA is sensitive to outliers.

A

¥

124

+Zis

4l

it

i

L 3

32

Example Application: Supervised Learning

* Partial least squares: uses PCA features as basis for linear model.
Camfmfe c«/),oroy)mqffvn X% ZW

/VOvv Vi¥d Z as ‘FeaJFMQS N o |in@ar moJelf
Yi= vz,
N

N
| ' J L/IOW@(’O‘]MQI\S[OYWI /ﬂ\GV\ Ofiaina,]Feqfw*e) S0 Ie»‘ Mrlqﬂm)
I"Mar rff,mwn
|

We’lymlf v fm'mu!
U\m‘f(h\'ls Cl\a 4
ot [oo\j'»)_ L

33

PCA with d=3 and k=2.

* With d=3, PCA (k=2) finds plane minimizing squared distance to x..

original data space

component space

X

- | T Yt
® I T iy KAd<
4 il | -
o B_I—J_

1=

Pal =

Z

P

* With d=3, PCA (k=1) finds line minimizing squared distance to x..

34

PCA Applications

* Applications of PCA:

— Dimensionality reduction: replace ‘X’ with lower-dimensional Z’.
* If k << d, then compresses data.
e Often better approximation than vector quantization.

—) ﬁj[W

X f{\z ~—

PCA Applications

* Applications of PCA:
— Data visualization: plot z; with k = 2 to visualize high-dimensional objects.

French
Spanish
Slovak
German
Belgium
Czech

UK
Hungarian
Polish
- Romanian v
Norway ~
Sweden ©
Russian ¢
CEU ©

ORDO *x X +

>

Component 2 (0.08% variance)

Component 1 (0.21% variance)

2i

PCA Applications

* Applications of PCA:

— Data interpretation: we can try to assigh meaning to latent factors w..
 Hidden “factors” that influence all the variables.

Trait Description

Being curious, original, intellectual, creative, and open to

Openness 2
P new ideas.

Being organized, systematic, punctual, achievement-

Conscientiousness oriented, and dependable.

Being outgoing, talkative, sociable, and enjoying

Extraversion social situations.

Being affable, tolerant, sensitive, trusting, kind,

Agreeableness o

Neuroticism Being anxious, irritable, temperamental, and moody.

PCA with d=2 and k =1

Pr'imcif)q, Com’)onen“} ornq,ysis

Xig

You can Think of
‘W' as_rolding data

—

PCA finds line ‘W

Mihmizin 54 wared ol ista e

: 38
In LL"_‘I‘ dimengions.

PCA with d=2 and k =1

Pr'imci'z)q, ComPonen“} 0"‘“’}/535

Xig

Ybu\ can Thnlr of
‘W' as roiﬂiny data.

X ¥ Y
\‘k l PNJ‘t(,T
OmLo Ine
A H Nty ‘Zi

tzl Can bt infer N‘/‘d as (‘}V""\'CCI a 24 JQ}O\SC‘}' PCA finds IMC

os i I . _ min, IN Squared oll)’+ e
P oNn a o_} '“vc IZ = ln}b 7 l((c‘Q“aScf) ‘mm:z)-“jl& M@,\S,::\s

39

PCA with d=2 and k =1

E)famr,c" ‘\eic) H/Iﬂ/clylf/’ of (_M/J/uq:

J
La7‘~ew’f "rac)lar (omu Lf

Vioued as measwe of siz0

