
CPSC	340:
Machine	Learning	and	Data	Mining

PCA:	loss	functions	and	training	(“fit”)

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart. 1



Admin

• Assignment	5:
– Is	now	post

– Due	Friday	of	next	week.
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KDnuggets blog:	
The	10	Algorithms	ML	Engineers	Need	to	Know

1. Decision	trees
2. Naïve	Bayes	classification
3. Ordinary	least	squares	regression
4. Logistic	regression
5. Support	vector	machines
6. Ensemble	methods
7. Clustering	algorithms
8. Principal	component	analysis
9. Singular	value	decomposition
10.Independent	component	analysis	(bonus)

3



Last	Time:	Principal	Component	Analysis

• Principal	component	analysis	(PCA) is	a	linear	latent-factor	model:
– These	models	“factorize”	matrix	X	into	matrices	Z	and	W:

– We	can	think	of	rows	wc of	W	as	‘k’	fixed	“part”	(used	in	all	examples).

– zi is	the	“part	weights”	for	example	xi: “how	much	of	each	part	wc to	use”.
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Last	Time:	PCA	Geometry

• When	k=1,	the	W	matrix	defines	a	line:	
– We	choose	‘W’	as	the	line	minimizing	squared	distance	to	the	data.

– Given	‘W’,	the	zi are	the	coordinates	of	the	xi “projected”	onto	the	line.
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PCA	Objective	Function

• K-means	and	PCA	both	use	the	same	objective	function:

– In	k-means,	zi has	a	single	‘1’	value	and	all	other	entries	are	zero.

– In	PCA,	zi can	be	any	real	number.

• We	don’t	just	approximate	xi by	one	of	the	means
– We	approximate	it	as	a	linear	combination	of	all means/factors.
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Principal	Component	Analysis	(PCA)

• Different	ways	to	write	the	PCA	objective	function:

• We’re	picking	Z	and	W	to	approximate	the	original	data	X.
– It	won’t	be	perfect	since	usually	k	<<	d.

• PCA	is	also	called	a	“matrix	factorization” model:
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Digression:	Data	Centering	(Important)

• In	PCA,	we	assume	that	the	data	X	is	“centered”.
– Each	column	of	X	has	a	mean	of	zero.

• It’s	easy	to	center	the	data:

• In	scikit-learn’s PCA	this	is	done	by	default

• There	are	PCA	variations	that	estimate	“bias	in	each	coordinate”.
– In	basic	model	this	is	equivalent to	centering	the	data.
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PCA	Computation:	Prediction

• At	the	end	of	training,	the	“model”	is	the	µj and	the	W	matrix.
– PCA	is	parametric.

• PCA	prediction	phase:
– Given	new	data	!",	we	can	use	µj and	W	this	to	form	#":
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PCA	Computation:	Prediction

• At	the	end	of	training,	the	“model”	is	the	µj and	the	W	matrix.
– PCA	is	parametric.

• PCA	prediction	phase:
– Given	new	data	!",	we	can	use	µj and	W	this	to	form	#":
– The	“reconstruction	error”	is	how	close	approximation	is	to	!":

– Our	“error”	from	replacing	the	xi with	the	zi and	W.	
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Non-Uniqueness	of	PCA

• Many	different	(W,	Z)	minimize	f(W,Z).
– The	solution	is	not	unique.

• To	understand	why,	we’ll	need	idea	of	“span”	from	linear	algebra.
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Span	of	1	Vector

• Consider	a	single	vector	w1 (k=1).
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Span	of	1	Vector

• Consider	a	single	vector	w1 (k=1).

• The	span(w1)	is	all	vectors	of	the	form	ziw1 for	a	scalar	zi.
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Span	of	1	Vector

• Consider	a	single	vector	w1 (k=1).

• The	span(w1)	is	all	vectors	of	the	form	ziw1 for	a	scalar	zi.

• If	w1 ≠ 0,	this	forms	a	line.
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• But	note	that	the	“span”	of	many	different	vectors gives	same	line.
– Mathematically:	αw1 defines	the	same	line	as	w1 for	any	scalar	α ≠	0.

– PCA	solution	can	only	be	defined	up	to	scalar	multiplication.
• If	(W,Z)	is	a	solution,	then	(αW,(1/α)Z)	is	also	a	solution.

Span	of	1	Vector
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Span	of	2	Vectors

• Consider	two vector	w1	and	w2 (k=2).
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Span	of	2	Vectors

• Consider	two vector	w1	and	w2 (k=2).
– The	span(w1,w2)	is	all	vectors	of	form	zi1w1 +	zi2w2 for	a	scalars	zi1 and	zi2.
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Span	of	2	Vectors

• Consider	two vector	w1	and	w2 (k=2).
– The	span(w1,w2)	is	all	vectors	of	form	zi1w1 +	zi2w2 for	a	scalars	zi1 and	zi2.
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Span	of	2	Vectors

• Consider	two vector	w1	and	w2 (k=2).
– The	span(w1,w2)	is	all	vectors	of	form	zi1w1 +	zi2w2 for	a	scalars	zi1 and	zi2.

– For	most	non-zero	2d	vectors,	span(w1,w2)	is	a	plane.
• In	the	case	of	two	vectors	in	R2,	the	plane	will	be	*all*	of	R2.
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• Consider	two vector	w1	and	w2 (k=2).
– The	span(w1,w2)	is	all	vectors	of	form	zi1w1 +	zi2w2 for	a	scalars	zi1 and	zi2.

– For	most	non-zero	2d	vectors,	span(w1,w2)	is	a	plane.
• Exception	is	if	w2 is	in	span	of	w1	(“collinear”),	then	span(w1,w2)	is	just	a	line.

Span	of	2	Vectors
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Span	of	2	Vectors

• Consider	two vector	w1	and	w2 (k=2).
– The	span(w1,w2)	is	all	vectors	of	form	zi1w1 +	zi2w2 for	a	scalars	zi1 and	zi2.

– New	issues	for	PCA	(k	>=	2):
• We	have	label	switching:	span(w1,w2)	=	span(w2,w1).

• We	can	rotate	factors	within	the	plane	(if	not	rotated	to	be		collinear).
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Span	of	2	Vectors

• 2	tricks	to	make	vectors	defining	a	plane	“more	unique”:
– Normalization:	enforce	that	||w1||	=	1	and	||w2||	=	1.
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Span	of	2	Vectors

• 2	tricks	to	make	vectors	defining	a	plane	“more	unique”:
– Normalization:	enforce	that	||w1||	=	1	and	||w2||	=	1.
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Span	of	2	Vectors

• 2	tricks	to	make	vectors	defining	a	plane	“more	unique”:
– Normalization:	enforce	that	||w1||	=	1	and	||w2||	=	1.

– Orthogonality:	enforce	that	w1
Tw2 =	0	(“perpendicular”).

– Now	I	can’t	grow/shrink	vectors	(though	I	can	still	reflect).

– Now	I	can’t	rotate	one	vector	(but	I	can	still	rotate	*both*). 24



Span	in	Higher	Dimensions

• In	higher-dimensional	spaces:
– Span	of	1	non-zero	vector	w1 is	a	line.

– Span	of	2	non-zero	vectors	w1 and	w2 is	a	plane	(if	not	collinear).
• Can	be	visualized	as	a	2D	plot.

– Span	of	3	non-zeros	vectors	{w1,	w2,	w3}	is	a	3d	space (if	not	“coplanar”).

– …

• This	is	how	the	W	matrix	in	PCA	defines	lines,	planes,	spaces,	etc.
– Each	time	we	increase	‘k’,	we	add	an	extra	“dimension”	to	the	subspace.
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Making	PCA	Unique

• We’ve	identified	several	reasons	that	optimal	W	is	non-unique:
– I	can	multiply	any	wc by	any	non-zero	α.

– I	can	rotate	any	wc almost	arbitrarily within	the	span.

– I	can	switch	any	wc with	any	other	wc’.

• Add	constraints	to	make	solution	unique	(up	to	a	sign):
– Normalization:	we	enforce	that	||wc||	=	1.

– Orthogonality:	we	enforce	that	wc
Twc’ =	0	for	all	c	≠	c’.

– Sequential	fitting:	We	first	fit	w1 (“first	principal	component”)	giving	a	line.
• Then	fit	w2 given	w1 (“second	principal	component”)	giving	a	plane.

• Then	we	fit	w3 given	w1 and	w2 (“third	principal	component”)	giving	a	space.
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Basis,	Orthogonality,	Sequential	Fitting
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Basis,	Orthogonality,	Sequential	Fitting
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PCA	Computation:	SVD

• How	do	we	fit	with	normalization/orthogonality/sequential-fitting?
– It	can	be	done	with	the	“singular	value	decomposition”	(SVD).

– Take	CPSC	302.

• 4	lines	of	Python	code: Computing	Zhat is	cheaper	now:
– mu	=	np.mean(X,axis=0)

– X	-=	mu

– U,s,Vh =	np.linalg.svd(X)

– W	=	Vh[:k]
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PCA	Computation:	other	methods

• With	linear	regression,	we	had	the	normal	equations
– But	we	also	could	do	it	with	gradient	descent,	SGD,	etc.

• With	PCA we	have	the	SVD
– But	we	can	also	do	it	with	gradient	descent,	SGD,	etc.

– The	following	slides	show	alternative	approaches	to	SVD.

– Why	would	we	want	this?	Mostly	the	same	reasons:
• Various	modifications	to	the	loss,	like	L1	regularization

• Huge	datasets
• More	coming	when	we	talk	about	recommender	systems

– With	these	other	methods,	we	need	to	give	up	on	the	“constraints”
• Orthogonality,	ordered	PCs
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PCA	Computation:	Alternating	Minimization

• With	centered	data,	the	PCA	objective	is:

• In	k-means	we	tried	to	optimize	this	with	alternating	minimization:
– Fix	“cluster	assignments”	Z	and	find	the	optimal	“means”	W.

– Fix	“means”	W	and	find	the	optimal	“cluster	assignments”	Z.

• Converges	to	a	local	optimum.
– But	may	not	find	a	global	optimum	(sensitive	to	initialization).
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PCA	Computation:	Alternating	Minimization

• With	centered	data,	the	PCA	objective	is:

• In	PCA	we	can	also	use	alternating	minimization:
– Fix	“part	weights”	Z	and	find	the	optimal	“parts”	W.

– Fix	“parts”	W	and	find	the	optimal	“part	weights”	Z.

• Converges	to	a	local	optimum.
– Which	will	be	a	global	optimum	(if	we	randomly	initialize	W	and	Z).

32



PCA	Computation:	Alternating	Minimization

• With	centered	data,	the	PCA	objective	is:

• Alternating	minimization	steps:
– If	we	fix	Z,	this	is	a	quadratic	function	of	W	(least	squares	column-wise):

– If	we	fix	W,	this	is	a	quadratic	function	of	Z	(transpose	due	to	dimensions):
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PCA	Computation:	Alternating	Minimization

• With	centered	data,	the	PCA	objective	is:

• This	objective	is	not	jointly	convex	in	W	and	Z.
– We	already	saw	the	non-uniqueness	when	we	drop	the	constraints.

– But	it’s	possible	to	show	that	all	“stable”	local	optima	are	global	optima.
• You	will	converge	to	a	global	optimum	in	practice	if	you	initialize	randomly.

– Randomization	means	you	don’t	start	on	one	of	the	unstable	non-global	critical	points.

• E.g.,	sample	each	initial	zij from	a	normal	distribution.
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PCA	Computation:	Stochastic	Gradient

• For	big	X	matrices,	you	can	also	use	stochastic	gradient:

• (Other	variables	stay	the	same.)
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Choosing	‘k’	by	“Variance	Explained”

• “Variance”	approach	to	choosing	‘k’:
– Consider	the	variance	of	the	xij values:

– For	a	given	‘k’	we	compute	(variance	of	errors)/(variance	of	xij):

– Gives	a	number	between	0	(k=d)	and	1	(k=0),	giving	“variance	remaining”.
• If	you	want	to	“explain	90%	of	variance”,	choose	smallest	‘k’	where	ratio	is	<	0.10.
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Summary

• Squared	reconstruction	error:
– The	loss	we	use	for	PCA

• PCA	non-uniqueness:
– Due	to	scaling,	rotation,	and	label	switching.

• Orthogonal	basis	and	sequential	fitting	of	PCs:
– Leads	to	non-redundant	PCs	with	unique	directions.

• Alternating	minimization	and	stochastic	gradient:
– Algorithms	for	minimizing	PCA	objective.

• Choosing	‘k’:
– We	can	choose	‘k’	to	explain	“percentage	of	variance”	in	the	data.
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PCA	Objective	Function

• K-means	and	PCA	both	use	the	same	objective	function:

• We	can	also	view	this	as	solving	‘d’	regression	problems:
– Here	the	“outputs”	are	in	the	“inputs”	– so	they	are	d-dimensional,	not	1d.

• Hence	the	extra	sums	as	compared	to	regular	least	squares	loss.

– Each	wj is	trying	to	predict	column	‘j’	of	‘X’ from	the	basis	zi.

– But	we’re	also	learning	the	features	zi.

– Each	zi say	how	to	mix	the	mean/factor	wc to	approximation	example	‘i’.
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• When	k=2,	the	W	matrix	defines	a	plane:	
– We	choose	‘W’	as	the	plane	minimizing	squared	distance	to	the	data.

– Given	‘W’,	the	zi are	the	coordinates	of	the	xi “projected”	onto	the	plane.

Last	Time:	PCA	Geometry

http://www.nlpca.org/fig_pca_principal_component_analysis.png
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Last	Time:	PCA	Geometry

• When	k=2,	the	W	matrix	defines	a	plane:	
– Even	if	the	original	data	is	high-dimensional,	
we	can	visualize	data	“projected”	onto	this	plane.

http://www.prismtc.co.uk/superheroes-pca/
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Making	PCA	Unique

• PCA	implementations	add	constraints	to	make	solution	unique:
– Normalization:	we	enforce	that	||wc||	=	1.

– Orthogonality:	we	enforce	that	wc
Twc’ =	0	for	all	c	≠	c’.

– Sequential	fitting:	We	first	fit	w1 (“first	principal	component”)	giving	a	line.
• Then	fit	w2 given	w1 (“second	principal	component”)	giving	a	plane.

• Then	we	fit	w3 given	w1 and	w2 (“third	principal	component”)	giving	a	space.

• …

• Even	with	all	this,	the	solution	is	only	unique	up	to	sign	changes:
– I	can	still	replace	any	wc by	–wc:

• -wc is	normalized,	is	orthogonal	to	the	other	wc’,	and	spans	the	same	space.

– Possible	fix:	require	that	first	non-zero	element	of	each	wc is	positive.
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Proof:	“Synthesis”	View	=	“Analysis”	View	(WWT =	I)

• The	variance	of	the	zij (maximized	in	“analysis”	view):

• The	distance	to	the	hyper-plane	(minimized	in	“synthesis”	view):
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Probabilistic	PCA

• With	zero-mean	(“centered”)	data,	in	PCA	we	assume	that

• In	probabilistic	PCA	we	assume	that

• Integrating	over	‘Z’	the	marginal	likelihood	given	‘W’	is	Gaussian,

• Regular	PCA	is	obtained	as	the	limit	of	σ2 going	to	0.
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Generalizations	of	Probabilistic	PCA

• Probabilistic	PCA	model:

• Why	do	we	need	a	probabilistic	interpretation?

• Shows	that	PCA	fits	a	Gaussian	with	restricted	covariance.
– Hope	is	that	WTW	+	σ2I	is	a	good	approximation	of	XTX.

• Gives	precise	connection	between	PCA	and	factor	analysis.
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Factor	Analysis

• Factor	analysis	is	a	method	for	discovering	latent	factors.

• Historical	applications	are	measures	of	intelligence	and	personality.

• A	standard	tool	and	widely-used	across	science	and	engineering.
https://new.edu/resources/big-5-personality-traits
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PCA	vs.	Factor	Analysis

• PCA	and	FA	both	write	the	matrix	‘X’	as

• PCA	and	FA	are	both	based	on	a	Gaussian	assumption.

• Are	PCA	and	FA	the	same?
– Both	are	more	than	100	years	old.

– People	are	still	arguing	about	whether	they	are	the	same:
• Doesn’t	help	that	some	packages	run	PCA	when	you	call	their	FA	method.
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PCA	vs.	Factor	Analysis

• In	probabilistic	PCA	we	assume:

• In	FA	we	assume	for	a	diagonal	matrix	D that:

• The	posterior	in	this	case	is:

• The	difference	is	you	have	a	noise	variance	for	each	dimension.
– FA	has	extra	degrees	of	freedom.

48



PCA	vs.	Factor	Analysis

• In	practice	there	often	isn’t	a	huge	difference:

http://stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi
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Factor	Analysis	Discussion

• Differences	with	PCA:
– Unlike	PCA,	FA	is	not	affected	by	scaling	individual	features.

– But	unlike	PCA,	it’s	affected	by	rotation	of	the	data.

– No	nice	“SVD”	approach	for	FA,	you	can	get	different	local	optima.

• Similar	to	PCA,		FA	is	invariant	to	rotation	of	‘W’.
– So	as	with	PCA	you	can’t	interpret	multiple	factors	as	being	unique.
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Motivation	for	ICA

• Factor	analysis	has	found	an	enormous	number	of	applications.
– People	really	want	to	find	the	“hidden	factors”	that	make	up	their	data.

• But	PCA	and	FA	can’t	identify	the	factors.
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Motivation	for	ICA

• Factor	analysis	has	found	an	enormous	number	of	applications.
– People	really	want	to	find	the	“hidden	factors”	that	make	up	their	data.

• But	PCA	and	FA	can’t	identify	the	factors.
– We	can	rotate	W	and	obtain	the	same	model.

• Independent	component	analysis	(ICA)	is	a	more	recent	approach.
– Around	30	years	old	instead	of	>	100.
– Under	certain	assumptions	it	can	identify	factors.

• The	canonical	application	of	ICA	is	blind	source	separation.
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Blind	Source	Separation

• Input	to	blind	source	separation:
– Multiple	microphones	recording	multiple	sources.

• Each	microphone	gets	different	mixture	of	the	sources.
– Goal	is	reconstruct	sources	(factors)	from	the	measurements.

http://music.eecs.northwestern.edu/research.php
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Independent	Component	Analysis	Applications

• ICA	is	replacing	PCA	and	FA	in	many	applications:

• Recent	work	shows	that	ICA	can	often	resolve	direction	of	causality.

https://en.wikipedia.org/wiki/Independent_component_analysis#Applications
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Limitations	of	Matrix	Factorization

• ICA	is	a	matrix	factorization	method	like	PCA/FA,

• Let’s	assume	that	X	=	ZW	for	a	“true”	W	with	k	=	d.
– Different	from	PCA	where	we	assume	k	≤	d.

• There	are	only	3	issues	stopping	us	from	finding	“true”	W.
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3	Sources	of	Matrix	Factorization	Non-Uniquness

• Label	switching:	get	same	model	if	we	permute	rows	of	W.
– We	can	exchange	row	1	and	2	of	W	(and	same	columns	of	Z).
– Not	a	problem	because	we	don’t	care	about	order	of	factors.

• Scaling:	get	same	model	if	you	scale	a	row.
– If	we	mutiply row	1	of	W	by	α,	could	multiply	column	1	of	Z	by	1/α.
– Can’t	identify	sign/scale,	but	might	hope	to	identify	direction.

• Rotation:	get	same	model	if	we	rotate	W.
– Rotations	correspond	to	orthogonal	matrices	Q,	such	matrices	have	QTQ	=	I.
– If	we	rotate	W	with	Q,	then	we	have	(QW)TQW	=	WTQTQW	=	WTW.

• If	we	could	address	rotation,	we	could	identify	the	“true”	directions.
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A	Unique	Gaussian	Property

• Consider	an	independent	prior	on	each	latent	features	zc.
– E.g.,	in	PPCA	and	FA	we	use	N(0,1)	for	each	zc.

• If	prior	p(z)	is	independent	and	rotation-invariant	(p(Qz)	=	p(z)),
then	it	must	be	Gaussian (only	Gaussians	have	this	property).

• The	(non-intuitive)	magic	behind	ICA:
– If	the	priors	are	all	non-Gaussian,	it	isn’t	rotationally	symmetric.

– In	this	case,	we	can	identify	factors	W (up	to	permutations	and	scalings).
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PCA	vs.	ICA

http://www.inf.ed.ac.uk/teaching/courses/pmr/lectures/ica.pdf
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Independent	Component	Analysis

• In	ICA	we	approximate	X	with	ZW,	
assuming	p(zic)	are	non-Gaussian.

• Usually	we	“center”	and	“whiten”	the	data	before	applying	ICA.

• There	are	several	penalties	that	encourage	non-Gaussianity:
– Penalize	low	kurtosis,	since	kurtosis	is	minimized	by	Gaussians.

– Penalize	high	entropy,	since	entropy	is	maximized	by	Gaussians.

• The	fastICA is	a	popular	method	maximizing	kurtosis.
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ICA	on	Retail	Purchase	Data

• Cash	flow	from	5	stores	over	3	years:

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf
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ICA	on	Retail	Purchase	Data

• Factors	found	using	ICA:

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf
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“Synthesis”	View	vs.	“Analysis”	View
• We	said	that	PCA	finds	hyper-plane	minimizing	distance	to	data	xi.
– This	is	the	“synthesis”	view	of	PCA	(connects	to	k-means	and	least	squares).

• “Analysis”	view	when	we	have	orthogonality	constraints:	
– PCA	finds	hyper-plane	maximizing	variance	in	zi space.
– You	pick	W	to	“explain	as	much	variance	in	the	data”	as	possible.
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Basis,	Orthogonality,	Sequential	Fitting
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Basis,	Orthogonality,	Sequential	Fitting
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