CPSC 340:
Machine Learning and Data Mining

PCA: loss functions and training (“fit”)

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.



Admin

* Assignment 5:
— |s now post
— Due Friday of next week.



KDnuggets blog:
The 10 Algorithms ML Engineers Need to Know

Decision trees

Naive Bayes classification

Ordinary least squares regression

Logistic regression

Support vector machines

Ensemble methods

Clustering algorithms

Principal component analysis

Singular value decomposition
10.Independent component analysis (bonus)
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Last Time: Principal Component Analysis

* Principal component analysis (PCA) is a linear latent-factor model:
— These models “factorize” matrix X into matrices Z and W:
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— We can think of rows w_ of W as ‘k’ fixed “part” (used in all examples).

— z;is the “part weights” for example x.: “how much of each part w_ to use”.
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Last Time: PCA Geometry

e When k=1, the W matrix defines a line:

— We choose ‘W’ as the line minimizing squared distance to the data.
— Given ‘W’, the z, are the coordinates of the x, “projected” onto the line.
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PCA Objective Function

 K-means and PCA both use the same objective function:
{( W)27 :Z |IW7Z; — X I

— In k-means, z, has a single ‘1" value and all other entries are zero.
— In PCA, z, can be any real number.

* We don’t just approximate x; by one of the means

— We approximate it as a linear combination of all means/factors.



Principal Component Analysis (PCA)

e Different ways to write the PCA objective function:
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 We're picking Zand W to approximate the original data X.

— |t won’t be perfect since usually k << d.

* PCAis also called a “matrix factorization” model: ,x;  px kx4

X *zZw |



Digression: Data Centering (Important)

In PCA, we assume that the data X is “centered”.

— Each column of X has a mean of zero.

It’s easy to center the data:
n

Cet M, = —,‘:’ ZX'\) (mean of (ohuim 6')

,
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In scikit-learn’s PCA this is done by default
There are PCA variations that estimate “bias in each coordinate”.

— In basic model this is equivalent to centering the data.



PCA Computation: Prediction

IH

* At the end of training, the “model” is the |, and the W matrix.

— PCA is parametric.

* PCA prediction phase:

— Given new data X, we can use L and W this to form Z:
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PCA Computation: Prediction

III

* At the end of training, the “model” is the |, and the W matrix.

— PCA is parametric.
* PCA prediction phase:

— Given new data X, we can use p; and W this to form Z:

— The “reconstruction error” is how close approximation is to X:

IZW =l

X ?“CP'\fPNJ v ersion

— Our “error” from replacing the x, with the z. and W.

10



Non-Uniqueness of PCA

* Many different (W, Z) minimize f(W,2).

— The solution is not unique.

* To understand why, we’ll need idea of “span” from linear algebra.



Span of 1 Vector

* Consider a single vector w, (k=1).




Span of 1 Vector

* Consider a single vector w, (k=1).

* The span(w,) is all vectors of the form zw, for a scalar z.
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Span of 1 Vector

* Consider a single vector w, (k=1).
* The span(w,) is all vectors of the form zw, for a scalar z..

* If w, #0, this forms a line.
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Span of 1 Vector

* But note that the “span” of many different vectors gives same line.
— Mathematically: aw, defines the same line as w, for any scalar a # 0.

— PCA solution can only be defined up to scalar multiplication.

 If (W,2) is a solution, then (aW,(1/a)Z) is also a solution.
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,,w, + z,w, for a scalars z,; and z,,.
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,,w, + z,w, for a scalars z,; and z,,.

W+ W,

Xin
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,,w, + z,w, for a scalars z,; and z,,.

ne

/9‘

/

— For most non-zero 2d vectors, span(w,,w,) is a plane.

* |In the case of two vectors in R?, the plane will be *all* of R2.
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,,w, + z,w, for a scalars z,; and z,,.

Xin

— For most non-zero 2d vectors, span(w,,w,) is a plane.

* Exception is if w, is in span of w, (“collinear”), then span(w,,w,) is just a line.
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,,w, + z,w, for a scalars z,; and z,,.

Xin

— New issues for PCA (k >= 2):|
* We have label switching: span(w,,w,) = span(w,,w,).
* We can rotate factors within the plane (if not rotated to be collinear).
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Span of 2 Vectors

e 2 tricks to make vectors defining a plane “more unique”:

— Normalization: enforce that | |w,|| =1and | |w,]|]| = 1.




Span of 2 Vectors

e 2 tricks to make vectors defining a plane “more unique”:

— Normalization: enforce that | |w,|| =1and | |w,]|]| = 1.

Now,




Span of 2 Vectors

e 2 tricks to make vectors defining a plane “more unique”:

— Normalization: enforce that | |w,|| =1and | |w,]|]| = 1.
— Orthogonality: enforce that w,'w, = 0 (“perpendicular”).
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— Now | can’t grow/shrink vectoﬁs (though | can still reflect).
— Now | can’t rotate one vector (but | can still rotate *both*).
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Span in Higher Dimensions

* In higher-dimensional spaces:
— Span of 1 non-zero vector w, is a line.
— Span of 2 non-zero vectors w, and w, is a plane (if not collinear).

e Can be visualized as a 2D plot.

— Span of 3 non-zeros vectors {w,, w,, w,} is a 3d space (if not “coplanar”).

* This is how the W matrix in PCA defines lines, planes, spaces, etc.

— Each time we increase ‘k’, we add an extra “dimension” to the subspace.
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Making PCA Unique

 We've identified several reasons that optimal W is non-unique:
— | can multiply any w, by any non-zero a.
— | can rotate any w_ almost arbitrarily within the span.
— | can switch any w_ with any other w..

* Add constraints to make solution unique (up to a sign):
— Normalization: we enforce that | |w_| | = 1.
— Orthogonality: we enforce that w_'w_ =0 for all c # c’.
— Sequential fitting: We first fit w, (“first principal component”) giving a line.
* Then fit w, given w, (“second principal component”) giving a plane.

* Then we fit w, given w; and w, (“third principal component”) giving a space. y



Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting
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PCA Computation: SVD

 How do we fit with normalization/orthogonality/sequential-fitting?

— |t can be done with the “singular value decomposition” (SVD).

— Take CPSC 302.
* 4 lines of Python code: Computing Zhat is cheaper now:
— mu = np.mean(X,axis=0) Z: %W’ (Wi’ )" =X WT
X -= "y g
— A-=Mmu i |—W—
. WV\/ T —Ww. - /.’ , ~ ’.,
— U,s,Vh = np.linalg.svd(X) i ‘4/// Wz";d
— W = Vh[:] w0
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PCA Computation: other methods

* With linear regression, we had the normal equations
— But we also could do it with gradient descent, SGD, etc.

e With PCA we have the SVD

— But we can also do it with gradient descent, SGD, etc.
— The following slides show alternative approaches to SVD.
— Why would we want this? Mostly the same reasons:

 Various modifications to the loss, like L1 regularization
* Huge datasets
* More coming when we talk about recommender systems
— With these other methods, we need to give up on the “constraints”
e Orthogonality, ordered PCs



PCA Computation: Alternating Minimization

* With centered data, the PCA objective is:

n 4 .
P(W2)= 2 2 ()2~ x; )’

* In k-means we tried to optimize this with alternating minimization:

— Fix “cluster assignments” Z and find the optimal “means” W.
— Fix “means” W and find the optimal “cluster assignments” Z.

* Converges to a local optimum.

— But may not find a global optimum (sensitive to initialization).
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PCA Computation: Alternating Minimization
* With centered data, the PCA objective is:

n 4 .
P(W2)= 2 2 ()2~ x; )’

* |n PCA we can also use alternating minimization:
— Fix “part weights” Z and find the optimal “parts” W.
— Fix “parts” W and find the optimal “part weights” Z.

* Converges to a local optimum.

— Which will be a global optimum (if we randomly initialize W and Z).



PCA Computation: Alternating Minimization

* With centered data, the PCA objective iS:

F(W,2)= zz< W) 2, X )’

* Alternating minimization steps:

— If we fix Z, this is a quadratic function of W (least squares column-wise):

V fw=22w-ZX 5o W:(ZZ)“'(ZT)()
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— If we fix W, this is a quadratic function of Z (transpose due to dlmen5|ons)

0o Fw2)=Z2ww™ XwT so Z= Xw' (ww\)

7719Jc are btsu //
inverd; /,/c Sna [<(h wlizci




PCA Computation: Alternating Minimization

—-_—

* With centered data, the PCA objective is:

n 4 5
PW2)=2 2 (2= %)

L4
-

* This objective is not jointly convex in W and Z.

— We already saw the non-uniqueness when we drop the constraints.

— But it’s possible to show that all “stable” local optima are global optima.

* You will converge to a global optimum in practice if you initialize randomly.

— Randomization means you don’t start on one of the unstable non-global critical points.

* E.g., sample each initial z; from a normal distribution.
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PCA Computation: Stochastic Gradient

* For big X matrices, you can also use stochastic gradient:

f(Ww,2)= $5( W)z, = ng:Z((chz;'

AR iy
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e (Other variables stay the same.)



Choosing ‘k’ by “Variance Explained”

* “Variance” approach to choosing ‘k’:

— Consider the variance of the X; values:

o n d )
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— For a given ‘k” we compute (variance of errors)/(variance of x;):

HZ\/\/ X |l
\!xn,.- 1

Cenlerel version

— Gives a number between 0 (k-d) and 1 (k=0), giving “variance remaining”.

* If you want to “explain 90% of variance”, choose smallest 'k’ where ratio is <0.10.



Summary

Squared reconstruction error:
— The loss we use for PCA

PCA non-uniqueness:

— Due to scaling, rotation, and label switching.

Orthogonal basis and sequential fitting of PCs:

— Leads to non-redundant PCs with unique directions.

Alternating minimization and stochastic gradient:

— Algorithms for minimizing PCA objective.

Choosing ‘k’:

— We can choose ‘k’ to explain “percentage of variance” in the data.
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PCA Objective Function

K-means and PCA both use the same objective function:
- 7 1 __h 4 T 2
{( W)2>"i§ ”W Z; _X.'I/ -.Z 2 ((v\f) Zi T Xij )
,:IJ:I

We can also view this as solving ‘d’ regression problems:

— Here the “outputs” are in the “inputs” — so they are d-dimensional, not 1d.

* Hence the extra sums as compared to regular least squares loss.
— Each w! is trying to predict column ‘j* of ‘X" from the basis z..
— But we're also learning the features z.

— Each z, say how to mix the mean/factor w_ to approximation example ‘V’.
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Last Time: PCA Geometry

* When k=2, the W matrix defines a plane:
— We choose ‘W’ as the plane minimizing squared distance to the data.
— Given ‘W’, the z, are the coordinates of the x, “projected” onto the plane.

original data space

component space
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Last Time: PCA Geometry

* When k=2, the W matrix defines a plane:

— Even if the original data is high-dimensional,
we can visualize data “projected” onto this plane.
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Making PCA Unique

* PCA implementations add constraints to make solution unique:
— Normalization: we enforce that | |w_| | = 1.
— Orthogonality: we enforce that w_'w_ =0 for all c # C’.
— Sequential fitting: We first fit w, (“first principal component”) giving a line.
* Then fit w, given w, (“second principal component”) giving a plane.
* Then we fit w, given w, and w, (“third principal component”) giving a space.

* Even with all this, the solution is only unique up to sign changes:
— | can still replace any w_ by —w_:
* -w_ is normalized, is orthogonal to the other w_, and spans the same space.

— Possible fix: require that first non-zero element of each w,_ is positive.



Proof: “Synthesis” View = “Analysis” View (WW' = |)

. The variance ofthez (maximized in “analysis” view):
L2l P = L 2 MWl (=0 ond 27 Wh € W81 ond Vi, =0)
n | =1

I - /
.' i W Wy = ZTr(x W'Wy,) = '\Z/r(WVl/xxm

T(W vvg,(, X ) = ,( T-(W'w X X) ,,%,i/i/af
l,m;;leefé/ nk k/\'f){/ wﬁmq
* The distance to the hyper-plane (minimized in “synthesis” view):
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Probabilistic PCA

With zero-mean (“centered”) data, in PCA we assume that
x, 2o W'z,
In probabilistic PCA we assume that
X, /\//\/(WTZ,-) 1 ) Z, v /\/(071>
Integrating over ‘Z’ the marginal likelihood given ‘W’ is Gaussian,

| W o~ VO, WW+o2T)

Regular PCA is obtained as the limit of 6% going to O.



Generalizations of Probabilistic PCA

Probabilistic PCA model:
. | W ~ /\/(07 WW + 52T )

Why do we need a probabilistic interpretation?

Shows that PCA fits a Gaussian with restricted covariance.
— Hope is that WTW + o2l is a good approximation of X™X.

Gives precise connection between PCA and factor analysis.



Factor Analysis

e Factor analysis is a method for discovering latent factors.
e Historical applications are measures of intelligence and personality.

Trait Description

Being curious, original, intellectual, creative, and open to

Openness ;
P new ideas.

Being organized, systematic, punctual, achievement-

Conscientiousness oriented, and dependable.

Being outgoing, talkative, sociable, and enjoying

Extraversion social situations.

Being affable, tolerant, sensitive, trusting, kind,

Agreeableness el WA,

Neuroticism Being anxious, irritable, temperamental, and moody.

* A standard tool and widely-used across science and engineering.



PCA vs. Factor Analysis

e PCA and FA both write the matrix ‘X’ as

XxZW

 PCA and FA are both based on a Gaussian assumption.

e Are PCA and FA the same?

— Both are more than 100 years old.
— People are still arguing about whether they are the same:

* Doesn’t help that some packages run PCA when you call their FA method.



GO gle pca vs. factor analysis
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About 358,000 results (0.17 seconds)

IFoFl Principal Component Analysis versus Exploratory Factor ...
www2.sas.com/proceedings/sugi30/203-30.pdf ~

by DD Suhr - Cited by 118 - Related articles

1. Paper 203-30. Principal Component Analysis vs. Exploratory Factor Analysis.
Diana D. Suhr, Ph.D. University of Northern Colorado. Abstract. Principal ...

pca - What are the differences between Factor Analysis and ...
stats.stackexchange.com/.../what-are-the-differences-between-factor-anal... ¥
Aug 12, 2010 - Principal Component Analysis (PCA) and Common Factor Analysis
(CFA) ..... differently one has to interpret the strength of loadings in PCA vs.

What are the differences between principal components ...
support.minitab.com/.. factor-analysis/differences-between-pca-and-facto... ~
Principal Components Analysis and Factor Analysis are similar because both
procedures are used to simplify the structure of a set of variables. However, the ...

FOF Principal Components Analysis - UNT
https://www.unt.edu/rss/class/.../Principal%20Components%20Analysis.p... ¥
PCA vs. Factor Analysis. + It is easy to make the mistake in assuming thatthese are
the same techniques, though in some ways exploratory factor analysis and ...

Factor analysis versus Principal Components Analysis (PCA)
psych.wisc_edu/henriques/pca.html

Jun 19, 2010 - Factor analysis versus PCA. These techniques are typically used to
analyze groups of correlated variables representing one or more common ...

IFOFl Principal Component Analysis and Factor Analysis
www.stats.ox.ac.uk/~ripley/MultAnal_HT2007/PC-FA pdf ~

where D is diagonal with non-negative and decreasing values andU and V ...
Factor analysis and PCA are often confused, and indeed SPSS has PCA as.

How can | decide between using principal components ...
https://www.researchgate.net/.../How_can_|_decide_between_using_prin... ¥
Factor analysis (FA) is a group of statistical methods used to understand and
simplify patterns ... Retrieved from hitp:/pareonline.net/getvn.asp?v=10&n=7 ...
Principal component analysis (PCA) is a method of factor extraction (the second
step ...

IFOFl Exploratory Factor Analysis and Principal Component An...
www.lesahoffman.com/948/948_Lecture2_EFA_PCA pdf ~

2 very different schools of thought on exploratory factor analysis (EFA) vs. principal
components analysis (PCA): > EFA and PCA are TWO ENTIRELY ...

Factor analysis - Wikipedia, the free encyclopedia
https://fen.wikipedia.org/wiki/Factor_analysis ¥

Jump to Exploratory factor analysis versus principal components ... - [edif]. See
also: Principal component analysis and Exploratory factor analysis.

FOAI The Truth about PCA and Factor Analysis
www.stat.cmu.edu/~cshalizi/350/lectures/13/lecture-13.pdf ~
Sep 28, 2009 - nents and factor analysis, we'll wrap up by looking at their uses and
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PCA vs. Factor Analysis ///j\\

In probabilistic PCA we assume: \\:7/ S

X,‘ 44 /V( W_’Z,') 32_—[_)

In FA we assume for a diagonal matrix D that:

(il

X /V/\/(W7Z|') D)
The posterior in this case is: Y W~ /\/((77 WTw+D)

The difference is you have a noise variance for each dimension
— FA has extra degrees of freedom.

.



PCA vs. Factor Analysis

* |n practice there often isn’t a huge difference:

Principal component analysis Factor analysis
¢
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Factor Analysis Discussion

e Differences with PCA:

— Unlike PCA, FA is not affected by scaling individual features.
— But unlike PCA, it’s affected by rotation of the data.
— No nice “SVD” approach for FA, you can get different local optima.

e Similar to PCA, FA is invariant to rotation of ‘W’.

— So as with PCA you can’t interpret multiple factors as being unique.



Motivation for ICA

* Factor analysis has found an enormous number of applications.
— People really want to find the “hidden factors” that make up their data.

* But PCA and FA can’t identify the factors.

-2 -15 - -0.5 0 05 1 1.5

Latent data is sampled from the prior p(x;) oc exp(—5 Vixil) with the mixing matrix A
shown in green to create the observed two dimensional vectors y = Ax. The red lines are
the mixing matrix estimated by ica.m based on the observations. For comparison, PCA
produces the blue (dashed) components. Note that the components have been scaled to
improve visualisation. As expected, PCA finds the orthogonal directions of maximal
variation. ICA however, correctly estimates the directions in which the components were
independently generated.
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Motivation for ICA

Factor analysis has found an enormous number of applications.
— People really want to find the “hidden factors” that make up their data.

But PCA and FA can’t identify the factors.
— We can rotate W and obtain the same model.

Independent component analysis (ICA) is a more recent approach.
— Around 30 years old instead of > 100.
— Under certain assumptions it can identify factors.

The canonical application of ICA is blind source separation.



Blind Source Separation

* |Input to blind source separation:
— Multiple microphones recording multiple sources.

o 1 Source 1 Source 2
e 0

» 5 \ I\ | ) 1 N 3 .- ;
o8 PWTRTT ] T VYV U] G
f ,

Mixture *

)
Rl ‘lL 1" M‘ A
A A

Source Separation
Estimate 1 " ~a_Estimate 2

|||||
I\ I\

 Each microphone gets different mixture of the sources.
— Goal is reconstruct sources (factors) from the measurements.



Independent Component Analysis Applications

* |ICAis replacing PCA and FA in many applications:

Some ICA applications are listed below: "’

« optical Imaging of neurons!'”]

« neuronal spike sorting!"®!

« face recognition!'®!

« modeling receptive fields of primary visual neurons@?’

« predicting stock market prices!?']

« mobile phone communications [22]

« color based detection of the ripeness of tomatoes!%®!

« removing artifacts, such as eye blinks, from EEG data.[?]

* Recent work shows that ICA can often resolve direction of causality.
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Limitations of Matrix Factorization

* |CA is a matrix factorization method like PCA/FA,

e Let’s assume that X = ZW for a “true” W with k = d.

— Different from PCA where we assume k < d.

* There are only 3 issues stopping us from finding “true” W.



3 Sources of Matrix Factorization Non-Uniquness

Label switching: get same model if we permute rows of W.
— We can exchange row 1 and 2 of W (and same columns of Z).
— Not a problem because we don’t care about order of factors.

Scaling: get same model if you scale a row.

— If we mutiply row 1 of W by a, could multiply column 1 of Z by 1/a.
— Can’t identify sign/scale, but might hope to identify direction.

Rotation: get same model if we rotate W.

— Rotations correspond to orthogonal matrices Q, such matrices have Q'Q = |.
— If we rotate W with Q, then we have (QW)'QW = W'Q'QW = W'W.

If we could address rotation, we could identify the “true” directions.



A Unigue Gaussian Property

* Consider an independent prior on each latent features z..
— E.g., in PPCA and FA we use N(0,1) for each z_.

 If prior p(z) is independent and rotation-invariant (p(Qz) = p(z)),
then it must be Gaussian (only Gaussians have this property).

* The (non-intuitive) magic behind ICA:
— |f the priors are all non-Gaussian, it isn’t rotationally symmetric.
— In this case, we can identify factors W (up to permutations and scalings).



Figure : Latent data is sampled from the prior p(x;) « exp(—5 V|x;|) with the mixing matrix A
shown in green to create the observed two dimensional vectors y = Ax. The red lines are
the mixing matrix estimated by ica.m based on the observations. For comparison, PCA
produces the blue (dashed) components. Note that the components have been scaled to
improve visualisation. As expected, PCA finds the orthogonal directions of maximal
variation. ICA however, correctly estimates the directions in which the components were

independently generated.
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Independent Component Analysis

In ICA we approximate X with ZW,
assuming p(z,.) are non-Gaussian.

Usually we “center” and “whiten” the data before applying ICA.

There are several penalties that encourage non-Gaussianity:
— Penalize low kurtosis, since kurtosis is minimized by Gaussians.
— Penalize high entropy, since entropy is maximized by Gaussians.

The fastICA is a popular method maximizing kurtosis.



ICA on Retail Purchase Data

* Cash flow from 5 stores over 3 years:
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ICA on Retail Purchase Data

Factors found using ICA:
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“Synthesis” View vs. “Analysis” View

* We said that PCA finds hyper-plane minimizing distance to data x..
— This is the “synthesis” view of PCA (connects to k-means and least squares).
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* “Analysis” view when we have orthogonality constraints:
— PCA finds hyper-plane maximizing variance in z; space.
— You pick W to “explain as much variance in the data” as possible.



Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting
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