
CPSC	340:	
Machine	Learning	and	Data	Mining	

Sparse	Matrix	Factorization	

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.	 1	



Admin	
•  Assignment	5:	
– Due	next	Friday.	
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Last	Time:	PCA	with	Orthogonal/Sequential	Basis	

•  When	k	=	1,	PCA	has	a	scaling	problem.	
•  When	k	>	1,	have	scaling,	rotation,	and	label	switching.	
–  Standard	fix:	use	normalized	orthogonal	rows	Wc	of	‘W’.	

– And	fit	the	rows	in	order:		
•  First	row	“explains	the	most	variance”	or	“reduces	error	the	most”.	
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Application:	Face	Detection	
•  Consider	problem	of	face	detection	
•  Classic	methods	use	“eigenfaces”	as	basis:	
–  PCA	applied	to	images	of	faces.	
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Eigenfaces	
•  Collect	a	bunch	of	images	of	faces	under	different	conditions:	
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VQ	vs.	PCA	vs.	NMF	
•  But	how	should	we	represent	faces?	
–  Vector	quantization	(k-means).	

•  Replace	face	by	the	average	face	in	a	cluster.	
•  Can’t	distinguish	between	people	in	the	same	cluster	(only	‘k’	possible	faces).		
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VQ	vs.	PCA	vs.	NMF	
•  But	how	should	we	represent	faces?	
–  Vector	quantization	(k-means).		
–  PCA	(orthogonal	basis).	

•  Global	average	plus	linear	combination	of	“eigenfaces”.	
•  But	“eigenfaces”	are	not	intuitive	ingredients	for	faces.	

–  PCA	tends	to	use	positive/negative	cancelling	bases.	
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VQ	vs.	PCA	vs.	NMF	
•  But	how	should	we	represent	faces?	
–  Vector	quantization	(k-means).		
–  PCA	(orthogonal	basis).	
– NMF	(non-negative	matrix	factorization):	

•  Instead	of	orthogonality/ordering	in	W,	require	W	and	Z	to	be	non-negativity.	
•  Example	of	“sparse	coding”:	

–  The	zi	are	sparse	so	each	face	is	coded	by	a	small	number	of	neurons.	
–  The	wc	are	sparse	so	neurons	tend	to	be	“parts”	of	the	object.	
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Warm-up	to	NMF:	Non-Negative	Least	Squares	
•  Consider	our	usual	least	squares	problem:	

•  But	assume	yi	and	elements	of	xi	are	non-negative:	
–  Could	be	sizes	(‘height’,	‘milk’,	‘km’)	or	counts	(‘vicodin’,	‘likes’,	
‘retweets’).	

•  Assume	we	want	elements	of	‘w’	to	be	non-negative,	too:	
– Maybe	no	sensible	interpretation	to	negative	weights.	

•  Non-negativity	leads	to	sparsity...	
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Sparsity	and	Non-Negative	Least	Squares	
•  Consider	1D	non-negative	least	squares	objective:	
	
•  Plotting	the	(constrained)	objective	function:	

•  In	this	case,	non-negative	solution	is	least	squares	solution.	
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Sparsity	and	Non-Negative	Least	Squares	
•  Consider	1D	non-negative	least	squares	objective:	
	
•  Plotting	the	(constrained)	objective	function:	

•  In	this	case,	non-negative	solution	is	w	=	0.	
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Sparsity	and	Non-Negativity	
•  Similar	to	L1-regularization,	non-negativity	leads	to	sparsity.	
– Also	regularizes:	wj	are	smaller	since	can’t	“cancel”	out	negative	values.	

•  How	can	we	minimize	f(w)	with	non-negative	constraints?	
– Naive	approach:	solve	least	squares	problem,	set	negative	wj	to	0.	

–  This	is	correct	when	d	=	1.	
– Doesn’t	make	sense	when	d	≥	2.	

•  Consider	two	collinear	or	almost	collinear	features,	with	w1=10	and	w2=-10	
•  Setting	w1=w2=0	might	be	OK,	but	setting	w1=10	and	w2=0	is	wrong.	 26	



Sparsity	and	Non-Negativity	
•  Similar	to	L1-regularization,	non-negativity	leads	to	sparsity.	
– Also	regularizes:	wj	are	smaller	since	can’t	“cancel”	out	negative	values.	

•  How	can	we	minimize	f(w)	with	non-negative	constraints?	
– A	correct	approach	is	projected	gradient	algorithm:	

•  Run	a	gradient	descent	iteration:	

•  After	each	step,	set	negative	values	to	0.	

•  Repeat.	
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Sparsity	and	Non-Negativity	
•  Similar	to	L1-regularization,	non-negativity	leads	to	sparsity.	
– Also	regularizes:	wj	are	smaller	since	can’t	“cancel”	out	negative	values.	

•  How	can	we	minimize	f(w)	with	non-negative	constraints?	
– A	correct	approach	is	projected	gradient	algorithm:	

	
	

–  Similar	properties	to	gradient	descent:	
•  Guaranteed	decrease	of	‘f’	if	αt	is	small	enough.	
•  Reaches	local	minimum	under	weak	assumptions	(global	minimum	for	convex	‘f’).	

–  Least	squares	objective	is	still	convex	when	restricted	to	non-negative	variables.	
•  Generalizations	allow	things	like	L1-regularization	instead	of	non-negativity.	 	

	 	 	 	 	 	 	 	 	(findMinL1)	
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Projected-Gradient	for	NMF	
•  Back	to	the	non-negative	matrix	factorization	(NMF)	objective:	
	

– Different	ways	to	use	projected	gradient:	
•  Alternate	between	projected	gradient	steps	on	‘W’	and	on	‘Z’.	
•  Or	run	projected	gradient	on	both	at	once.	
•  Or	sample	a	random	‘i’	and	‘j’	and	do	stochastic	projected	gradient.	
	
	

– Non-convex	and	(unlike	PCA)	is	sensitive	to	initialization.	
•  Hard	to	find	the	global	optimum.	
•  Typically	use	random	initialization.	
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Application:	Sports	Analytics	
•  NBA	shot	charts:	

	
•  NMF	(using	“KL	divergence”	loss	with	k=10	and	smoothed	data).	
– Negative	
values	would	
not	make		
sense	here.	

http://jmlr.org/proceedings/papers/v32/miller14.pdf	
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Application:	Topic	Modeling	
•  You	have	‘n’	documents,	‘d’	bag-of-word	features,	want	to	find	“topics”	
•  You	can	use	NMF	for	this!	

–  Interpretation	of	W:	k	topics,	each	with	a	selection	of	words	
–  Interpretation	of	Z:	each	movie	is	a	mixture	of	the	k	topics	

•  NMF	makes	much	more	sense	than	PCA	
–  Each	topic	involves	a	small	number	of	words	
–  Each	document	has	a	small	number	of	topics	

•  PCA	would	not	make	sense	
–  you	could	have	negative	inclusion	of	a	topic	for	a	document	
–  Topics	can	have	negative	words	
–  all	documents	are	a	mixture	of	every	possible	topic	and	all	topics	involve	every	
possible	word	

•  So	here	we	like	both	the	sparsity	and	the	non-negativity	
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Regularized	Matrix	Factorization	
•  More	recently	people	have	considered	L2-regularized	PCA:	

	

•  Replaces	normalization/orthogonality/sequential-fitting.	
–  But	requires	regularization	parameters	λ1	and	λ2.	

•  Need	to	regularize	W	and	Z	because	of	scaling	problem:	
–  If	you	only	regularize	‘W’	it	doesn’t	do	anything:	

•  I	could	take	unregularized	solution,	replace	W	by	αW	for	a	tiny	α	to	
shrink	||W||F	as	much	as	I	want,	then	multiply	Z	by	(1/α)	to	get	same	solution.	

–  Similarly,	if	you	only	regularize	‘Z’	it	doesn’t	do	anything.	 32	



Sparse	Matrix	Factorization	
•  Instead	of	non-negativity,	we	could	use	L1-regularization:	

–  Called	sparse	coding	(L1	on	‘Z’)	or	sparse	dictionary	learning	(L1	on	‘W’).	
–  sklearn’s	SparsePCA	is	L1	and	‘W’	and	L2	on	‘Z’	

•  Disadvantage	of	using	L1-regularization	over	non-negativity:	
–  Sparsity	controlled	by	λ1	and	λ2	(so	you	need	to	set	these)	

•  Advantage	of	using	L1-regularization:	
–  Sparsity	controlled	by	λ1	and	λ2	(so	you	can	control	amount	of	sparsity)	
– Also,	negative	coefficients	often	make	sense.	
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Sparsity:	what	is	it	good	for?	
•  Sparsity:	a	vector/matrix	with	a	bunch	of	zeros	(often	our	‘w’)	
•  Can	be	achieved	in	several	ways:	

–  Explicit	feature	selection,	L1	regularization,	non-negativity	constraints	
•  Intuition:	we	want	something	“explained	by	a	few	factors”	

–  NMF	leads	to	sparse	Z	and	W,	whereas	PCA	does	not.		

•  There	can	be	big	computational	gains	
– We	said	earlier	than	SVM+kernels	are	fast	because	of	the	small	number	of	
support	vectors.	This	has	to	do	with	“sparsity	in	the	dual”	(see	CPSC	406)	

•  There	are	biological	motivations	
– We	believe	there	is	“sparse	coding”	in	the	brain	(few	neurons	in	a	pattern)	
–  This	might	also	mean	more	energy	efficiency	(both	in	the	brain	and	in	our	tech)	

34	



Summary	
•  Non-negative	matrix	factorization	leads	to	sparse	‘W’	and	‘Z’.	
•  Non-negativity	constraints	lead	to	sparse	solution.	
–  Projected	gradient	adds	constraints	to	gradient	descent.	

•  L1-regularization	leads	to	other	sparse	latent-factor	models.	
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Application:	Face	Detection	
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Colour	Opponency	in	the	Human	Eye	
•  Classic	model	of	the	eye	is	with	4	photoreceptors:	
–  Rods	(more	sensitive	to	brightness).	
–  L-Cones	(most	sensitive	to	red).	
– M-Cones	(most	sensitive	to	green).	
–  S-Cones	(most	sensitive	to	blue).	

•  Two	problems	with	this	system:	
– Not	orthogonal.	

•  High	correlation	in	particular	between	red/green.	
– We	have	4	receptors	for	3	colours.	

http://oneminuteastronomer.com/astro-course-day-5/	
https://en.wikipedia.org/wiki/Color_visio	
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Colour	Opponency	in	the	Human	Eye	
•  Bipolar	and	ganglion	cells	seem	to	code	using	“opponent	colors”:	
–  3-variable	orthogonal	basis:	

	
•  This	is	similar	to	PCA	(d	=	4,	k	=	3).	

http://oneminuteastronomer.com/astro-course-day-5/	
https://en.wikipedia.org/wiki/Color_visio	
http://5sensesnews.blogspot.ca/	
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Colour	Opponency	Representation	
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Latent-Factor	Models	for	Image	Patches	
•  Consider	building	latent-factors	for	general	image	patches:	
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Latent-Factor	Models	for	Image	Patches	
•  Consider	building	latent-factors	for	general	image	patches:	

	 	 	 	 	 	 		
	 	 	 	 	 										Typical	pre-processing:	
	 	 	 	 	 	 	1.	Usual	variable	centering	
	 	 	 	 	 										 	2.	“Whiten”	patches.	
	 	 	 	 	 	 	(remove	correlations)	
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Application:	Image	Restoration	

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf	
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Latent-Factor	Models	for	Image	Patches	

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf	
http://stackoverflow.com/questions/16059462/comparing-textures-with-opencv-and-gabor-filters	

Orthogonal	bases	don’t	seem	right:	
•  Few	PCs	do	almost	everything.	
•  Most	PCs	do	almost	nothing.	

We	believe	“simple	cells”	in	visual	cortex	use:	
	
	
	

		

‘Gabor’	filters	

43	



Latent-Factor	Models	for	Image	Patches	
•  Results	from	a	sparse	(non-orthogonal)	latent	factor	model:	

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf	
44	



Latent-Factor	Models	for	Image	Patches	
•  Results	from	a	“sparse”	(non-orthogonal)	latent-factor	model:	

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf	
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Recent	Work:	Structured	Sparsity	
•  Basis	learned	with	a	variant	of	“structured	sparsity”:	

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf	
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Representing	Faces	
•  Why	sparse	coding?	
–  “Parts”	are	intuitive,	and	brains	seem	to	use	sparse	representation.	
–  Energy	efficiency	if	using	sparse	code.	
–  Increase	number	of	concepts	you	can	memorize?	

•  Some	evidence	in	fruit	fly	olfactory	system.	

http://www.columbia.edu/~jwp2128/Teaching/W4721/papers/nmf_nature.pdf	
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Application:	Cancer	“Signatures”	
•  What	are	common	sets	of	mutations	in	different	cancers?	
– May	lead	to	new	treatment	options.	

	
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3588146/	
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Regularized	Matrix	Factorization	
•  For	many	PCA	applications,	ordering	orthogonal	PCs	makes	sense.	
–  Latent	factors	are	independent	of	each	other.	
– We	definitely	want	this	for	visualization.	

•  In	other	cases,	ordering	orthogonal	PCs	doesn’t	make	sense.	
– We	might	not	expect	a	natural	“ordering”.	

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf	 49	



Sparse	Matrix	Factorization	
•  Instead	of	non-negativity,	we	could	use	L1-regularization:	

–  Called	sparse	coding	(L1	on	‘Z’)	or	sparse	dictionary	learning	(L1	on	‘W’).	

•  Many	variations	exist:	
– Mixing	L2-regularization	and	L1-regularization.	

•  Or	normalizing	‘W’	(in	L2-norm	or	L1-norm)	and	regularizing	‘Z’.	

–  K-SVD	constrains	each	zi	to	have	at	most	‘k’	non-zeroes:	
•  K-means	is	special	case	where	k	=	1.	
•  PCA	is	special	case	where	k	=	d.	
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Matrix	Factorization	with	L1-Regularization	

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf	
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Recent	Work:	Structured	Sparsity	
•  “Structured	sparsity”	considers	dependencies	in	sparsity	patterns.	
–  Can	enforce	that	“parts”	are	convex	regions.	

http://jmlr.org/proceedings/papers/v9/jenatton10a/jenatton10a.pdf	
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