CPSC 340:
Machine Learning and Data Mining

Sparse Matrix Factorization

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.



Admin

* Assignment 5:
— Due next Friday.



Last Time: PCA with Orthogonal/Sequential Basis

* When k=1, PCA has a scaling problem.
* When k> 1, have scaling, rotation, and label switching.

— Standard fix: use normalized orthogonal rows W_of ‘W’.
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— And fit the rows in order:

* First row “explains the most variance” or “reduces error the most”.
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Application: Face Detection

e Consider problem of face detection

* Classic methods use “eigenfaces” as basis:
— PCA applied to images of faces.



Eigenfaces

* Collect a bunch of images of faces under different conditions:
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces

Reconstonction with k= O
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Eigenfaces
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Eigenfaces
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VQ vs. PCA vs. NMF

* But how should we represent faces?

— Vector quantization (k-means).
* Replace face by the average face in a cluster.
e Can’t distinguish between people in the same cluster (only ‘k’ possible faces).
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VQ vs. PCA vs. NMF

* But how should we represent faces?
— Vector quantization (k-means).
— PCA (orthogonal basis).

* Global average plus linear combination of “eigenfaces”.

* But “eigenfaces” are not intuitive ingredients for faces.
— PCA tends to use positive/negative cancelling bases.
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VQ vs. PCA vs. NMF

* But how should we represent faces?
— Vector quantization (k-means).
— PCA (orthogonal basis).
— NMF (non-negative matrix factorization):

* Instead of orthogonality/ordering in W, require W and Z to be non-negativity.
* Example of “sparse coding”:

— The z, are sparse so each face is coded by a small number of neurons.
— The w_ are sparse so neurons tend to be “parts” of the object.
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Warm-up to NMF: Non-Negative Least Squares

* Consider our usual least squares problem:
n
- | T 2
'F(w) -2 é(‘” X )’f)

* Butassumey. and elements of x, are non-negative:

— Could be sizes (‘height’, ‘milk’, ‘km’) or counts (‘vicodin’, ‘likes’,
‘retweets’).

* Assume we want elements of ‘W’ to be non-negative, too:
— Maybe no sensible interpretation to negative weights.

* Non-negativity leads to sparsity...
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Sparsity and Non-Negative Least Squares

* Consider 1D non-negative least squares objective:
‘F(\«):-Z!.'__Z.(w X; "'7;)2 wilh W20
* Plotting the (constrained) objective function:

i)

* |n this case, non-negative solution is least squares solution.



Sparsity and Non-Negative Least Squares

* Consider 1D non-negative least squares objective:
E 'z! 'Z(w X; ""7;)2 wilh W20
* Plotting the (constrained) objective function:

* |n this case, non-negative solution is w = 0.



Sparsity and Non-Negativity

* Similar to L1-regularization, non-negativity leads to sparsity.

— Also regularizes: w; are smaller since can’t “cancel” out negative values.

* How can we minimize f(w) with non-negative constraints?
— Naive approach: solve least squares problem, set negative w; to 0.

Comrn'fe w = (XT)()\()F\/)
et w = mal 0, w

— This is correct when d = 1.
— Doesn’t make sense when d = 2.

* Consider two collinear or almost collinear features, with w,=10 and w,=-10
* Setting w,=w,=0 might be OK, but setting w,=10 and w,=0 is wrong.
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Sparsity and Non-Negativity

* Similar to L1-regularization, non-negativity leads to sparsity.

— Also regularizes: w; are smaller since can’t “cancel” out negative values.

* How can we minimize f(w) with non-negative constraints?
— A correct approach is projected gradient algorithm:

* Run a gradient descent iteration:

W“/" W —of V(LY

* After each step, set negative values to 0.
t*'x;/{
* Repeat.
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Sparsity and Non-Negativity

Similar to L1-regularization, non-negativity leads to sparsity.

|”

— Also regularizes: w; are smaller since can’t “cancel” out negative values.

* How can we minimize f(w) with non-negative constraints?
— A correct approach is projected gradient algorithm:
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— Similar properties to gradient descent:
* Guaranteed decrease of f’ if a, is small enough.
* Reaches local minimum under weak assumptions (global minimum for convex ‘f’).
— Least squares objective is still convex when restricted to non-negative variables.

* Generalizations allow things like L1-regularization instead of non-negativity.
(findMinL1)
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Projected-Gradient for NMF

e Back to the non-negative matrix factorization (NMF) objective:
n d
— g _ 4 ' :
P(W2)= 37 (Jz-x)? With w70
EYBEL omd 2520
— Different ways to use projected gradient:
* Alternate between projected gradient steps on ‘W’ and on Z’.

* Or run projected gradient on both at once.
* Or sample arandom ‘i’ and ‘j” and do stochastic projected gradient.
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Application: Sports Analytics

Stephen Curry (940 shots) LeBron James (315 shots)

e NBA shot charts:

e NMF (using “KL divergence” loss with k=10 and smoothed data).

— Negative 20)| 20) 30) S0)| B)| 9 ><§) >O)  BO)| PO

vd I ues wou l d LeBron James  0.21 0.16 0.12 0.09 0.04 0.07 0.00 0.07 0.08 0.17
Brook Lopez 0.06 0.27 0.43 0.09 0.01 0.03 0.08 0.03 0.00 0.01
not ma ke Tyson Chandler 0.26 0.65 0.03 0.00 0.01 0.02 0.01 0.01 0.02 0.01
Marc Gasol 0.19 0.02 0.17 0.01 0.33 0.25 0.00 0.01 0.00 0.03
SENse h ere. Tony Parker 0.12 0.22 0.17 0.07 0.21 0.07 0.08 0.06 0.00 0.00
Kyrie Irving 0.13 0.10 0.09 0.13 0.16 0.02 0.13 0.00 0.10 0.14
Stephen Curry  0.08 0.03 0.07 0.01 0.10 0.08 0.22 0.05 0.10 0.24
James Harden 0.34 0.00 0.11 0.00 0.03 0.02 0.13 0.00 0.11 0.26

Steve Novak 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.27 0.35 )34




Application: Topic Modeling

You have ‘n’ documents, ‘d” bag-of-word features, want to find “topics”
You can use NMF for this!

— Interpretation of W: k topics, each with a selection of words

— Interpretation of Z: each movie is a mixture of the k topics

NMF makes much more sense than PCA

— Each topic involves a small number of words

— Each document has a small number of topics

PCA would not make sense

— you could have negative inclusion of a topic for a document
— Topics can have negative words

— all documents are a mixture of every possible topic and all topics involve every
possible word

So here we like both the sparsity and the non-negativity



Regularized Matrix Factorization

* More recently people have considered L2-regularized PCA:
fw2)=1)izw-xII¢ + 2 Jiwlle + ’:lgllz I

* Replaces normalization/orthogonality/sequential-fitting.

— But requires regularization parameters A, and A,

* Need to regularize W and Z because of scaling problem:
— If you only regularize ‘W’ it doesn’t do anything:

* | could take unregularized solution, replace W by aW for a tiny a to
shrink | [W]|ras much as | want, then multiply Z by (1/a) to get same solution.

— Similarly, if you only regularize ‘Z’ it doesn’t do anything.
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Sparse Matrix Factorization

* |Instead of non-negativity, we could use L1-regularization:

n d
Fw,2)=J)12w-XIIF + 220, + ’le? Il

i<

— Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).
— sklearn’s SparsePCA is L1 and ‘W’ and L2 on 7’

* Disadvantage of using L1-regularization over non-negativity:
— Sparsity controlled by A, and A, (so you need to set these)

* Advantage of using L1-regularization:

— Sparsity controlled by A, and A, (so you can control amount of sparsity)
— Also, negative coefficients often make sense.
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Sparsity: what is it good for?

Sparsity: a vector/matrix with a bunch of zeros (often our ‘w’)

Can be achieved in several ways:
— Explicit feature selection, L1 regularization, non-negativity constraints

Intuition: we want something “explained by a few factors”
— NMF leads to sparse Z and W, whereas PCA does not.

There can be big computational gains

— We said earlier than SVM+kernels are fast because of the small number of
support vectors. This has to do with “sparsity in the dual” (see CPSC 406)

There are biological motivations
— We believe there is “sparse coding” in the brain (few neurons in a pattern)
— This might also mean more energy efficiency (both in the brain and in our tech)



Summary

* Non-negative matrix factorization leads to sparse ‘W’ and ‘Z’.
* Non-negativity constraints lead to sparse solution.

— Projected gradient adds constraints to gradient descent.

* L1-regularization leads to other sparse latent-factor models.



Application: Face Detection "
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Colour Opponency in the Human Eye

e Classic model of the eye is with 4 photoreceptors: Lo e
ection @
— Rods (more sensitive to brightness). | L e
— L-Cones (most sensitive to red). Gg—"—"i\m!
- Bipolar cells \\\
— M-Cones (most sensitive to green). I i
o cone [ [T T fa .' eceptors
— S-Cones (most sensitive to blue). W
W\\\_,//

« Two problems with this system:
— Not orthogonal. ;
* High correlation in particular between red/green. §
— We have 4 receptors for 3 colours. £ /‘
2 200 450 500 S50 600 65037 700

Wavelength (nm)



Colour Opponency in the Human Eye

* Bipolar and ganglion cells seem to code using “opponent colors”:

— 3-variable orthogonal basis: r/_jﬁ Y —

...............................................

& Color Perception )
@ Absolute Quantity: \
:| 1. Brightness (Strength of A) |:
2. Hue (Ratio of C, to C,-C;) |
3. Colorfulness
! (Strength of C, and C,-C,) |:
: | * Relative Quantity:
1 \nghtnessIChromaISaturatJoy;

wnioeds a|qIsIA

\ -
...............................................

* This is similar to PCA (d =4, k = 3).

Opponent
colors




Colour Opponency Representation
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Latent-Factor Models for Image Patches

e Consider building latent-factors for general image patches:
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Latent-Factor Models for Image Patches

e Consider building latent-factors for general image patches:

il

Typical pre-processing:

1. Usual variable centering
.—:) 2. “Whiten” patches.
[f]] (remove correlations)
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Application: Image Restoration

http://www.jmlr.org/papers/volumell/mairall0a/mairal10a.pdf
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Latent-Factor Models for Image Patches

Orthogonal bases don’t seem right:
* Few PCs do almost everything.
* Most PCs do almost nothing.

We believe “simple cells” in visual cortex use:

(b) Principal components. ‘Gabor’ filters

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf 43
http://stackoverflow.com/questions/16059462/comparing-textures-with-opencv-and-gabor-filters



Latent-Factor Models for Image Patches

e Results from a sparse (non- orthogonal) latent factor model
| II e FLH

F £§
-

(a) With centering - gray. (b) With centering - RGB.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
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Latent-Factor Models for Image Patches

e Results from a “sparse” (non-orthogonal) latent-factor model:
b [ |

| . i

(c) With whitening - gray. (d) With whitening - RGB.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
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Recent Work: Structured Sparsity

e Basis learned with a variant of “structured sparsity”:

/4 .
(0!'1[(:, (olvmm;

Visual (or tey

(b) With 4 x 4 neighborhood.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
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Representing Faces

 Why sparse coding?
— “Parts” are intuitive, and brains seem to use sparse representation.
— Energy efficiency if using sparse code.
— Increase number of concepts you can memorize?

* Some evidence in fruit fly olfactory system. r,,,se “d: C'Ifomdr/
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Application: Cancer “Signatures”

What are common sets of mutations in different cancers?

— May lead to new treatment options.
A B Q
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Regularized Matrix Factorization

 For many PCA applications, ordering orthogonal PCs makes sense.

— Latent factors are independent of each other.

— We definitely want this for visualization.

* |In other cases, ordering orthogonal PCs doesn’t make sense.

— We might not expect a natural “ordering”.
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Sparse Matrix Factorization

* |Instead of non-negativity, we could use L1-regularization:

n d
Fw,2)=J)12w-XIIF + 220, + ’le? Il

i<

— Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

* Many variations exist:

— Mixing L2-regularization and L1-regularization.

* Or normalizing ‘W’ (in L2-norm or L1-norm) and regularizing ‘Z’.

— K-SVD constrains each z to have at most ‘k” non-zeroes:
* K-means is special case where k = 1.
* PCA is special case where k =d.



Matrix Factorization with L1-Regularization
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Recent Work: Structured Sparsity

e “Structured sparsity” considers dependencies in sparsity patterns.

— Can enforce that “parts” are convex regions.
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