CPSC 340: Machine Learning and Data Mining

Multi-Dimensional Scaling

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.

1

Admin

- Assignment 5:
 - Due Friday
- Assignment 6:
 - Remember to request partner

Latent-Factor Models for Visualization

- PCA for visualization:
 - We're using PCA to get the location of the z_i values.
 - We then plot the z_i values as locations in a scatterplot.
- But PCA is a parametric linear model
- PCA may not find obvious low-dimensional structure.
- We could use change of basis or kernels: but still need to pick basis.

- Multi-dimensional scaling (MDS) is a crazy idea:
 - Let's directly optimize the z_i values.
 - "Gradient descent on the points in a scatterplot".
 - Needs a "cost" function saying how "good" the z_i locations are.
 - Traditional MDS cost function:

$$f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2 \quad \text{distances match high-dimensional distance "}$$

$$sum over \quad \text{distance in } \quad \text{Distance between points in Original di dimensions}$$

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{Z} \hat{Z} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z} \hat{z}_{i=1} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z} \hat{z}_{i=1} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z} \hat{z}_{i=1} (||z_i - z_j|| - ||x_i - x_j||)^2$$

Non-parametric dimensionality reduction and visualization:

• No 'W': just trying to make z_i preserve high-dimensional distances between x_i.

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z} \hat{z}_{i=1} (||z_i - z_j|| - ||x_i - x_j||)^2$$

Non-parametric dimensionality reduction and visualization:

• No 'W': just trying to make z_i preserve high-dimensional distances between x_i.

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z} \hat{z} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Cannot use SVD to compute solution:
 - Instead, do gradient descent on the z_i values.
 - You "learn" a scatterplot that tries to visualize high-dimensional data.
 - Not convex and sensitive to initialization.

Different MDS Cost Functions

• MDS default objective: squared difference of Euclidean norms:

$$f(Z) = \hat{z} \hat{z}_{i=1} (||z_i - z_j|| - ||x_i - x_j||)^2$$

• But we can make z_i match different distances/similarities: $f(z) = \hat{\zeta} \hat{\zeta} d_2(z_i, z_i) - d_1(z_i, x_i)$

$$f(2) = \hat{z} \hat{z}_{j=1}^{i+1} d_3(d_2(z_i, z_j) - d_1(x_i, x_j))$$

- Where the functions are not necessarily the same:
 - d₁ is the high-dimensional distance we want to match.
 - d₂ is the low-dimensional distance we can control.
 - d₃ controls how we compare high-/low-dimensional distances.

Different MDS Cost Functions

• MDS default objective function with general distances/similarities:

$$f(2) = \hat{z} \hat{z}_{j=1} d_3(d_2(z_i, z_j) - d_1(x_i, x_j))$$

• PCA is a special case of MDS

- using $d_1(x_i, x_j) = x_i^T x_j$ and $d_2(z_i, z_j) = z_i^T z_j$ and centered x_i).

Different MDS Cost Functions

• MDS default objective function with general distances/similarities:

$$f(Z) = \hat{z} \hat{z}_{j=1}^{n} d_{3}(d_{2}(z_{i}, z_{j}) - d_{1}(x_{i}, x_{j}))$$

• Another possibility: $d_1(x_i, x_j) = ||x_i - x_j||_1$ and $d_2(z_i, z_j) = ||z_i - z_j||$.

– The z_i approximate the high-dimensional L_1 -norm distances.

Sammon's Mapping

- Challenge for most MDS models: they focus on large distances.
 Leads to "crowding" effect like with PCA.
- Early attempt to address this is **Sammon's mapping**:
 - Weighted MDS so large/small distances are more comparable. $f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left(\frac{d_2(z_i, z_j) - d_1(x_i, x_j)}{d_1(x_i, x_j)} \right)^2$
 - Denominator reduces focus on large distances.

Sammon's Mapping

• Visualizing "metagenomes"

(pause)

Learning Manifolds

- Consider data that lives on a low-dimensional "manifold".
- Example is the 'Swiss roll':

Learning Manifolds

- Consider data that lives on a low-dimensional "manifold".
 - With usual distances, PCA/MDS will not discover non-linear manifolds.

http://www.peh-med.com/content/9/1/12/figure/F

Learning Manifolds

- Consider data that lives on a low-dimensional "manifold".
 With usual distances, PCA/MDS will not discover non-linear manifolds.
- We need geodesic distance: the distance *through* the manifold.

Manifolds in Image Space

• Consider slowly-varying transformation of image:

- Images are on a manifold in the high-dimensional space.
 - Euclidean distance doesn't reflect manifold structure.
 - Geodesic distance is distance through space of rotations/resizings.

ISOMAP

• **ISOMAP** is latent-factor model for visualizing data on manifolds:

Digression: Constructing Neighbour Graphs

- Sometimes you can define the graph/distance without features:
 - Facebook friend graph.
 - Connect YouTube videos if one video tends to follow another.
- But we can also convert from features x_i to a "neighbour" graph:
 - Approach 1 ("epsilon graph"): connect x_i to all x_i within some threshold ε .
 - Like we did with density-based clustering.
 - Approach 2 ("KNN graph"): connect x_i to x_i if:
 - x_j is a KNN of x_i **OR** x_i is a KNN of x_j .
 - Approach 2 ("mutual KNN graph"): connect x_i to x_i if:
 - x_j is a KNN of x_i **AND** x_i is a KNN of x_j .

Converting from Features to Graph

http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488%5B0%5D.pdf

1

-1

-2

-3

ISOMAP

- **ISOMAP** is latent-factor model for visualizing data on manifolds:
 - 1. Find the neighbours of each point.
 - Usually "k-nearest neighbours graph", or "epsilon graph".
 - 2. Compute edge weights:
 - Usually distance between neighbours.
 - 3. Compute weighted shortest path between all points.
 - Dijkstra or other shortest path algorithm.
 - 4. Run MDS using these distances.

ISOMAP

- **ISOMAP** can "unwrap" the roll:
 - Shortest paths are approximations to geodesic distances.

- Sensitive to having the right graph:
 - Points off of manifold and gaps in manifold cause problems.

ISOMAP on Hand Images

Wrist rotation

3 × 8 • 9

t-Distributed Stochastic Neighbour Embedding

- One key idea in t-SNE:
 - Focus on neighbour distances by allowing large variance in large distances.

End of Part 4: Key Concepts

• We discussed linear latent-factor models:

$$f(W_{3}z) = \hat{z}_{j=1} \hat{z}_{j=1} ((w)^{T}z_{i} - x_{ij})^{2}$$
$$= \hat{z}_{j=1} ||W^{T}z_{i} - x_{i}||^{2}$$
$$= ||ZW - X||_{F}^{2}$$

- Represent 'X' as linear combination of latent factors 'w_c'.
 - Latent features ' z_i ' give a lower-dimensional version of each ' x_i '.
 - When k=1, finds direction that minimizes squared orthogonal distance.
- Applications:
 - Outlier detection, dimensionality reduction, data compression, features for linear models, visualization, factor discovery, filling in missing entries.

End of Part 4: Key Concepts

• We discussed linear latent-factor models:

$$f(W, z) = \hat{z} \hat{z} ((w)^{T} z_{i} - x_{ij})^{2}$$

- Principal component analysis (PCA):
 - Often uses orthogonal factors and fits them sequentially (via SVD).
- Non-negative matrix factorization:
 - Uses non-negative factors giving sparsity.
 - Can be minimized with projected gradient.
- Many variations are possible:
 - Different regularizers (sparse coding) or loss functions (robust/binary PCA).
 - Missing values (recommender systems) or change of basis (kernel PCA).

End of Part 4: Key Concepts

- We discussed multi-dimensional scaling (MDS):
 - Non-parametric method for high-dimensional data visualization.
 - Tries to match distance/similarity in high-/low-dimensions.
 - "Gradient descent on scatterplot points".
- Main challenge in MDS methods is "crowding" effect:
 - Methods focus on large distances and lose local structure.
- Common solutions:
 - Sammon mapping: use weighted cost function.
 - ISOMAP: approximate geodesic distance using via shortest paths in graph.
 - t-SNE: give up on large distances and focus on neighbour distances.

Summary

- Multi-dimensional scaling is a non-parametric latent-factor model.
- Different MDS distances/losses/weights usually gives better results.
- Manifold learning focuses on low-dimensional curved structures.
- **ISOMAP** is most common approach:
 - Approximates geodesic distance by shortest path in weighted graph.
- t-SNE is a promising recent MDS method.

Related method to ISOMAP

• "local linear embedding".

Does t-SNE always outperform PCA?

• Consider 3D data living on a 2D hyper-plane:

- PCA can perfectly capture the low-dimensional structure.
- T-SNE can capture the local structure, but can "twist" the plane.
 - It doesn't try to get long distances correct.

0

Latent-Factor Representation of Words

- For natural language, we often represent words by an index.
 - E.g., "cat" is word 124056.
- But this may be inefficient:
 - Should "cat" and "kitten" share parameters in some way?
- We want a latent-factor representation of individual words:
 - Closeness in latent space should indicate similarity.
 - Distances could represent meaning?
- Recent alternative to PCA/NMF is word2vec...

Word2Vec

- Two variations on objective in word2vec:
 - Try to predict word from surrounding words (continuous bag of words).
 - Try to predict surrounding words from word (skip-gram).

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

Word2Vec

- In both cases, each word 'i' is represented by a vector z_i.
- In continuous bag of words, we optimize the likelihood:

$$p(x_{i} | x_{surround}) = \prod_{j \in surround} p(x_{i} | x_{j}) \quad (independence assumption)$$

$$= \prod_{j \in surround} \frac{exp(z_{i}^{7} z_{j})}{\sum_{c \in I} exp(z_{c}^{7} z_{j})} \quad (softmax over all words)$$

- Denominator sums over all words.
- For skip-gram it will be over all possible surrounding words.
 - Common trick to speed things up: samples terms in denominator.
 - "Negative sampling".

Word2Vec Example

• MDS visualization of a set of related words:

Distances between vectors might represent semantics.

Word2Vec

Subtracting word vectors to find related vectors.

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Table 8 shows words that follow various relationships. We follow the approach described above: the relationship is defined by subtracting two word vectors, and the result is added to another word. Thus for example, *Paris - France + Italy = Rome*. As it can be seen, accuracy is quite good, although

Graph Drawing

- A closely-related topic to MDS is graph drawing:
 - Given a graph, how should we display it?
 - Lots of interesting methods: <u>https://en.wikipedia.org/wiki/Graph_drawing</u>

Bonus Slide: Multivariate Chain Rule

• Recall the univariate chain rule:

• The multivariate chain rule:

$$\frac{d}{dw} \left[f(q(w)) \right] = f'(q(w)) g'(w)$$

$$\frac{\nabla \left[f(q(w)) \right]}{\sqrt{\left[f(q(w)) \right]}} = f'(q(w)) \nabla g(w)$$

$$\frac{d}{dx} \int \frac{d}{dx} \int \frac{d}{dx}$$

• Example:

$$\nabla \left[\frac{1}{2} \left(w^{T} x_{i} - y_{i} \right)^{1} \right]$$

$$= \nabla \left[f(q(w)) \right]$$
with $q(w) = w^{T} x_{i} - y_{i}$
and $f(r_{i}) = \frac{1}{2} r_{i}^{2}$

$$= \left(w^{T} x_{i} - y_{i} \right) x_{i}$$

Bonus Slide: Multivariate Chain Rule for MDS

• General MDS formulation:

• Using multivariate chain rule we have:

$$\nabla_{z_{i}} g(d_{i}(x_{i}, x_{j}), d_{2}(z_{i}, z_{j})) = g'(d_{i}(x_{i}, x_{j}), d_{2}(z_{i}, z_{j})) \nabla_{z_{i}} d_{2}(z_{i}, z_{j})$$

• Example: If
$$d_{i}(x_{i}, x_{j}) = ||x_{i} - x_{j}||$$
 and $l_{2}(z_{i}, z_{j}) = ||z_{i} - z_{j}||$ and $g(d_{i}, d_{2}) = \frac{1}{2}(d_{i}, d_{2}) =$

t-Distributed Stochastic Neighbour Embedding

- t-SNE is a special case of MDS (specific d_1 , d_2 , and d_3 choices):
 - d_1 : for each x_i, compute probability that each x_i is a 'neighbour'.
 - Computation is similar to k-means++, but most weight to close points (Gaussian).
 - Doesn't require explicit graph.
 - d_2 : for each z_i , compute probability that each z_i is a 'neighbour'.
 - Similar to above, but uses student's t (grows really slowly with distance).
 - Avoids 'crowding', because you have a huge range that large distances can fill.
 - d_3 : Compare x_i and z_i using an entropy-like measure:
 - How much 'randomness' is in probabilities of x_i if you know the z_i (and vice versa)?
- Interactive demo: <u>https://distill.pub/2016/misread-tsne</u>

t-SNE on Wikipedia Articles

t-SNE on Product Features

http://blog.kaggle.com/2015/06/09/otto-product-classification-winners-interview-2nd-place-alexander-guschin/

t-SNE on Leukemia Heterogeneity

