
CPSC	340:	
Machine	Learning	and	Data	Mining	

Multi-Dimensional	Scaling	

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.	 1	



Admin	
•  Assignment	5:	
– Due	Friday	

•  Assignment	6:	
–  Remember	to	request	partner	
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Latent-Factor	Models	for	Visualization	
•  PCA	for	visualization:	
– We’re	using	PCA	to	get	the	location	of	the	zi	values.	
– We	then	plot	the	zi	values	as	locations	in	a	scatterplot.	

•  But	PCA	is	a	parametric	linear	model	
•  PCA	may	not	find	obvious	low-dimensional	structure.	
•  We	could	use	change	of	basis	or	kernels:	but	still	need	to	pick	
basis.	



Multi-Dimensional	Scaling	
•  Multi-dimensional	scaling	(MDS)	is	a	crazy	idea:	
–  Let’s	directly	optimize	the	zi	values.	

•  “Gradient	descent	on	the	points	in	a	scatterplot”.	
– Needs	a	“cost”	function	saying	how	“good”	the	zi	locations	are.	

•  Traditional	MDS	cost	function:	



Multi-Dimensional	Scaling	
•  Multi-dimensional	scaling	(MDS):	
– Directly	optimize	the	final	locations	of	the	zi	values.	
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Multi-Dimensional	Scaling	
•  Multi-dimensional	scaling	(MDS):	
– Directly	optimize	the	final	locations	of	the	zi	values.	

	
– Non-parametric	dimensionality	reduction	and	visualization:	

•  No	‘W’:	just	trying	to	make	zi	preserve	high-dimensional	distances	between	xi.	
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Multi-Dimensional	Scaling	
•  Multi-dimensional	scaling	(MDS):	
– Directly	optimize	the	final	locations	of	the	zi	values.	

•  Cannot	use	SVD	to	compute	solution:	
–  Instead,	do	gradient	descent	on	the	zi	values.	
–  You	“learn”	a	scatterplot	that	tries	to	visualize	high-dimensional	data.	
– Not	convex	and	sensitive	to	initialization.	
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Different	MDS	Cost	Functions	
•  MDS	default	objective:	squared	difference	of	Euclidean	norms:	

•  But	we	can	make	zi	match	different	distances/similarities:	

– Where	the	functions	are	not	necessarily	the	same:	
•  d1	is	the	high-dimensional	distance	we	want	to	match.	
•  d2	is	the	low-dimensional	distance	we	can	control.	
•  d3	controls	how	we	compare	high-/low-dimensional	distances.	
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Different	MDS	Cost	Functions	
•  MDS	default	objective	function	with	general	distances/similarities:	

	
•  PCA	is	a	special	case	of	MDS	
–  using	d1(xi,xj)	=	xiTxj	and	d2(zi,zj)	=	ziTzj	and	centered	xi).	
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Different	MDS	Cost	Functions	
•  MDS	default	objective	function	with	general	distances/similarities:	
	

•  Another	possibility:	d1(xi,xj)	=	||xi	–	xj||1	and	d2(zi,zj)	=	||zi	–	zj||.	
–  The	zi	approximate	the	high-dimensional	L1-norm	distances.	
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Sammon’s	Mapping	
•  Challenge	for	most	MDS	models:	they	focus	on	large	distances.	
–  Leads	to	“crowding”	effect	like	with	PCA.	

•  Early	attempt	to	address	this	is	Sammon’s	mapping:	
– Weighted	MDS	so	large/small	distances	are	more	comparable.	

– Denominator	reduces	focus	on	large	distances.	
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Sammon’s	Mapping	
•  Visualizing	“metagenomes”	

		
	PCA 	 	 	 	MDS 	 	 				MDS	+	Sammon	

http://www.mdpi.com/1422-0067/15/7/12364/htm	
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(pause)	
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Learning	Manifolds	
•  Consider	data	that	lives	on	a	low-dimensional	“manifold”.	
•  Example	is	the	‘Swiss	roll’:	

http://www.biomedcentral.com/content/pdf/1471-2105-13-S7-S3.pdf	
17	



Learning	Manifolds	
•  Consider	data	that	lives	on	a	low-dimensional	“manifold”.	
– With	usual	distances,	PCA/MDS	will	not	discover	non-linear	manifolds.		

http://www.peh-med.com/content/9/1/12/figure/F1	
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Learning	Manifolds	
•  Consider	data	that	lives	on	a	low-dimensional	“manifold”.	
– With	usual	distances,	PCA/MDS	will	not	discover	non-linear	manifolds.		

•  We	need	geodesic	distance:	the	distance	through	the	manifold.	

http://www.biomedcentral.com/content/pdf/1471-2105-13-S7-S3.pdf	
http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf	
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Manifolds	in	Image	Space	
•  Consider	slowly-varying	transformation	of	image:	

	
•  Images	are	on	a	manifold	in	the	high-dimensional	space.	

–  Euclidean	distance	doesn’t	reflect	manifold	structure.	
–  Geodesic	distance	is	distance	through	space	of	rotations/resizings.	

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction	
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ISOMAP	
•  ISOMAP	is	latent-factor	model	for	visualizing	data	on	manifolds:	
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Digression:	Constructing	Neighbour	Graphs	
•  Sometimes	you	can	define	the	graph/distance	without	features:	

–  Facebook	friend	graph.	
–  Connect	YouTube	videos	if	one	video	tends	to	follow	another.	

•  But	we	can	also	convert	from	features	xi	to	a	“neighbour”	graph:	
–  Approach	1	(“epsilon	graph”):	connect	xi	to	all	xj	within	some	threshold	ε.	

•  Like	we	did	with	density-based	clustering.	

–  Approach	2	(“KNN	graph”):	connect	xi	to	xj	if:	
•  xj	is	a	KNN	of	xi	OR	xi	is	a	KNN	of	xj.	

–  Approach	2	(“mutual	KNN	graph”):	connect	xi	to	xj	if:	
•  xj	is	a	KNN	of	xi	AND	xi	is	a	KNN	of	xj.	

http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf	
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Converting	from	Features	to	Graph	

http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488%5B0%5D.pdf	
23	



ISOMAP	
•  ISOMAP	is	latent-factor	model	for	visualizing	data	on	manifolds:	

1.  Find	the	neighbours	of	each	point.	
•  Usually	“k-nearest	neighbours	graph”,	or	“epsilon	graph”.	

2.  Compute	edge	weights:	
•  Usually	distance	between	neighbours.	

3.  Compute	weighted	shortest	path	between	all	points.	
•  Dijkstra	or	other	shortest	path	algorithm.	

4.  Run	MDS	using	these	distances.	
http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf	
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ISOMAP	
•  ISOMAP	can	“unwrap”	the	roll:	

–  Shortest	paths	are	approximations	to	geodesic	distances.	

•  Sensitive	to	having	the	right	graph:	
–  Points	off	of	manifold	and	gaps	in	manifold	cause	problems.	

http://www.peh-med.com/content/9/1/12/figure/F1	
25	



ISOMAP	on	Hand	Images	

http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf	
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MNIST	digits:	Sammon’s	Map	vs.	ISOMAP	vs.	PCA	

http://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf	 27	
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t-Distributed	Stochastic	Neighbour	Embedding	
•  One	key	idea	in	t-SNE:		
–  Focus	on	neighbour	distances	by	allowing	large	variance	in	large	distances.	
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End	of	Part	4:	Key	Concepts	
•  We	discussed	linear	latent-factor	models:	

•  Represent	‘X’	as	linear	combination	of	latent	factors	‘wc’.	
–  Latent	features	‘zi’	give	a	lower-dimensional	version	of	each	‘xi’.	
– When	k=1,	finds	direction	that	minimizes	squared	orthogonal	distance.	

•  Applications:		
–  Outlier	detection,	dimensionality	reduction,	data	compression,	features	for	
linear	models,	visualization,	factor	discovery,	filling	in	missing	entries.	 34	



End	of	Part	4:	Key	Concepts	
•  We	discussed	linear	latent-factor	models:	

	
•  Principal	component	analysis	(PCA):	

–  Often	uses	orthogonal	factors	and	fits	them	sequentially	(via	SVD).	

•  Non-negative	matrix	factorization:	
–  Uses	non-negative	factors	giving	sparsity.	
–  Can	be	minimized	with	projected	gradient.	

•  Many	variations	are	possible:	
–  Different	regularizers	(sparse	coding)	or	loss	functions	(robust/binary	PCA).	
– Missing	values	(recommender	systems)	or	change	of	basis	(kernel	PCA).	 35	



End	of	Part	4:	Key	Concepts	
•  We	discussed	multi-dimensional	scaling	(MDS):	
– Non-parametric	method	for	high-dimensional	data	visualization.	
–  Tries	to	match	distance/similarity	in	high-/low-dimensions.	

•  “Gradient	descent	on	scatterplot	points”.	

•  Main	challenge	in	MDS	methods	is	“crowding”	effect:	
– Methods	focus	on	large	distances	and	lose	local	structure.	

•  Common	solutions:	
–  Sammon	mapping:	use	weighted	cost	function.	
–  ISOMAP:	approximate	geodesic	distance	using	via	shortest	paths	in	graph.	
–  t-SNE:	give	up	on	large	distances	and	focus	on	neighbour	distances.	
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Summary	
•  Multi-dimensional	scaling	is	a	non-parametric	latent-factor	model.	
•  Different	MDS	distances/losses/weights	usually	gives	better	
results.	

•  Manifold	learning	focuses	on	low-dimensional	curved	structures.	
•  ISOMAP	is	most	common	approach:	
– Approximates	geodesic	distance	by	shortest	path	in	weighted	graph.	

•  t-SNE	is	a	promising	recent	MDS	method.	
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Related	method	to	ISOMAP	
•  “local	linear	embedding”.	
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Does	t-SNE	always	outperform	PCA?	
•  Consider	3D	data	living	on	a	2D	hyper-plane:	

•  PCA	can		perfectly	capture	the	low-dimensional	structure.	
•  T-SNE	can	capture	the	local	structure,	but	can	“twist”	the	plane.	
–  It	doesn’t	try	to	get	long	distances	correct.	

39	



Latent-Factor	Representation	of	Words	
•  For	natural	language,	we	often	represent	words	by	an	index.	
–  E.g.,	“cat”	is	word	124056.	

•  But	this	may	be	inefficient:	
–  Should	“cat”	and	“kitten”	share	parameters	in	some	way?	

•  We	want	a	latent-factor	representation	of	individual	words:	
–  Closeness	in	latent	space	should	indicate	similarity.	
– Distances	could	represent	meaning?	

•  Recent	alternative	to	PCA/NMF	is	word2vec…	
40	



Word2Vec	
•  Two	variations	on	objective	in	word2vec:	
–  Try	to	predict	word	from	surrounding	words	(continuous	bag	of	words).	
–  Try	to	predict	surrounding	words	from	word	(skip-gram).	

https://arxiv.org/pdf/1301.3781.pdf	
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Word2Vec	
•  In	both	cases,	each	word	‘i’	is	represented	by	a	vector	zi.	
•  In	continuous	bag	of	words,	we	optimize	the	likelihood:	

•  Denominator	sums	over	all	words.	
•  For	skip-gram	it	will	be	over	all	possible	surrounding	words.	
–  Common	trick	to	speed	things	up:	samples	terms	in	denominator.	

•  “Negative	sampling”.	 42	



Word2Vec	Example	
•  MDS	visualization	of	a	set	of	related	words:	

•  Distances	between	vectors	might	represent	semantics.	
http://ruder.io/secret-word2vec/	
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Word2Vec	
•  Subtracting	word	vectors	to	find	related	vectors.	

https://arxiv.org/pdf/1301.3781.pdf	
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Graph	Drawing	
•  A	closely-related	topic	to	MDS	is	graph	drawing:	
– Given	a	graph,	how	should	we	display	it?	
–  Lots	of	interesting	methods:	https://en.wikipedia.org/wiki/Graph_drawing	

45	



Bonus	Slide:	Multivariate	Chain	Rule	
•  Recall	the	univariate	chain	rule:	

•  The	multivariate	chain	rule:	

•  Example:	
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Bonus	Slide:	Multivariate	Chain	Rule	for	MDS	
•  General	MDS	formulation:	

•  Using	multivariate	chain	rule	we	have:	

•  Example:	
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t-Distributed	Stochastic	Neighbour	Embedding	
•  t-SNE	is	a	special	case	of	MDS	(specific	d1,	d2,	and	d3	choices):	

–  d1:	for	each	xi,	compute	probability	that	each	xj	is	a	‘neighbour’.	
•  Computation	is	similar	to	k-means++,	but	most	weight	to	close	points	(Gaussian).	
•  Doesn’t	require	explicit	graph.	

–  d2:	for	each	zi,	compute	probability	that	each	zj	is	a	‘neighbour’.	
•  Similar	to	above,	but	uses	student’s	t	(grows	really	slowly	with	distance).	
•  Avoids	‘crowding’,	because	you	have	a	huge	range	that	large	distances	can	fill.	

–  d3:	Compare	xi	and	zi	using	an	entropy-like	measure:	
•  How	much	‘randomness’	is	in	probabilities	of	xi	if	you	know	the	zi	(and	vice	versa)?	

•  Interactive	demo:	https://distill.pub/2016/misread-tsne	
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t-SNE	on	Wikipedia	Articles	

49	
http://jasneetsabharwal.com/assets/files/wiki_tsne_report.pdf	



t-SNE	on	Product	Features	

http://blog.kaggle.com/2015/06/09/otto-product-classification-winners-interview-2nd-place-alexander-guschin/	
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t-SNE	on	Leukemia	Heterogeneity	

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/	
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