CPSC 340:
Machine Learning and Data Mining

Multi-Dimensional Scaling

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.



Admin

* Assignment 5:
— Due Friday

* Assignment 6:
— Remember to request partner



Latent-Factor Models for Visualization

PCA for visualization:
— We’re using PCA to get the location of the z, values.
— We then plot the z, values as locations in a scatterplot.

But PCA is a parametric linear model
PCA may not find obvious low-dimensional structure.

We could use change of basis or kernels: but still need to pick
basis.



Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS) is a crazy idea:

— Let’s directly optimize the z, values.
e “Gradient descent on the points in a scatterplot”.

— Needs a “cost” function saying how “good” the z locations are.
* Traditional MDS cost function:
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Multi-Dimensional Scaling

e Multi-dimensional scaling (MDS):

— Directly optimize the flnal locations of the z, values.
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Multi-Dimensional Scaling

e Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

£(2)= 25 (=2l ~ [l = xll)?
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— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

e Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

£(2)= 25 (=2l ~ [l = xll)?
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— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

e Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

£(2)= 25 (=2l ~ [l = xll)?
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— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

e Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

£(2)= 25 (=2l ~ [l = xll)?
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— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

e Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

£(2)= 25 (=2l ~ [l = xll)?
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* Cannot use SVD to compute solution:

— Instead, do gradient descent on the z, values.

— You “learn” a scatterplot that tries to visualize high-dimensional data.

— Not convex and sensitive to initialization.
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Different MDS Cost Functions

 MDS default objective: squared difference of Euclidean norms:

-F(Z) Z f (”z ~2; || = ”y, x)H)

* But we can make z. match different distances/similarities:

*F(Z) ff_ 43(13(2.)23) d\(x;,xj))

1= J'-l"'l

— Where the functions are not necessarily the same:
* d, is the high-dimensional distance we want to match.
* d, is the low-dimensional distance we can control.
* d, controls how we compare high-/low-dimensional distances.



Different MDS Cost Functions

* MDS default objective function with general distances/similarities:

'F(Z) = é\-é\ J3(la(23]25) - d|(Xr)Xj))

‘,‘_‘l j"-‘l" |

 PCA is a special case of MDS
— using d,(x;,x) = x;'x; and d,(z;,z) = z'z;and centered x;).
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Different MDS Cost Functions

* MDS default objective function with general distances/similarities:

‘F(Z) = iﬂ.é\ J}(tLa(Z;]Zj) - d|(Xx)Xj))

',‘.-'I j"'-l" |

* Another possibility: d,(x,x) = | |x;— x| [, and d,(z,z) = | |z;— 7] |.
— The z, approximate the high-dimensional L,-norm distances.



Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.

— Leads to “crowding” effect like with PCA.

e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so Iarge/small distances are more comparable.

f(z)= Z :%.(dl(z'ﬁ) h, ’3))
et ) ) (X.;)S

— Denominator reduces focus on large distances.
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PC 2 (8.8% var.)

e e o ¥ F ¥

Sammon’s Mapping

* Visualizing “metagenomes”

Aquatic
Extreme

Food

Fossil
Host-associated
Misc
Terrestrial
Airways
Feces/Gl tract
Oral

Skin

UG tract

Virus—enriched

Accuracy: 70.0%

*
+

PC 1 (16.5% var.)

PC 2 (9.9% var.)

Accuracy: 78.3%

Component 2

MDS + Sammon

Accuracy: 81.8%

PC 1 (16.9% var.)

Component 1
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Learning Manifolds

Consider data that lives on a low-dimensional “manifold”.

 Example is the ‘Swiss roll’:
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Learning Manifolds

* Consider data that lives on a low-dimensional “manifold”.

— With usual distances, PCA/MDS will not discover non-linear manifolds.
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Learning Manifolds

* Consider data that lives on a low-dimensional “manifold”.

— With usual distances, PCA/MDS will not discover non-linear manifolds.

* We need geodesic distance: the distance through the manifold.
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Manifolds in Image Space

* Consider slowly-varying transformation of image:
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* Images are on a manifold in the high-dimensional space.
— Euclidean distance doesn’t reflect manifold structure.
— Geodesic distance is distance through space of rotations/resizings.
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ISOMAP

* ISOMAP is latent-factor model for visualizing data on manifolds:
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Digression: Constructing Neighbour Graphs

* Sometimes you can define the graph/distance without features:
— Facebook friend graph.
— Connect YouTube videos if one video tends to follow another.

* But we can also convert from features x, to a “neighbour” graph:

— Approach 1 (“epsilon graph”): connect x; to all x; within some threshold .
* Like we did with density-based clustering.

— Approach 2 (“KNN graph”): connect x; to x; if:
* X is a KNN of x; OR x; is @ KNN of x..

— Approach 2 (“mutual KNN graph”): connect x; to x; if:
* % is a KNN of x; AND x; is a KNN of x;.
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Converting from Features to Graph

Data points

kNN graph, k=5
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ISOMAP

* ISOMAP is latent-factor model for visualizing data on manifolds:

1. Find the neighbours of each point.
e Usually “k-nearest neighbours graph”, or “epsilon graph”.

2. Compute edge weights:

e Usually distance between neighbours.

3. Compute weighted shortest path between all points.| ~
* Dijkstra or other shortest path algorithm. /

4. Run MDS using these distances. |
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ISOMAP

* ISOMAP can “unwrap” the roll:
— Shortest paths are approximations to geodesic distances.

Orignal Duts 29 TSoMAP

......

-

* Sensitive to having the right graph:
— Points off of manifold and gaps in manifold cause problems.
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ISOMAP on Hand Images

-
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Wrist rotation
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Sammon’s Map vs. ISOMAP vs. PCA

IItS

MNIST d

PCA

TSoMAP
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MNIST digits: Sammon’s Map vs. ISOMAP vs. t-SNE
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MNIST digits: Sammon’s Map vs. ISOMAP vs. t-SNE

© O ~NO b WN-=O

-
+ +
+

" #
ﬁ“’ W
e
ety " # ‘!.’.
-

Rememée( This ig \mfufffvi.segl7 alaoriﬂm.r do ﬂgf

know The [abel. 29



s MNIST digits: Sammon’s Map vs. ISOMAP vs. t-SNE
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MNIST digits: Sammon’s Map vs. ISOMAP vs. t-SNE
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MNIST digits: Sammon’s Map vs. ISOMAP vs. t-SNE
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t-Distributed Stochastic Neighbour Embedding

* One key idea in t-SNE:

— Focus on neighbour distances by allowing large variance in large distances.
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End of Part 4: Key Concepts

e We discussed linear latent- factor models:

{\(WZ7 25((\/\,’)2.“’()2
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= Iz w - Xl

* Represent X’ as linear combination of latent factors ‘w_".

— Latent features ‘z” give a lower-dimensional version of each ‘x.

— When k=1, finds direction that minimizes squared orthogonal distance.
* Applications:

— Outlier detection, dimensionality reduction, data compression, features for
linear models, visualization, factor discovery, filling in missing entries.



End of Part 4: Key Concepts

We discussed linear latent-factor models:
24 q 2
£(W,2) ‘Z)% (w2 =)
i )s
Principal component analysis (PCA):
— Often uses orthogonal factors and fits them sequentially (via SVD).

Non-negative matrix factorization:

— Uses non-negative factors giving sparsity.
— Can be minimized with projected gradient.
Many variations are possible:

— Different regularizers (sparse coding) or loss functions (robust/binary PCA).
— Missing values (recommender systems) or change of basis (kernel PCA).
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End of Part 4: Key Concepts

* We discussed multi-dimensional scaling (MDS):
— Non-parametric method for high-dimensional data visualization.

— Tries to match distance/similarity in high-/low-dimensions.
e “Gradient descent on scatterplot points”.

* Main challenge in MDS methods is “crowding” effect:
— Methods focus on large distances and lose local structure.

* Common solutions:
— Sammon mapping: use weighted cost function.
— ISOMAP: approximate geodesic distance using via shortest paths in graph.
— t-SNE: give up on large distances and focus on neighbour distances.



Summary

Multi-dimensional scaling is a non-parametric latent-factor model.

Different MDS distances/losses/weights usually gives better
results.

Manifold learning focuses on low-dimensional curved structures.

ISOMAP is most common approach:
— Approximates geodesic distance by shortest path in weighted graph.

t-SNE is a promising recent MDS method.



Related method to ISOMAP

* “local linear embedding”.



Does t-SNE always outperform PCA?

* Consider 3D data living on a 2D hyper-plane:
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Latent-Factor Representation of Words

For natural language, we often represent words by an index.
— E.g., “cat” is word 124056.

But this may be inefficient:
— Should “cat” and “kitten” share parameters in some way?

We want a latent-factor representation of individual words:
— Closeness in latent space should indicate similarity.
— Distances could represent meaning?

Recent alternative to PCA/NMF is word2vec...



Word2Vec

Two variations on objective in word2vec:
— Try to predict word from surrounding words (continuous bag of words).
— Try to predict surrounding words from word (skip-gram).

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

w(t-2) 4 w(t-2)

/
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\
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(
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CcBOW Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.



Word2Vec

In both cases, each word ‘i’ is represented by a vector z..
In continuous bag of words, we optimize the likelihood:

P()(l' l Xs..,-,,.,.,]) = 7T f,(x,l \’)) (incjflwn(!mre 033'"'"’72"‘)

).é Surtownd

-
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j“""ﬂ"’d 2 BXP(ZZZJ'>
csl

Denominator sums over all words.

For skip-gram it will be over all possible surrounding words.

— Common trick to speed things up: samples terms in denominator.
* “Negative sampling”.



L] L] L ]
 MDS visualization of a set of related words:
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Word2Vec Example

e Distances between vectors might represent semantics.
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Word2Vec

Subtracting word vectors to find related vectors.

Table 8: Examples of the word pair relationships, using the best word vectors from Table |4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midficlder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

Table [8]shows words that follow various relationships. We follow the approach described above: the
relationship is defined by subtracting two word vectors, and the result is added to another word. Thus
for example, Paris - France + Italy = Rome. As it can be seen, accuracy is quite good, although



Graph Drawing

* A closely-related topic to MDS is graph drawing:
— Given a graph, how should we display it?
— Lots of interesting methods: https://en.wikipedia.org/wiki/Graph drawing
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e Recall the univariate chain rule:

Bonus Slide: Multivariate Chain Rule
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Bonus Slide: Multivariate Chain Rule for MDS

e General MDS formulatlon

wE 2 Z J(J( x), & (2;,2))

zém = ")—' ')J 7

* Using multivariate chain rule we have:
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t-Distributed Stochastic Neighbour Embedding

* t-SNE is a special case of MDS (specific d,, d,, and d choices):

— d,: for each x;, compute probability that each x; is a ‘neighbour’.
 Computation is similar to k-means++, but most weight to close points (Gaussian).
* Doesn’t require explicit graph.

— d,: for each z, compute probability that each z; is a ‘neighbour’.
» Similar to above, but uses student’s t (grows really slowly with distance).
* Avoids ‘crowding’, because you have a huge range that large distances can fill.

— d;: Compare x; and z, using an entropy-like measure:
* How much ‘randomness’ is in probabilities of x; if you know the z, (and vice versa)?

* |nteractive demo: https://distill.pub/2016/misread-tsne

48



t-SNE on Wikiped

http://jasneetsabharwal.com/assets/files/wiki_tsne_report.pdf

ia Articles
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t-SNE on Product Features

http://blog.I<agg|e.com/2015/06/09/otto—product—classification—winners—interview—2nd—place—aI‘exander—guschin/
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t-SNE on Leukemia Heterogeneity

Not manually gated @ CD4Tcels @ CD8Tcells
® CD20+Bcells @ CD20-Bcells @& CD11b- Monocytes
® CD11b+ Monocytes @  NK cells

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/



