
CPSC	340:
Machine	Learning	and	Data	Mining

Recommender	Systems

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart. 1



Motivation:	Product	Recommendation
• A	customer	comes	to	your	website	looking	to	buy	at	item
• You	want	to	find	similar	items	that	they	might	also	buy
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User-Product	Matrix
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Amazon	Product	Recommendation
• Amazon	product	recommendation	method:

• Find	the	KNNs	across	columns.
– Find	indices	‘j’	minimizing	a	distance	measure	between	xquery and	xj.
– Euclidean	distance,	normalized	Euclidean	distance,	cosine	similarity
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Cosine	similarity
• The	cosine	similarity	of	vectors	‘x’	and	‘y’	is	defined	as

– “Maximize	cosine	of	the	angle	between	xquery and	xj”
– Yields	the	same	ranked	KNNs	as	normalized	Euclidean	distance

• Normalized	Euclidean	distance:	first	divide	each	column	by	its	norm,	xi/||xi||.

– If	X	is	a	binary	matrix,	dot	product	counts	the	number	of	users	in	common
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Cosine	similarity
• The	cosine	similarity	of	vectors	‘x’	and	‘y’	is	defined	as

• Cosine	similarity	finds	more	popular	items	than	Euclidean	distance
– In	high	dimension,	and	with	sparse	vectors,	dot	products	are	small
– Thus	most	angles	are	large	(there	are	so	many	users	à directions!)
– Very	small	vectors	have	a	Euclidean	distance	of	around	||xquery||
– This	might	be	“closer”	than	larger	vectors	with	smaller	angles

6

xT y

||x|| · ||y||

xquery

xi (smaller	angle)

xj (smaller	distance)



Cost	of	Finding	Nearest	Neighbours
• With	‘n’	users	and	‘d’	products,	finding	KNNs	costs	O(nd).
– Not	feasible	if	‘n’	and	‘d’	are	in	the	millions.

• It’s	faster	if	the	user-product	matrix	is	sparse
– But	data	set	is	still	enormous	in	the	Amazon	example.

• We’ve	seen	a	lot	of	“closest	point”	problems:
– KNN	classification.
– K-means	clustering.
– Density-based	clustering.
– Amazon	product	recommendation.

• Bonus	slides:	strategies	for	speeding	this	up.
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(pause)
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Recommender	Systems
• There	are	several	types	recommendation	problems.
– We	might	want	to	recommend	items	given	an	item.

• Amazon	product	recommendation.
– We	might	want	to	recommend	items	given	a	user.

• E.g.	Amazon	homepage,	Netflix	homepage.
– Or	a	combination	(personalized	item-based	recommendation).

• Recommender	systems	are	now	everywhere:
– Music,	news,	books,	jokes,	experts,	restaurants,	friends,	dates,	etc.

• Often	this	problem	is	framed	as	predicting	missing	ratings.
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Recommender	System	Motivation:	Netflix	Prize
• Netflix	Prize:
– 100M	ratings	from	0.5M	users	on	18k	movies.
– Grand	prize	was	$1M	for	first	team	to	reduce	squared	error	by	10%.
– Started	on	October	2nd,	2006.
– Netflix’s	system	was	first	beat	October	8th.
– 1%	error	reduction	achieved	on	October	15th.
– Steady	improvement	after	that.

• ML	methods	soon	dominated.

– One	obstacle	was	‘Napolean Dynamite’	problem:
• Some	movie	ratings	seem	very	difficult	to	predict.
• Should	only	be	recommended	to	certain	groups.
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Lessons	Learned	from	Netflix	Prize
• Prize	awarded	in	2009:
– Ensemble	method	that	averaged	107	models.
– Increasing	diversity	of	models	more	important	than	improving	models.

• Winning	entry	(and	most	entries)	used	collaborative	filtering:
– Methods	that	only	looks	at	ratings,	not	features	of	movies/users.

• A	simple	collaborative	filtering	method	that	does	really	well	(7%):
– “Regularized	matrix	factorization”.	Now	adopted	by	many	companies.
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Collaborative	Filtering	Problem
• Collaborative	filtering	is	‘filling	in’	the	user-item	matrix:

• We	have	some	ratings	available	with	values	{1,2,3,4,5}.
• We	want	to	predict	ratings	“?”	by	looking	at	available	ratings.
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Collaborative	Filtering	Problem
• Collaborative	filtering	is	‘filling	in’	the	user-item	matrix:

• What	rating	would	“Ryan	Reynolds”	give	to	“Green	Lantern”?
– Why	is	this	not	completely	crazy?	We	may	have	similar	users	and	movies.
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Matrix	Factorization	for	Collaborative	Filtering
• Our	standard	latent-factor	model	for	entries	in	matrix	‘Y’:

• User	‘i’	has	latent	features	zi.
– Feature	1	could	be	“likes	romantic	comedies”

• Movie	‘j’	has	latent	features	wj.
– Feature	1	could	be	“has	elements	of	a	romantic	comedy”

• We’re	automatically	learning	both	the	“weights”	and	the	“features”
– There’s	a	w-z	symmetry	that’s	not	present	in	linear	regression	or	even	PCA
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Matrix	Factorization	for	Collaborative	Filtering
• Our	standard	latent-factor	model	for	entries	in	matrix	‘Y’:

• Our	loss	functions	sums	over	available	ratings	‘R’:

• And	we	add	L2-regularization to	both	types	of	features.
– Basically,	this	is	regularized	PCA	on	the	available	entries	of	Y:
– But	with	a	very	different	interpretation

• We	cannot	use	SVD	because	of	the	missing	entries
– Can	use	GD,	SGD,	alternating	least	squares
– Weird	extra	regularization:	keep	the	missing	entries	but	with	low	weights
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Adding	Global/User/Movie	Biases
• Our	standard	latent-factor	model	for	entries	in	matrix	‘Y’:

• Sometimes	we	don’t	assume	the	yij have	a	mean	of	zero:
– We	could	add	bias	β reflecting	average	overall	rating:

– We	could	also	add	a	user-specific	bias	βi and	item-specific	bias	βj.

• Some	users	rate	things	higher	on	average,	and	movies	are	rated	better	on	average.
• These	might	also	be	regularized.
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Beyond	Accuracy	in	Recommender	Systems
• Winning	system	of	Netflix	Challenge	was	never	adopted.
• Other	issues	important	in	recommender	systems:
– Diversity:	how	different	are	the	recommendations?

• If	you	like	‘Battle	of	Five	Armies	Extended	Edition’,	recommend	Battle	of	Five	Armies?
• Even	if	you	really	really like	Star	Wars,	you	might	want	non-Star-Wars	suggestions.

– Persistence:	how	long	should	recommendations	last?
• If	you	keep	not	clicking	on	‘Hunger	Games’,	should	it	remain	a	recommendation?

– Trust:	tell	user	why you	made	a	recommendation.
• Quora gives	explanations	for	recommendations.

– Social	recommendation:	what	did	your	friends	watch?
– Freshness:	people	tend	to	get	more	excited	about	new/surprising	 things.

• Collaborative	filtering	does	not	predict	well	for	new	users/movies.
– New	movies	don’t	yet	have	ratings,	and	new	users	haven’t	rated	anything.
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Unsupervised	vs.	Supervised	Recommenders
• Main	types	of	approaches:

1. Collaborative	filtering.
• “Unsupervised”	learning (have	label	matrix	‘Y’	but	no	features):

– We	only	have	labels	yij (rating	of	user	‘i’	for	movie	‘j’).

• Example:	Amazon	recommendation	algorithm.

2. Content-based	filtering.
• Supervised	learning:

– Extract	features	xi of	users	and	items,	building	model	to	predict	rating	yi given	xi.
– Apply	model	to	prediction	for	new	users/items.

• Example:	Gmail’s	“important	messages”	
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Content-Based	vs.	Collaborative	Filtering
• Our	latent-factor	approach	to	collaborative	filtering (Part	4):

– Learns	about	each	user/movie,	but	can’t	predict	on	new	users/movies.
• A	linear	model	approach	to	content-based	filtering (Part	3):

– Here	xij is	a	vector	of	features for	the	movie/user.
• Usual	supervised	learning	setup:	‘y’	would	contain	all	the	yij,	X	would	have	xij as	rows.

– Can	predict	on	new	users/movies,	but	can’t	learn	about	each	user/movie.		
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Hybrid	Approaches
• Hybrid	approaches	combine	content-based/collaborative	filtering:
– SVDfeature (won	“KDD	Cup”	in	2011	and	2012).

– Note	that	xij is	a	feature	vector.	Also,	‘w’	and	‘wj’	are	different	parameters.20



Social	Regularization
• Many	recommenders	are	now	connected	to	social	networks.
– “Login	using	you	Facebook	account”.

• Often,	people	like	similar	movies	to	their	friends.

• Recent	recommender	systems	use	social	regularization.
– Add	a	“regularizer”	encouraging	friends’	weights	to	be	similar:

– If	we	get	a	new	user,	recommendations	are	based	on	friend’s	preferences.
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(pause)

22



Association	Rules
• Consider	two	sets of	items	‘S’	and	‘T’:
– For	example:	S	=	{sunglasses,	sandals}	and	T	=	{sunscreen}.

• We’re	going	to	consider	association	rules	(S	=>	T):
– If	you	buy	all	items	‘S’,	you	are	likely	to	also	buy	all	items	‘T’.
– E.g.,	if	you	buy	sunglasses	and	sandals,	you	are	likely	to	buy	sunscreen.
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Association	Rules	vs.	Clustering
Sunglasses Sandals Sunscreen Snorkel

1 1 1 0

0 0 1 0

1 0 1 0

0 1 1 1

1 0 0 0

1 1 1 1

0 0 0 0

• Clustering:
– Which	objects are	related?
– Grouping	rows	together.
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Association	Rules	vs.	Clustering
Sunglasses Sandals Sunscreen Snorkel

1 1 1 0

0 0 1 0

1 0 1 0

0 1 1 1

1 0 0 0

1 1 1 1

0 0 0 0

• Clustering:
– Which	objects are	related?
– Grouping	rows	together.

• Association	rules:
– Which features	occur	together?
– Relating	groups	of	columns.
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Support	and	Confidence
• We	“score”	rule	(S	=>	T)	by	“support”	and	“confidence”.
– Running	example:	{sunglasses,sandals}	=>	suncreen.

• Support:
– How	often	does	‘S’	happen?

• How	often	were	sunglasses	and	sandals	bought	together?
– Marginal	probability:	p(S	=	1).

• Confidence:
– When	‘S’	happens,	how	often	does	‘T’	happen?
– When	sunglasses+sandals were	bought,	how	often	was	sunscreen	bought?
– Conditional	probability:	p(T	=	1|	S	=	1).

26



Finding	Sets	with	High	Support
• We	can	do	this	with	the	“a	priori	algorithm”
• Finding	high	confidence	is	easier
• See	bonus	slide	for	details
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Spurious	Associations
• For	large	‘d’,	high	probability	of	returning	spurious	associations:
– With	random	data,	one	of	the	2d	rules	is	likely	to	look	strong.

• Other	associations	you	might	not	want	to	act	on:
– Beer	and	diapers
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Summary
• Recommender	systems try	to	recommend	products.
• Nearest	neighbour	recommenders
– Find	similar	items	using	nearest	neighbour	search.

• Collaborative	filtering tries	to	fill	in	missing	values	in	a	matrix.
– Matrix	factorization	is	a	common	approach.
– This	can	be	turned	into	a	recommendation	in	two	ways:

• Nearest	neighbours in	latent	space
• Find	items	with	high	predicted	ratings

• Association	Rules:	(S	=>	T)	means	seeing	S	means	T	is	likely.
• Strategies	for	fitting	linear	models	with	binary/categorical	features.
• Global	vs.	local	features	allows	‘personalized’	predictions.
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Linear	Models	with	Binary	Features
• What	is	the	effect	of	a	binary	feature	on	linear	regression?

• Adding	a	bias	w0,	our	linear	model	is:

• The	‘gender’	variable	causes	a	change	in	y-intercept:

Year Gender

1975 1

1975 0

1980 1

1980 0

Height

1.85

2.25

1.95

2.30
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Linear	Models	with	Binary	Features
• What	if	different	genders	have	different	slopes?
– You	can	use	gender-specific	feature	(as	if	d=4).
– This	is	equivalent	to	separating	the	data	set	by	gender	and	
training	2	models

Bias
(gender =	1)

Year	
(gender =	1)

Bias	
(gender	=	0)

Year
(gender	=	0)

1 1975 0 0

0 0 1 1975

1 1980 0 0

0 0 1 1980

Year Gender

1975 1

1975 0

1980 1

1980 0
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The	same	holds	for	more	categories
Feature	1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …
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Linear	Models	with	Categorical	Features
Feature	1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …
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Linear	Models	with	Categorical	Features
Feature	1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …
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Linear	Models	with	Categorical	Features
Feature	1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …
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Linear	Models	with	Categorical	Features
Feature	1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …
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Linear	Models	with	Categorical	Features
Feature	1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …
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Sharing	information	with	global	parameters
• But	with	‘local’	model	for	each	gender	we	don’t	share	information.
• To	share	information	across	genders,	include	a	‘global’	version.

• ‘Global’	year	feature:	influence	of	time	on	both	genders.
– E.g.,	improvements	in	technique.

• ‘Local’	year	feature:	gender-specific	deviation	from	global	trend.
– E.g.,	different	effects	of	performance-enhancing	drugs.

Year Year	(if gender =	1) Year	(if gender	=	0)

1975 1975 0

1975 0 1975

1980 1980 0

1980 0 1980

Year Gender

1975 1

1975 0

1980 1

1980 0
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Motivation:	Identifying	Important	E-mails
• How	can	we	automatically	identify	‘important’	e-mails?

• We	have	a	big	collection	of	e-mails:
– Mark	as	‘important’	if	user	takes	some	action	based	on	them.

• There	might	be	some	“universally”	important	messages:
– “This	is	your	mother,	something	terrible	happened,	give	me	a	call	ASAP.”

• But	your	“important”	message	may	be	unimportant	to	others.
– Similar	for	spam:	“spam”	for	one	user	could	be	“not	spam”	for	another. 39



The	Big	Global/Local	Feature	Table
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Predicting	Importance	of	E-mail	For	New	User
• Consider	a	new	user:
– Start	out	with	no	information	about	them.
– Use	global features	to	predict	what	is	important	to	generic	user.

• With	more	data,	update	global features	and	user’s	local	features:
– Local features	make	prediction	personalized.

– What	is	important	to	this user?
• Gmail’s	system:	classification	with	logistic	regression.
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Amazon	Product	Recommendation
• Consider	this	user-item	matrix:

• Using	Euclidean	distance:
– Product	1	is	most	similar	to	Product	3	(bought	by	lots	of	people).
– Product	2	is	most	similar	to	Product	4	(also	bought	by	John	and	Yoko).
– Product	3	is	equally	similar	to	Products	1,	5,	and	6.

• Does	not	take	into	account	that	Product	1	is	more	popular	than	5	and	6.
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Amazon	Product	Recommendation
• Consider	this	user-item	matrix	(normalized):

• Product	1	is	most	similar	to	Product	3	(bought	by	lots	of	people).
• Product	2	is	most	similar	to	Product	4	(also	bought	by	John	and	Yoko).
• Product	3	is	most	similar	to	Product	1.
– Normalization	means	it	prefers	the	popular	items.
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But	first	the	easy	case:	“Memorize	the	Answers”

• Easy	case:	you	have	a	limited	number	of	possible	test	examples.
– E.g.,	you	will	always	choose	an	existing	product (not	arbitrary	features).

• In	this	case,	just	memorize	the	answers:
– For	each	test	example,	compute	all	KNNs	and	store	pointers	to	answers.
– At	test	time,	just	return	a	set	of	pointers	to	the	answers.

• The	answers	are	called	an	inverted	index,	queries	now	cost	O(k).
– Needs	an	extra	O(nk)	storage.
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Grid-Based	Pruning
• Assume	we	want	to	find	objects	within	a	distance	of	‘ε’ of	point	xi.
Divide	space	
into	squares	
of	length	ε.

Hash	examples	based	on	
squares:
Hash[“64,76”]	=	{x3,x70}
(Dict in	Python/Julia)
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Grid-Based	Pruning
• Which	squares	do	we	need	to	check?

Points	in	same	square	can	
have	distance	less	than	‘ε’.
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Grid-Based	Pruning
• Which	squares	do	we	need	to	check?

Points	in	adjacent	
squares can	have	
distance	less	than	
distance	‘ε’.

47



Grid-Based	Pruning
• Which	squares	do	we	need	to	check?

Points	in	non-adjacent
squares	must	have	
distance	more	than	‘ε’.
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Grid-Based	Pruning
• Assume	we	want	to	find	objects	within	a	distance	of	‘ε’ of	point	xi.
Divide	space	
into	squares	
of	length	ε.

Only	need	to	check	
points	in	same	and	
adjacent	squares.

Hash	examples	based	on	
squares:
Hash[“64,76”]	=	{x3,x70}
(Dict in	Python/Julia)
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Grid-Based	Pruning	Discussion
• Similar	ideas	can	be	used	for	other	“closest	point”	calculations.
– Can	be	used	with	any	norm.
– If	you	want	KNN,	can	use	need	grids	of	multiple	sizes.

• But	we	have	the	“curse	of	dimensionality”:
– Number	of	adjacent	regions	increases	exponentially:

• 2	with	d=1,	8	with	d=2,	26	with	d=3,	80	with	d=4,	252	with	d=5,	3d-1 in	d-dimension.
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Grid-Based	Pruning	Discussion
• Better	choices	of	regions:
– Quad-trees.
– Kd-trees.
– R-trees.
– Ball-trees.

• Works	better	than	squares,	but	worst	case	is	still	exponential.

https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/R-tree
http://www.astroml.org/book_figures/chapter2/fig_balltree_example.html
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Approximate	Nearest	Neighbours
• Approximate nearest	neighbours:
– We	allow	errors	in	the	nearest	neighbour calculation	to	gain	speed.

• A	simple	and	very-fast	approximate	nearest	neighbour method:
– Only check	points	within	the	same	square.
– Works	if	neighbours are	in	the	same	square.
– But	misses	neighbours in	adjacent	squares.

• A	simple	trick	to	improve	the	approximation	quality:
– Use	more	than	one	grid.
– So	“close”	points	have	more	“chances”	to	be	in	the	same	square.
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Approximate	Nearest	Neighbours
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Approximate	Nearest	Neighbours
• Using	multiple	sets	of	regions	improves	accuracy.
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Approximate	Nearest	Neighbours
• Using	multiple	sets	of	regions	improves	accuracy.
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Locality-Sensitive	Hashing
• Even	with	multiple	regions,	approximation	can	be	poor	for	large	‘d’.

• Common	Solution	(locality-sensitive	hashing):
– Replace	features	xi with	lower-dimensional	features	zi.

• E.g.,	turns	each	a	1000000-dimensional	xi into	a	10-dimensional	zi.

– Choose	random	zi to	preserve	high-dimensional	distances (bonus	slides).

– Find	points	hashed	to	the	same	square	in	lower-dimensional	‘zi’ space.
– Repeat with	different	random	zi values	to	increase	chances	of	success.
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Warm-Starting
• We’ve	used	data	{X,y}	to	fit	a	model.
• We	now	have	new	training	data	and	want	to	update	model.

• Do	we	need	to	re-fit	from	scratch?

• This	is	the	warm	starting	problem.
– It’s	easier	to	warm	start	some	models	than	others.
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Easy	Case:	K-Nearest	Neighbours	and	Counting
• K-nearest	neighbours:
– KNN	just	stores	the	training	data,	so	just	store	the	new	data.

• Counting-based models:
– Models	that	base	predictions	on	frequencies	of	events.
– E.g.,	naïve	Bayes.

– Just	update	the	counts:
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Medium	Case:	L2-Regularized	Least	Squares
• L2-regularized	least	squares	is	obtained	from	linear	algebra:

– Cost	is	O(nd2 +	d3).

• Given	one	new	point,	we	need	to	compute:
– XTy with	one	row	added,	which	costs	O(d).
– Old	XTX	plus	xixiT,	which	costs	O(d2).	
– Solution	of	linear	system,	which	costs	O(d3).
– So	cost	of	adding	‘t’	data	point	is	O(td3).

• With	“matrix	factorization	updates”,	can	reduce	this	to	O(td2).
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Medium	Case:	Logistic	Regression
• We	fit	logistic	regression	by	gradient	descent	on	a	convex	function.

• With	new	data,	convex	function	f(w)	changes	to	new	function	g(w).

• If	we	don’t	have	much	more	data,	‘f’	and	‘g’	will	be	“close”.
– Start	gradient	descent	on	‘g’	with	minimizer	of	‘f’.
– You	can	show	that	it	requires	fewer	iterations.
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Hard	Cases:	Non-Convex/Greedy	Models
• For	decision	trees	we	could	also	“restart”	the	algorithm:
– With	new	data,	consider	splitting	nodes	that	we	didn’t	split	before.

• However,	this	won’t	in	general	give	same	result	as	re-fitting.

• Similar	heuristics/conclusions	for	other	non-convex/greedy	models:
– K-means	clustering.
– Collaborative	filtering.

• On	the	other	hand,	you	can	add	new	examples	and	features	and	
continue	PCA algorithms	(“non-convex	but	harmless”).
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Tensor	Factorization
• Tensors	are	higher-order	generalizations	of	matrices:

• Generalization	of	matrix	factorization	is	tensor	factorization:

• Useful	if	there	are	other	relevant	variables:
• Instead	of	ratings	based	on	{user,movie},	ratings	based	{user,movie,age}.
• Useful	if	ratings	change	over	time.
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Motivation	for	Topic	Models
• Want	a	model	of	the	“factors”	making	up	documents.
– Instead	of	latent-factor	models,	they’re	called	topic	models.
– The	canonical	topic	model	is	latent	Dirichlet allocation	(LDA).

– “Topics”	could	be	useful	for	things	like	searching	for	relevant	documents.

http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/
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Term	Frequency	– Inverse	Document	Frequency

• In	information	retrieval,	classic	word	importance	measure	is	TF-IDF.

• First	part	is	the	term	frequency	tf(t,d)	of	term	‘t’	for	document	‘d’.
– Number	of	times	“word”	‘t’	occurs	in	document	‘d’,	divided	by	total	words.
– E.g.,	7%	of	words	in	document	‘d’	are	“the”	and	2%	of	the	words	are	“Lebron”.

• Second	part	is	document	frequency	df(t,D).
– Compute	number	of	documents	that	have	‘t’ at	least	once.
– E.g.,	100%	of	documents	contain	“the”	and	0.01%	have	“LeBron”.

• TF-IDF	is	tf(t,d)*log(1/df(t,D)).
65



Term	Frequency	– Inverse	Document	Frequency

• The TF-IDF statistic	is	tf(t,d)*log(1/df(t,D)).
– It’s	high	if	word	‘t’	happens	often	in	document	‘d’,	but	isn’t	common.
– E.g.,	seeing	“LeBron”	a	lot	it	tells	you	something	about	“topic”	of	article.
– E.g.,	seeing	“the”	a	lot	tells	you	nothing.

• There	are	*many*	variations	on	this	statistic.
– E.g.,	avoiding	dividing	by	zero	and	all	types	of	“frequencies”.

• Summarizing	‘n’	documents	into	a	matrix	X:
– Each	row	corresponds	to	a	document.
– Each	column	gives	the	TF-IDF	value	of	a	particular	word	in	the	document.
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Latent	Semantic	Indexing
• TF-IDF features	are	very	redundant.
– Consider	TF-IDFs	of	“LeBron”,	“Durant”,	“Harden”,	and	“Kobe”.	
– High	values	of	these	typically	just	indicate	topic	of	“basketball”.

• We	can	probably	compress	this	information	quite	a	bit.

• Latent	Semantic	Indexing/Analysis:
– Run	latent-factor	model	(like	PCA	or	NMF)	on	TF-IDF	matrix	X.
– Treat	the	principal	components	as	the	“topics”.
– Latent	Dirichlet allocation	is	a	variant	that	avoids	weird	df(t,D)	heuristic.
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Support	and	Confidence
• We’re	going	to	look	for	rules	that:

1. Happen	often	(high	support),	p(S	=	1)	≥	‘s’.
2. Are	reliable	(high	confidence),	p(T	=	1|	S	=	1)	≥ ‘c’.

• Association	rule	learning	problem:
– Given	support	‘s’	and	confidence	‘c’.
– Output	all	rules	with	support	at	least	‘s’	and	confidence	at	least	‘c’.

• A	common	variation	is	to	restrict	size	of	sets:
– Returns	all	rules	with	|S|	≤	k	and/or	|T|	≤ k.
– Often	for	computational	reasons.
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Bonus	Slide:	Tensor	Factorization
• Tensors	are	higher-order	generalizations	of	matrices:

• Generalization	of	matrix	factorization	is	tensor	factorization:

• Useful	if	there	are	other	relevant	variables:
• Instead	of	ratings	based	on	{user,movie},	ratings	based	{user,movie,age}.
• Useful	if	ratings	change	over	time.
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Bonus	Slide:	Sequential	Pattern	Analysis
• Finding	patterns	in	data	organized	according	to	a	sequence:
– Customer	purchases:

• ‘Star	Wars’	followed	by	‘Empire	Strikes	Back’	followed	by	‘Return	of	the	Jedi’.
– Stocks/bonds/markets:

• Stocks	going	up	followed	by	bonds	going	down.
• In	data	mining,	called	sequential	pattern	analysis:
– If	you	buy	product	A,	are	you	likely	to	buy	product	B	at	a	later	time?

• Similar	to	association	rules,	but	now	order	matters.
– Many	issues	stay	the	same.

• Exist	sequential	versions	of	many	association	rule	methods:
– Generalized	sequential	pattern	(GSP)	algorithm	is	like	a	priori	algorithm.
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Association	Rules
• Interpretation	in	terms	of	conditional	probability:
– The	rule	(S	=>	T)	means	that	p(T	=	1	|	S	=	1)	is	‘high’.

I’m	using	p(T	=	1	|	S	=	1)	for	p(T1 =	1,	T2 =	1,…,	Tk =	1	|	S1 =	1,	S2 =	1,…,	Sc =	1).

• Association	rules	are	directed	but	not	necessarily	causal:

– p(T	|	S)	≠ p(S	|	T).
• E.g.,	buying	sunscreen	doesn’t	necessarily	imply	buying	sunglasses/sandals:

– The	correlation	could	be	backwards	or	due	to	a	common	cause.
• E.g.,	the	common	cause	is	that	you	are	going	to	the	beach.
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Applications	of	Association	Rules
• Which	foods	are	frequently	eaten	together?
• Which	genes	are	turned	on	at	the	same	time?
• Which	traits	occur	together	in	animals?
• Where	do	secondary	cancers	develop?
• Which	traffic	intersections	are	busy/closed	at	the	same	time?
• Which	players	outscore	opponents	together?

http://www.exploringnature.org/db/view/624
https://en.wikipedia.org/wiki/Metastasis
http://basketball-players.pointafter.com/stories/3791/most-valuable-nba-duos#30-atlanta-hawks
http://modo.coop/blog/tips-from-our-pros-avoiding-late-charges-during-summer

72



Woes	with	notation/definitions
• In	some	books/sources,	support	is	defined	as	on	the	previous	slide
– For	example	Wikipedia	or	Mining	of	Massive	Datasets	

• In	other	sources,	support	is	defined	as
– How	often	does															 (S	and	T)	happen?

• How	often	were	sunglasses,	sandals	and	sunscreen	bought	together?
– Joint	probability:	p(S	=	1,T=1).
– For	example	in	Database	Management	Systems by	Ramakrishnan &	
Gehrke

• Furthermore,	in	some	texts,	for	a	rule	S=>T,	T	must	be	a	single	item.	
In	other	cases	it	can	itself	be	a	set.
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Finding	Sets	with	High	Support
• First	let’s	focus	on	finding	sets	‘S’	with	high	support	(“frequent	itemsets”)
• How	do	we	compute	p(S	=	1)?

– If	S	=	{bread,	milk},	we	count	proportion	of	times	they	are	both	“1”.

Bread Eggs Milk Oranges

1 1 1 0

0 0 1 0

1 0 1 0

0 1 0 1

… … … …
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Challenge	in	Learning	Association	Rule
• Consider	the	problem	of	finding	all	sets	‘S’	with	p(S	=	1)	≥	s.
– With	‘d’	features	there	are 2d-1	possible	sets.

• It	takes	too	long	to	even	write	all	sets	unless	‘d’	is	tiny.
• Can	we	avoid	testing	all	sets?
– Yes,	using	a	basic	property	of	probabilities…
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Upper	Bound	on	Joint	Probabilities
• Suppose	we	know	that	p(S	=	1)	≥ s.
• Can	we	say	anything	about	p(S	=	1,A	=	1)?
– Probability	of	buying	all	items	in	‘S’,	plus	another	item	‘A’.

• Yes,	p(S	=	1,A	=	1)	cannot	be	bigger than	p(S	=	1).

• E.g.,	probability	of	rolling	{4,5}	on	2	dice	(1/36)	is	less	than	rolling	4	on	one	die	(1/6).76



Support	Set	Pruning
• This	property	means	that	p(S1 =	1)	<	s	implies	p(S1 =	1,	S2 =	1)	<	s.
– If	p(sunglasses=1)	<	0.1,	then	p(sunglasses=1,sandals=1)	is	less	than	0.1.
– We never	consider	p(S1 =	1,	S2 =	1)	if	p(S1 =	1)	has	low	support.	

http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap6_basic_association_analysis.pdf
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Support	Set	Pruning
• This	property	means	that	p(S1 =	1)	<	s	implies	p(S1 =	1,	S2 =	1)	<	s.
– If	p(sunglasses=1)	<	0.1,	then	p(sunglasses=1,sandals=1)	is	less	than	0.1.
– We never	consider	p(S1 =	1,	S2 =	1)	if	p(S1 =	1)	has	low	support.	

http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap6_basic_association_analysis.pdf
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A	Priori	Algorithm
• A	priori algorithm	for	finding	all	subsets	with	p(S	=	1)	>=	s.

1. Generate	list	of	all	sets	‘S’	that	have	a	size	of	1.
2. Set	k	=	1.	
3. Prune	candidates	‘S’	of	size	‘k’	where	p(S	=	1)	<	s.
4. Add	all	sets	of	size	(k+1)	that	have	all	subsets	of	size	k	in	current	list.
5. Set	k	=	k	+	1	and	go	to	3.

http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap6_basic_association_analysis.pdf
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A	Priori	Algorithm

Let’s	take	minimum	support	as	s	=	0.30.	

First	compute	probabilities	for	sets	of	size	k	=	1:
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A	Priori	Algorithm

Let’s	take	minimum	support	as	s	=	0.30.	

First	compute	probabilities	for	sets	of	size	k	=	1:

Combine	sets	of	size	k=1	with	support	‘s’	to	make	sets	of	size	k	=	2:
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A	Priori	Algorithm

Let’s	take	minimum	support	as	s	=	0.30.	

First	compute	probabilities	for	sets	of	size	k	=	1:

Combine	sets	of	size	k=1	with	support	‘s’	to	make	sets	of	size	k	=	2:Check	sets	of	size	k	=	3	where	all	subsets	of	
size	k	=	2	have	high	support:

(All	other	3-item	and	higher-item	counts	are	<	0.3)

(We	only	considered	13	out	63	possible	rules.)
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A	Priori	Algorithm	Discussion
• Some	implementations	only	return	‘Maximal	frequent	subsets’:
– Only	return	sets	S	with	p(S	=	1)	≥	s	where	no	superset	S’	has	p(S’	=	1)	≥	s.
– E.g.,	don’t	return	{break,milk}	if	{bread,	milk,	diapers}	also	has	high	support.

• Number	of	rules	we	need	to	test	is	hard	to	quantify:
– Need	to	test	more	rules	for	small	‘s’.
– Need	to	test	more	rules	as	counts	increase.

• Computing	p(S	=	1)	if	S	has	‘k’	elements	costs	O(nk).
– But	there	is	some	redundancy:	

• Computing	p({1,2,3})	and	p({1,2,4})	can	re-use	some	computation.

– Hash	trees	can	be	used	to	speed	up	various	computations.
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Generating	Rules
• A	priori	algorithm	gives	all	‘S’	with	p(S	=	1)	≥	s.
• To	generate	the	rules,	we	consider	subsets	of	frequent	itemsets
– If	{1,2,3}	is	a	frequent	itemset,	candidate	rules	involving	these	items	are:

• {1}	=>	{2,3},	{2}	=>	{1,3},	{3}	=>	{1,2},	{1,2}	=>	{3},	{1,3}	=>	{2},	{2,3}	=>	{1}.
– There	is	an	exponential	number	of	subsets.

• But	we	can	again	prune	using	rules	of	probability:

• E.g.,	probability	of	rolling	2	sixes	is	higher	if	you	know	one	die	is	a	6.
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Confident	Set	Pruning

• Or…	computation	is	very	fast	if	T	can	only	be	a	single	item	
http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap6_basic_association_analysis.pdf
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Association	Rule	Mining	Issues
• Spurious	associations:
– Can	it	return	rules	by	chance?

• Alternative	scores:
– Support	score	seems	reasonable.
– Is	confidence	score	the	right	score?

• Faster	algorithms	than	a	priori:
– ECLAT/FP-Growth	algorithms.
– Generate	rules	based	on	subsets	of	the	data.
– Cluster	features	and	only	consider	rules	within	clusters.
– Amazon’s	recommendation	system.
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Problem	with	Confidence
• Consider	the	“Sunscreen	Store”:
– Most	customers	go	there	to	buy	sunscreen.

• Now	consider	rule	(sunglasses	=>	sunscreen).
– If	you	buy	sunglasses,	it	could	mean	you	weren’t	there	for	sunscreen:

• p(sunscreen	=	1|	sunglasses	=	1)	<	p(sunscreen	=	1).
– So	(sunglasses	=>	sunscreen)	could	be	a	misleading	rule:

• You	are	less	likely	to	buy	sunscreen	if	you	buy	sunglasses.
– But	the	rule	could	have	high	confidence.

• Example:
– p(sunscreen)	=	0.9	 (marginal	probability)
– p(sunglasses)	=	0.2	 (marginal	probability)	
– p(sunscreen	and	sunglasses)	=	0.1	 (joint	probability)
– This	means	p(sunscreen	|	sunglasses)	=	0.1/0.2	=	0.5	(conditional	probability) 87



Customers	who	bought	sunglasses

Customers	who	didn’t	buy	sunglasses
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Customers	who	bought	sunglasses

Customers	who	didn’t	buy	sunglasses

Customers	who	bought	sunscreen
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Customers	who	bought	sunglasses

Customers	who	didn’t	buy	sunglasses

Customers	who	bought	sunscreen
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Customers	who	bought	sunglasses

Customers	who	didn’t	buy	sunglasses

Customers	who	bought	sunscreen
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• One	alternative	to	confidence	is	“lift”:
– How	much	more	likely	does	‘S’	make	us	to	buy	‘T’?

Customers	who	bought	sunglasses

Customers	who	didn’t	buy	sunglasses

Customers	who	bought	sunscreen
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Amazon	Recommendation	Algorithm
• Recommend	nearest	neighbours with cosine	similarity:

– If	cos(xi,xj)	=	1,	products	were	bought	by	exact	same	users.
– This	is	just	the	dot	product,	but	normalized
– This	is	pretty	similar	to	Euclidean	distance	but	normalizes	for	magnitude

• If	two	products	were	bought	rarely	but	by	different	people,	don’t	consider	similar
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