
CPSC	340:
Machine	Learning	and	Data	Mining

Recommender	Systems

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart. 1

Motivation:	Product	Recommendation
• A	customer	comes	to	your	website	looking	to	buy	at	item
• You	want	to	find	similar	items	that	they	might	also	buy

2

User-Product	Matrix

3

Amazon	Product	Recommendation
• Amazon	product	recommendation	method:

• Find	the	KNNs	across	columns.
– Find	indices	‘j’	minimizing	a	distance	measure	between	xquery and	xj.
– Euclidean	distance,	normalized	Euclidean	distance,	cosine	similarity

4

Cosine	similarity
• The	cosine	similarity	of	vectors	‘x’	and	‘y’	is	defined	as

– “Maximize	cosine	of	the	angle	between	xquery and	xj”
– Yields	the	same	ranked	KNNs	as	normalized	Euclidean	distance

• Normalized	Euclidean	distance:	first	divide	each	column	by	its	norm,	xi/||xi||.

– If	X	is	a	binary	matrix,	dot	product	counts	the	number	of	users	in	common

5

xT y

||x|| · ||y||

Cosine	similarity
• The	cosine	similarity	of	vectors	‘x’	and	‘y’	is	defined	as

• Cosine	similarity	finds	more	popular	items	than	Euclidean	distance
– In	high	dimension,	and	with	sparse	vectors,	dot	products	are	small
– Thus	most	angles	are	large	(there	are	so	many	users	à directions!)
– Very	small	vectors	have	a	Euclidean	distance	of	around	||xquery||
– This	might	be	“closer”	than	larger	vectors	with	smaller	angles

6

xT y

||x|| · ||y||

xquery

xi (smaller	angle)

xj (smaller	distance)

Cost	of	Finding	Nearest	Neighbours
• With	‘n’	users	and	‘d’	products,	finding	KNNs	costs	O(nd).
– Not	feasible	if	‘n’	and	‘d’	are	in	the	millions.

• It’s	faster	if	the	user-product	matrix	is	sparse
– But	data	set	is	still	enormous	in	the	Amazon	example.

• We’ve	seen	a	lot	of	“closest	point”	problems:
– KNN	classification.
– K-means	clustering.
– Density-based	clustering.
– Amazon	product	recommendation.

• Bonus	slides:	strategies	for	speeding	this	up.
7

(pause)

8

Recommender	Systems
• There	are	several	types	recommendation	problems.
– We	might	want	to	recommend	items	given	an	item.

• Amazon	product	recommendation.
– We	might	want	to	recommend	items	given	a	user.

• E.g.	Amazon	homepage,	Netflix	homepage.
– Or	a	combination	(personalized	item-based	recommendation).

• Recommender	systems	are	now	everywhere:
– Music,	news,	books,	jokes,	experts,	restaurants,	friends,	dates,	etc.

• Often	this	problem	is	framed	as	predicting	missing	ratings.
9

Recommender	System	Motivation:	Netflix	Prize
• Netflix	Prize:
– 100M	ratings	from	0.5M	users	on	18k	movies.
– Grand	prize	was	$1M	for	first	team	to	reduce	squared	error	by	10%.
– Started	on	October	2nd,	2006.
– Netflix’s	system	was	first	beat	October	8th.
– 1%	error	reduction	achieved	on	October	15th.
– Steady	improvement	after	that.

• ML	methods	soon	dominated.

– One	obstacle	was	‘Napolean Dynamite’	problem:
• Some	movie	ratings	seem	very	difficult	to	predict.
• Should	only	be	recommended	to	certain	groups.

10

Lessons	Learned	from	Netflix	Prize
• Prize	awarded	in	2009:
– Ensemble	method	that	averaged	107	models.
– Increasing	diversity	of	models	more	important	than	improving	models.

• Winning	entry	(and	most	entries)	used	collaborative	filtering:
– Methods	that	only	looks	at	ratings,	not	features	of	movies/users.

• A	simple	collaborative	filtering	method	that	does	really	well	(7%):
– “Regularized	matrix	factorization”.	Now	adopted	by	many	companies.

11

Collaborative	Filtering	Problem
• Collaborative	filtering	is	‘filling	in’	the	user-item	matrix:

• We	have	some	ratings	available	with	values	{1,2,3,4,5}.
• We	want	to	predict	ratings	“?”	by	looking	at	available	ratings.

12

Collaborative	Filtering	Problem
• Collaborative	filtering	is	‘filling	in’	the	user-item	matrix:

• What	rating	would	“Ryan	Reynolds”	give	to	“Green	Lantern”?
– Why	is	this	not	completely	crazy?	We	may	have	similar	users	and	movies.

13

Matrix	Factorization	for	Collaborative	Filtering
• Our	standard	latent-factor	model	for	entries	in	matrix	‘Y’:

• User	‘i’	has	latent	features	zi.
– Feature	1	could	be	“likes	romantic	comedies”

• Movie	‘j’	has	latent	features	wj.
– Feature	1	could	be	“has	elements	of	a	romantic	comedy”

• We’re	automatically	learning	both	the	“weights”	and	the	“features”
– There’s	a	w-z	symmetry	that’s	not	present	in	linear	regression	or	even	PCA

14

Matrix	Factorization	for	Collaborative	Filtering
• Our	standard	latent-factor	model	for	entries	in	matrix	‘Y’:

• Our	loss	functions	sums	over	available	ratings	‘R’:

• And	we	add	L2-regularization to	both	types	of	features.
– Basically,	this	is	regularized	PCA	on	the	available	entries	of	Y:
– But	with	a	very	different	interpretation

• We	cannot	use	SVD	because	of	the	missing	entries
– Can	use	GD,	SGD,	alternating	least	squares
– Weird	extra	regularization:	keep	the	missing	entries	but	with	low	weights

15

Adding	Global/User/Movie	Biases
• Our	standard	latent-factor	model	for	entries	in	matrix	‘Y’:

• Sometimes	we	don’t	assume	the	yij have	a	mean	of	zero:
– We	could	add	bias	β reflecting	average	overall	rating:

– We	could	also	add	a	user-specific	bias	βi and	item-specific	bias	βj.

• Some	users	rate	things	higher	on	average,	and	movies	are	rated	better	on	average.
• These	might	also	be	regularized.

16

Beyond	Accuracy	in	Recommender	Systems
• Winning	system	of	Netflix	Challenge	was	never	adopted.
• Other	issues	important	in	recommender	systems:
– Diversity:	how	different	are	the	recommendations?

• If	you	like	‘Battle	of	Five	Armies	Extended	Edition’,	recommend	Battle	of	Five	Armies?
• Even	if	you	really	really like	Star	Wars,	you	might	want	non-Star-Wars	suggestions.

– Persistence:	how	long	should	recommendations	last?
• If	you	keep	not	clicking	on	‘Hunger	Games’,	should	it	remain	a	recommendation?

– Trust:	tell	user	why you	made	a	recommendation.
• Quora gives	explanations	for	recommendations.

– Social	recommendation:	what	did	your	friends	watch?
– Freshness:	people	tend	to	get	more	excited	about	new/surprising	 things.

• Collaborative	filtering	does	not	predict	well	for	new	users/movies.
– New	movies	don’t	yet	have	ratings,	and	new	users	haven’t	rated	anything.

17

Unsupervised	vs.	Supervised	Recommenders
• Main	types	of	approaches:

1. Collaborative	filtering.
• “Unsupervised”	learning (have	label	matrix	‘Y’	but	no	features):

– We	only	have	labels	yij (rating	of	user	‘i’	for	movie	‘j’).

• Example:	Amazon	recommendation	algorithm.

2. Content-based	filtering.
• Supervised	learning:

– Extract	features	xi of	users	and	items,	building	model	to	predict	rating	yi given	xi.
– Apply	model	to	prediction	for	new	users/items.

• Example:	Gmail’s	“important	messages”	

18

Content-Based	vs.	Collaborative	Filtering
• Our	latent-factor	approach	to	collaborative	filtering (Part	4):

– Learns	about	each	user/movie,	but	can’t	predict	on	new	users/movies.
• A	linear	model	approach	to	content-based	filtering (Part	3):

– Here	xij is	a	vector	of	features for	the	movie/user.
• Usual	supervised	learning	setup:	‘y’	would	contain	all	the	yij,	X	would	have	xij as	rows.

– Can	predict	on	new	users/movies,	but	can’t	learn	about	each	user/movie.		
19

Hybrid	Approaches
• Hybrid	approaches	combine	content-based/collaborative	filtering:
– SVDfeature (won	“KDD	Cup”	in	2011	and	2012).

– Note	that	xij is	a	feature	vector.	Also,	‘w’	and	‘wj’	are	different	parameters.20

Social	Regularization
• Many	recommenders	are	now	connected	to	social	networks.
– “Login	using	you	Facebook	account”.

• Often,	people	like	similar	movies	to	their	friends.

• Recent	recommender	systems	use	social	regularization.
– Add	a	“regularizer”	encouraging	friends’	weights	to	be	similar:

– If	we	get	a	new	user,	recommendations	are	based	on	friend’s	preferences.
21

(pause)

22

Association	Rules
• Consider	two	sets of	items	‘S’	and	‘T’:
– For	example:	S	=	{sunglasses,	sandals}	and	T	=	{sunscreen}.

• We’re	going	to	consider	association	rules	(S	=>	T):
– If	you	buy	all	items	‘S’,	you	are	likely	to	also	buy	all	items	‘T’.
– E.g.,	if	you	buy	sunglasses	and	sandals,	you	are	likely	to	buy	sunscreen.

23

Association	Rules	vs.	Clustering
Sunglasses Sandals Sunscreen Snorkel

1 1 1 0

0 0 1 0

1 0 1 0

0 1 1 1

1 0 0 0

1 1 1 1

0 0 0 0

• Clustering:
– Which	objects are	related?
– Grouping	rows	together.

24

Association	Rules	vs.	Clustering
Sunglasses Sandals Sunscreen Snorkel

1 1 1 0

0 0 1 0

1 0 1 0

0 1 1 1

1 0 0 0

1 1 1 1

0 0 0 0

• Clustering:
– Which	objects are	related?
– Grouping	rows	together.

• Association	rules:
– Which features	occur	together?
– Relating	groups	of	columns.

25

Support	and	Confidence
• We	“score”	rule	(S	=>	T)	by	“support”	and	“confidence”.
– Running	example:	{sunglasses,sandals}	=>	suncreen.

• Support:
– How	often	does	‘S’	happen?

• How	often	were	sunglasses	and	sandals	bought	together?
– Marginal	probability:	p(S	=	1).

• Confidence:
– When	‘S’	happens,	how	often	does	‘T’	happen?
– When	sunglasses+sandals were	bought,	how	often	was	sunscreen	bought?
– Conditional	probability:	p(T	=	1|	S	=	1).

26

Finding	Sets	with	High	Support
• We	can	do	this	with	the	“a	priori	algorithm”
• Finding	high	confidence	is	easier
• See	bonus	slide	for	details

27

Spurious	Associations
• For	large	‘d’,	high	probability	of	returning	spurious	associations:
– With	random	data,	one	of	the	2d	rules	is	likely	to	look	strong.

• Other	associations	you	might	not	want	to	act	on:
– Beer	and	diapers

28

Summary
• Recommender	systems try	to	recommend	products.
• Nearest	neighbour	recommenders
– Find	similar	items	using	nearest	neighbour	search.

• Collaborative	filtering tries	to	fill	in	missing	values	in	a	matrix.
– Matrix	factorization	is	a	common	approach.
– This	can	be	turned	into	a	recommendation	in	two	ways:

• Nearest	neighbours in	latent	space
• Find	items	with	high	predicted	ratings

• Association	Rules:	(S	=>	T)	means	seeing	S	means	T	is	likely.
• Strategies	for	fitting	linear	models	with	binary/categorical	features.
• Global	vs.	local	features	allows	‘personalized’	predictions.

29

Linear	Models	with	Binary	Features
• What	is	the	effect	of	a	binary	feature	on	linear	regression?

• Adding	a	bias	w0,	our	linear	model	is:

• The	‘gender’	variable	causes	a	change	in	y-intercept:

Year Gender

1975 1

1975 0

1980 1

1980 0

Height

1.85

2.25

1.95

2.30

30

Linear	Models	with	Binary	Features
• What	if	different	genders	have	different	slopes?
– You	can	use	gender-specific	feature	(as	if	d=4).
– This	is	equivalent	to	separating	the	data	set	by	gender	and	
training	2	models

Bias
(gender =	1)

Year	
(gender =	1)

Bias	
(gender	=	0)

Year
(gender	=	0)

1 1975 0 0

0 0 1 1975

1 1980 0 0

0 0 1 1980

Year Gender

1975 1

1975 0

1980 1

1980 0

31

The	same	holds	for	more	categories
Feature	1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …

32

Linear	Models	with	Categorical	Features
Feature	1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …

33

Linear	Models	with	Categorical	Features
Feature	1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …

34

Linear	Models	with	Categorical	Features
Feature	1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …

35

Linear	Models	with	Categorical	Features
Feature	1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …

36

Linear	Models	with	Categorical	Features
Feature	1 Feature 2

0.5 X

3 O

5 O

2.5 Δ

1.5 X

3 Δ

… …

37

Sharing	information	with	global	parameters
• But	with	‘local’	model	for	each	gender	we	don’t	share	information.
• To	share	information	across	genders,	include	a	‘global’	version.

• ‘Global’	year	feature:	influence	of	time	on	both	genders.
– E.g.,	improvements	in	technique.

• ‘Local’	year	feature:	gender-specific	deviation	from	global	trend.
– E.g.,	different	effects	of	performance-enhancing	drugs.

Year Year	(if gender =	1) Year	(if gender	=	0)

1975 1975 0

1975 0 1975

1980 1980 0

1980 0 1980

Year Gender

1975 1

1975 0

1980 1

1980 0

38

Motivation:	Identifying	Important	E-mails
• How	can	we	automatically	identify	‘important’	e-mails?

• We	have	a	big	collection	of	e-mails:
– Mark	as	‘important’	if	user	takes	some	action	based	on	them.

• There	might	be	some	“universally”	important	messages:
– “This	is	your	mother,	something	terrible	happened,	give	me	a	call	ASAP.”

• But	your	“important”	message	may	be	unimportant	to	others.
– Similar	for	spam:	“spam”	for	one	user	could	be	“not	spam”	for	another. 39

The	Big	Global/Local	Feature	Table

40

Predicting	Importance	of	E-mail	For	New	User
• Consider	a	new	user:
– Start	out	with	no	information	about	them.
– Use	global features	to	predict	what	is	important	to	generic	user.

• With	more	data,	update	global features	and	user’s	local	features:
– Local features	make	prediction	personalized.

– What	is	important	to	this user?
• Gmail’s	system:	classification	with	logistic	regression.

41

Amazon	Product	Recommendation
• Consider	this	user-item	matrix:

• Using	Euclidean	distance:
– Product	1	is	most	similar	to	Product	3	(bought	by	lots	of	people).
– Product	2	is	most	similar	to	Product	4	(also	bought	by	John	and	Yoko).
– Product	3	is	equally	similar	to	Products	1,	5,	and	6.

• Does	not	take	into	account	that	Product	1	is	more	popular	than	5	and	6.
42

Amazon	Product	Recommendation
• Consider	this	user-item	matrix	(normalized):

• Product	1	is	most	similar	to	Product	3	(bought	by	lots	of	people).
• Product	2	is	most	similar	to	Product	4	(also	bought	by	John	and	Yoko).
• Product	3	is	most	similar	to	Product	1.
– Normalization	means	it	prefers	the	popular	items.

43

But	first	the	easy	case:	“Memorize	the	Answers”

• Easy	case:	you	have	a	limited	number	of	possible	test	examples.
– E.g.,	you	will	always	choose	an	existing	product (not	arbitrary	features).

• In	this	case,	just	memorize	the	answers:
– For	each	test	example,	compute	all	KNNs	and	store	pointers	to	answers.
– At	test	time,	just	return	a	set	of	pointers	to	the	answers.

• The	answers	are	called	an	inverted	index,	queries	now	cost	O(k).
– Needs	an	extra	O(nk)	storage.

44

Grid-Based	Pruning
• Assume	we	want	to	find	objects	within	a	distance	of	‘ε’ of	point	xi.
Divide	space	
into	squares	
of	length	ε.

Hash	examples	based	on	
squares:
Hash[“64,76”]	=	{x3,x70}
(Dict in	Python/Julia)

45

Grid-Based	Pruning
• Which	squares	do	we	need	to	check?

Points	in	same	square	can	
have	distance	less	than	‘ε’.

46

Grid-Based	Pruning
• Which	squares	do	we	need	to	check?

Points	in	adjacent	
squares can	have	
distance	less	than	
distance	‘ε’.

47

Grid-Based	Pruning
• Which	squares	do	we	need	to	check?

Points	in	non-adjacent
squares	must	have	
distance	more	than	‘ε’.

48

Grid-Based	Pruning
• Assume	we	want	to	find	objects	within	a	distance	of	‘ε’ of	point	xi.
Divide	space	
into	squares	
of	length	ε.

Only	need	to	check	
points	in	same	and	
adjacent	squares.

Hash	examples	based	on	
squares:
Hash[“64,76”]	=	{x3,x70}
(Dict in	Python/Julia)

49

Grid-Based	Pruning	Discussion
• Similar	ideas	can	be	used	for	other	“closest	point”	calculations.
– Can	be	used	with	any	norm.
– If	you	want	KNN,	can	use	need	grids	of	multiple	sizes.

• But	we	have	the	“curse	of	dimensionality”:
– Number	of	adjacent	regions	increases	exponentially:

• 2	with	d=1,	8	with	d=2,	26	with	d=3,	80	with	d=4,	252	with	d=5,	3d-1 in	d-dimension.

50

Grid-Based	Pruning	Discussion
• Better	choices	of	regions:
– Quad-trees.
– Kd-trees.
– R-trees.
– Ball-trees.

• Works	better	than	squares,	but	worst	case	is	still	exponential.

https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/R-tree
http://www.astroml.org/book_figures/chapter2/fig_balltree_example.html

51

Approximate	Nearest	Neighbours
• Approximate nearest	neighbours:
– We	allow	errors	in	the	nearest	neighbour calculation	to	gain	speed.

• A	simple	and	very-fast	approximate	nearest	neighbour method:
– Only check	points	within	the	same	square.
– Works	if	neighbours are	in	the	same	square.
– But	misses	neighbours in	adjacent	squares.

• A	simple	trick	to	improve	the	approximation	quality:
– Use	more	than	one	grid.
– So	“close”	points	have	more	“chances”	to	be	in	the	same	square.

52

Approximate	Nearest	Neighbours

53

Approximate	Nearest	Neighbours
• Using	multiple	sets	of	regions	improves	accuracy.

54

Approximate	Nearest	Neighbours
• Using	multiple	sets	of	regions	improves	accuracy.

55

Locality-Sensitive	Hashing
• Even	with	multiple	regions,	approximation	can	be	poor	for	large	‘d’.

• Common	Solution	(locality-sensitive	hashing):
– Replace	features	xi with	lower-dimensional	features	zi.

• E.g.,	turns	each	a	1000000-dimensional	xi into	a	10-dimensional	zi.

– Choose	random	zi to	preserve	high-dimensional	distances (bonus	slides).

– Find	points	hashed	to	the	same	square	in	lower-dimensional	‘zi’ space.
– Repeat with	different	random	zi values	to	increase	chances	of	success.

56

57

Warm-Starting
• We’ve	used	data	{X,y}	to	fit	a	model.
• We	now	have	new	training	data	and	want	to	update	model.

• Do	we	need	to	re-fit	from	scratch?

• This	is	the	warm	starting	problem.
– It’s	easier	to	warm	start	some	models	than	others.

58

Easy	Case:	K-Nearest	Neighbours	and	Counting
• K-nearest	neighbours:
– KNN	just	stores	the	training	data,	so	just	store	the	new	data.

• Counting-based models:
– Models	that	base	predictions	on	frequencies	of	events.
– E.g.,	naïve	Bayes.

– Just	update	the	counts:

59

Medium	Case:	L2-Regularized	Least	Squares
• L2-regularized	least	squares	is	obtained	from	linear	algebra:

– Cost	is	O(nd2 +	d3).

• Given	one	new	point,	we	need	to	compute:
– XTy with	one	row	added,	which	costs	O(d).
– Old	XTX	plus	xixiT,	which	costs	O(d2).	
– Solution	of	linear	system,	which	costs	O(d3).
– So	cost	of	adding	‘t’	data	point	is	O(td3).

• With	“matrix	factorization	updates”,	can	reduce	this	to	O(td2).
60

Medium	Case:	Logistic	Regression
• We	fit	logistic	regression	by	gradient	descent	on	a	convex	function.

• With	new	data,	convex	function	f(w)	changes	to	new	function	g(w).

• If	we	don’t	have	much	more	data,	‘f’	and	‘g’	will	be	“close”.
– Start	gradient	descent	on	‘g’	with	minimizer	of	‘f’.
– You	can	show	that	it	requires	fewer	iterations.

61

Hard	Cases:	Non-Convex/Greedy	Models
• For	decision	trees	we	could	also	“restart”	the	algorithm:
– With	new	data,	consider	splitting	nodes	that	we	didn’t	split	before.

• However,	this	won’t	in	general	give	same	result	as	re-fitting.

• Similar	heuristics/conclusions	for	other	non-convex/greedy	models:
– K-means	clustering.
– Collaborative	filtering.

• On	the	other	hand,	you	can	add	new	examples	and	features	and	
continue	PCA algorithms	(“non-convex	but	harmless”).

62

Tensor	Factorization
• Tensors	are	higher-order	generalizations	of	matrices:

• Generalization	of	matrix	factorization	is	tensor	factorization:

• Useful	if	there	are	other	relevant	variables:
• Instead	of	ratings	based	on	{user,movie},	ratings	based	{user,movie,age}.
• Useful	if	ratings	change	over	time.

63

Motivation	for	Topic	Models
• Want	a	model	of	the	“factors”	making	up	documents.
– Instead	of	latent-factor	models,	they’re	called	topic	models.
– The	canonical	topic	model	is	latent	Dirichlet allocation	(LDA).

– “Topics”	could	be	useful	for	things	like	searching	for	relevant	documents.

http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/
64

Term	Frequency	– Inverse	Document	Frequency

• In	information	retrieval,	classic	word	importance	measure	is	TF-IDF.

• First	part	is	the	term	frequency	tf(t,d)	of	term	‘t’	for	document	‘d’.
– Number	of	times	“word”	‘t’	occurs	in	document	‘d’,	divided	by	total	words.
– E.g.,	7%	of	words	in	document	‘d’	are	“the”	and	2%	of	the	words	are	“Lebron”.

• Second	part	is	document	frequency	df(t,D).
– Compute	number	of	documents	that	have	‘t’ at	least	once.
– E.g.,	100%	of	documents	contain	“the”	and	0.01%	have	“LeBron”.

• TF-IDF	is	tf(t,d)*log(1/df(t,D)).
65

Term	Frequency	– Inverse	Document	Frequency

• The TF-IDF statistic	is	tf(t,d)*log(1/df(t,D)).
– It’s	high	if	word	‘t’	happens	often	in	document	‘d’,	but	isn’t	common.
– E.g.,	seeing	“LeBron”	a	lot	it	tells	you	something	about	“topic”	of	article.
– E.g.,	seeing	“the”	a	lot	tells	you	nothing.

• There	are	*many*	variations	on	this	statistic.
– E.g.,	avoiding	dividing	by	zero	and	all	types	of	“frequencies”.

• Summarizing	‘n’	documents	into	a	matrix	X:
– Each	row	corresponds	to	a	document.
– Each	column	gives	the	TF-IDF	value	of	a	particular	word	in	the	document.

66

Latent	Semantic	Indexing
• TF-IDF features	are	very	redundant.
– Consider	TF-IDFs	of	“LeBron”,	“Durant”,	“Harden”,	and	“Kobe”.	
– High	values	of	these	typically	just	indicate	topic	of	“basketball”.

• We	can	probably	compress	this	information	quite	a	bit.

• Latent	Semantic	Indexing/Analysis:
– Run	latent-factor	model	(like	PCA	or	NMF)	on	TF-IDF	matrix	X.
– Treat	the	principal	components	as	the	“topics”.
– Latent	Dirichlet allocation	is	a	variant	that	avoids	weird	df(t,D)	heuristic.

67

Support	and	Confidence
• We’re	going	to	look	for	rules	that:

1. Happen	often	(high	support),	p(S	=	1)	≥	‘s’.
2. Are	reliable	(high	confidence),	p(T	=	1|	S	=	1)	≥ ‘c’.

• Association	rule	learning	problem:
– Given	support	‘s’	and	confidence	‘c’.
– Output	all	rules	with	support	at	least	‘s’	and	confidence	at	least	‘c’.

• A	common	variation	is	to	restrict	size	of	sets:
– Returns	all	rules	with	|S|	≤	k	and/or	|T|	≤ k.
– Often	for	computational	reasons.

68

Bonus	Slide:	Tensor	Factorization
• Tensors	are	higher-order	generalizations	of	matrices:

• Generalization	of	matrix	factorization	is	tensor	factorization:

• Useful	if	there	are	other	relevant	variables:
• Instead	of	ratings	based	on	{user,movie},	ratings	based	{user,movie,age}.
• Useful	if	ratings	change	over	time.

69

Bonus	Slide:	Sequential	Pattern	Analysis
• Finding	patterns	in	data	organized	according	to	a	sequence:
– Customer	purchases:

• ‘Star	Wars’	followed	by	‘Empire	Strikes	Back’	followed	by	‘Return	of	the	Jedi’.
– Stocks/bonds/markets:

• Stocks	going	up	followed	by	bonds	going	down.
• In	data	mining,	called	sequential	pattern	analysis:
– If	you	buy	product	A,	are	you	likely	to	buy	product	B	at	a	later	time?

• Similar	to	association	rules,	but	now	order	matters.
– Many	issues	stay	the	same.

• Exist	sequential	versions	of	many	association	rule	methods:
– Generalized	sequential	pattern	(GSP)	algorithm	is	like	a	priori	algorithm.

70

Association	Rules
• Interpretation	in	terms	of	conditional	probability:
– The	rule	(S	=>	T)	means	that	p(T	=	1	|	S	=	1)	is	‘high’.

I’m	using	p(T	=	1	|	S	=	1)	for	p(T1 =	1,	T2 =	1,…,	Tk =	1	|	S1 =	1,	S2 =	1,…,	Sc =	1).

• Association	rules	are	directed	but	not	necessarily	causal:

– p(T	|	S)	≠ p(S	|	T).
• E.g.,	buying	sunscreen	doesn’t	necessarily	imply	buying	sunglasses/sandals:

– The	correlation	could	be	backwards	or	due	to	a	common	cause.
• E.g.,	the	common	cause	is	that	you	are	going	to	the	beach.

71

Applications	of	Association	Rules
• Which	foods	are	frequently	eaten	together?
• Which	genes	are	turned	on	at	the	same	time?
• Which	traits	occur	together	in	animals?
• Where	do	secondary	cancers	develop?
• Which	traffic	intersections	are	busy/closed	at	the	same	time?
• Which	players	outscore	opponents	together?

http://www.exploringnature.org/db/view/624
https://en.wikipedia.org/wiki/Metastasis
http://basketball-players.pointafter.com/stories/3791/most-valuable-nba-duos#30-atlanta-hawks
http://modo.coop/blog/tips-from-our-pros-avoiding-late-charges-during-summer

72

Woes	with	notation/definitions
• In	some	books/sources,	support	is	defined	as	on	the	previous	slide
– For	example	Wikipedia	or	Mining	of	Massive	Datasets	

• In	other	sources,	support	is	defined	as
– How	often	does															 (S	and	T)	happen?

• How	often	were	sunglasses,	sandals	and	sunscreen	bought	together?
– Joint	probability:	p(S	=	1,T=1).
– For	example	in	Database	Management	Systems by	Ramakrishnan &	
Gehrke

• Furthermore,	in	some	texts,	for	a	rule	S=>T,	T	must	be	a	single	item.	
In	other	cases	it	can	itself	be	a	set.

73

S \ T

Finding	Sets	with	High	Support
• First	let’s	focus	on	finding	sets	‘S’	with	high	support	(“frequent	itemsets”)
• How	do	we	compute	p(S	=	1)?

– If	S	=	{bread,	milk},	we	count	proportion	of	times	they	are	both	“1”.

Bread Eggs Milk Oranges

1 1 1 0

0 0 1 0

1 0 1 0

0 1 0 1

… … … …
74

Challenge	in	Learning	Association	Rule
• Consider	the	problem	of	finding	all	sets	‘S’	with	p(S	=	1)	≥	s.
– With	‘d’	features	there	are 2d-1	possible	sets.

• It	takes	too	long	to	even	write	all	sets	unless	‘d’	is	tiny.
• Can	we	avoid	testing	all	sets?
– Yes,	using	a	basic	property	of	probabilities…

75

Upper	Bound	on	Joint	Probabilities
• Suppose	we	know	that	p(S	=	1)	≥ s.
• Can	we	say	anything	about	p(S	=	1,A	=	1)?
– Probability	of	buying	all	items	in	‘S’,	plus	another	item	‘A’.

• Yes,	p(S	=	1,A	=	1)	cannot	be	bigger than	p(S	=	1).

• E.g.,	probability	of	rolling	{4,5}	on	2	dice	(1/36)	is	less	than	rolling	4	on	one	die	(1/6).76

Support	Set	Pruning
• This	property	means	that	p(S1 =	1)	<	s	implies	p(S1 =	1,	S2 =	1)	<	s.
– If	p(sunglasses=1)	<	0.1,	then	p(sunglasses=1,sandals=1)	is	less	than	0.1.
– We never	consider	p(S1 =	1,	S2 =	1)	if	p(S1 =	1)	has	low	support.	

http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap6_basic_association_analysis.pdf
77

Support	Set	Pruning
• This	property	means	that	p(S1 =	1)	<	s	implies	p(S1 =	1,	S2 =	1)	<	s.
– If	p(sunglasses=1)	<	0.1,	then	p(sunglasses=1,sandals=1)	is	less	than	0.1.
– We never	consider	p(S1 =	1,	S2 =	1)	if	p(S1 =	1)	has	low	support.	

http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap6_basic_association_analysis.pdf
78

A	Priori	Algorithm
• A	priori algorithm	for	finding	all	subsets	with	p(S	=	1)	>=	s.

1. Generate	list	of	all	sets	‘S’	that	have	a	size	of	1.
2. Set	k	=	1.	
3. Prune	candidates	‘S’	of	size	‘k’	where	p(S	=	1)	<	s.
4. Add	all	sets	of	size	(k+1)	that	have	all	subsets	of	size	k	in	current	list.
5. Set	k	=	k	+	1	and	go	to	3.

http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap6_basic_association_analysis.pdf
79

A	Priori	Algorithm

Let’s	take	minimum	support	as	s	=	0.30.	

First	compute	probabilities	for	sets	of	size	k	=	1:

80

A	Priori	Algorithm

Let’s	take	minimum	support	as	s	=	0.30.	

First	compute	probabilities	for	sets	of	size	k	=	1:

Combine	sets	of	size	k=1	with	support	‘s’	to	make	sets	of	size	k	=	2:

81

A	Priori	Algorithm

Let’s	take	minimum	support	as	s	=	0.30.	

First	compute	probabilities	for	sets	of	size	k	=	1:

Combine	sets	of	size	k=1	with	support	‘s’	to	make	sets	of	size	k	=	2:Check	sets	of	size	k	=	3	where	all	subsets	of	
size	k	=	2	have	high	support:

(All	other	3-item	and	higher-item	counts	are	<	0.3)

(We	only	considered	13	out	63	possible	rules.)
82

A	Priori	Algorithm	Discussion
• Some	implementations	only	return	‘Maximal	frequent	subsets’:
– Only	return	sets	S	with	p(S	=	1)	≥	s	where	no	superset	S’	has	p(S’	=	1)	≥	s.
– E.g.,	don’t	return	{break,milk}	if	{bread,	milk,	diapers}	also	has	high	support.

• Number	of	rules	we	need	to	test	is	hard	to	quantify:
– Need	to	test	more	rules	for	small	‘s’.
– Need	to	test	more	rules	as	counts	increase.

• Computing	p(S	=	1)	if	S	has	‘k’	elements	costs	O(nk).
– But	there	is	some	redundancy:	

• Computing	p({1,2,3})	and	p({1,2,4})	can	re-use	some	computation.

– Hash	trees	can	be	used	to	speed	up	various	computations.
83

Generating	Rules
• A	priori	algorithm	gives	all	‘S’	with	p(S	=	1)	≥	s.
• To	generate	the	rules,	we	consider	subsets	of	frequent	itemsets
– If	{1,2,3}	is	a	frequent	itemset,	candidate	rules	involving	these	items	are:

• {1}	=>	{2,3},	{2}	=>	{1,3},	{3}	=>	{1,2},	{1,2}	=>	{3},	{1,3}	=>	{2},	{2,3}	=>	{1}.
– There	is	an	exponential	number	of	subsets.

• But	we	can	again	prune	using	rules	of	probability:

• E.g.,	probability	of	rolling	2	sixes	is	higher	if	you	know	one	die	is	a	6.
84

Confident	Set	Pruning

• Or…	computation	is	very	fast	if	T	can	only	be	a	single	item	
http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap6_basic_association_analysis.pdf

85

Association	Rule	Mining	Issues
• Spurious	associations:
– Can	it	return	rules	by	chance?

• Alternative	scores:
– Support	score	seems	reasonable.
– Is	confidence	score	the	right	score?

• Faster	algorithms	than	a	priori:
– ECLAT/FP-Growth	algorithms.
– Generate	rules	based	on	subsets	of	the	data.
– Cluster	features	and	only	consider	rules	within	clusters.
– Amazon’s	recommendation	system.

86

Problem	with	Confidence
• Consider	the	“Sunscreen	Store”:
– Most	customers	go	there	to	buy	sunscreen.

• Now	consider	rule	(sunglasses	=>	sunscreen).
– If	you	buy	sunglasses,	it	could	mean	you	weren’t	there	for	sunscreen:

• p(sunscreen	=	1|	sunglasses	=	1)	<	p(sunscreen	=	1).
– So	(sunglasses	=>	sunscreen)	could	be	a	misleading	rule:

• You	are	less	likely	to	buy	sunscreen	if	you	buy	sunglasses.
– But	the	rule	could	have	high	confidence.

• Example:
– p(sunscreen)	=	0.9	 (marginal	probability)
– p(sunglasses)	=	0.2	 (marginal	probability)	
– p(sunscreen	and	sunglasses)	=	0.1	 (joint	probability)
– This	means	p(sunscreen	|	sunglasses)	=	0.1/0.2	=	0.5	(conditional	probability) 87

Customers	who	bought	sunglasses

Customers	who	didn’t	buy	sunglasses

88

Customers	who	bought	sunglasses

Customers	who	didn’t	buy	sunglasses

Customers	who	bought	sunscreen

89

Customers	who	bought	sunglasses

Customers	who	didn’t	buy	sunglasses

Customers	who	bought	sunscreen

90

Customers	who	bought	sunglasses

Customers	who	didn’t	buy	sunglasses

Customers	who	bought	sunscreen

91

• One	alternative	to	confidence	is	“lift”:
– How	much	more	likely	does	‘S’	make	us	to	buy	‘T’?

Customers	who	bought	sunglasses

Customers	who	didn’t	buy	sunglasses

Customers	who	bought	sunscreen

92

Amazon	Recommendation	Algorithm
• Recommend	nearest	neighbours with cosine	similarity:

– If	cos(xi,xj)	=	1,	products	were	bought	by	exact	same	users.
– This	is	just	the	dot	product,	but	normalized
– This	is	pretty	similar	to	Euclidean	distance	but	normalizes	for	magnitude

• If	two	products	were	bought	rarely	but	by	different	people,	don’t	consider	similar

93

