CPSC 340:
Machine Learning and Data Mining

Neural Networks: the model (“predict”)

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1



Admin

* Assignment 5:
— Due tonight.

* Assignment 6:

— Will be released very soon.
— Due in 13 days (Thursday April 5).



Supervised Learning Roadmap

Part 1: “Direct” Supervised Learning.
— We learned parameters ‘w’ based on the original features x, and target y..

Part 3: Change of Basis.

— We learned parameters ‘w’ based on a change of basis z, and target y..
Part 4: Latent-Factor Models.

— We learned parameters ‘W’ for basis z, based on only on features x. @
— You can then learn ‘w’ based on change of basis z, and target y.. /
Part 5: Neural Networks. v
— Jointly learn ‘W’ and ‘w’ based on x, and y..

— Learn basis z; that is good for supervised learning.




A Graphical Summary of CPSC 340 Parts 1-5
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Notation for Neural Networks
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Linear-Linear Model

* Obvious choice: linear latent-factor model with linear regression.
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* We want to train ‘W’ and ‘v’ jointly, so we could minimize:
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Introducing Non-Linearity

To increase flexibility, something needs to be non-linear.
Typical choice: transform z, by non-linear function ‘h’.
T
Z,' — W)(,' >/' -V t\(zi)
— Here the function ‘h’ transforms ‘k’ inputs to ‘k” outputs.
Common choice for ‘h’: applying sigmoid function element-wise:
}\(Zi(,): \
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— So this takes the z,_in (-eo,22) and maps it to (0,1).

— We'll see another activation function next class.

This is called a “multi-layer perceptron” or a “neural network”.



Supervised Learning Roadmap
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Deep Learning
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Deep Learning

Lifleaf vodel:

Ai N W-‘yi Dee }eami 4
7 f | h(
: 2.
/\/Cu/r\al ﬂe'fwg(k wiﬁ\ ' hidd on Iayer'
\/F v' h(Wx,7
Z, ¥ ' 7 @G
NQV\(“\ n-e"wo(k an\ 2 ‘/H Jw\ ‘ayers- QCMJ "(o')/er“ <

B S

b P
Newol Nelwork wilh 3 hi dden )qye,s M L o
A T (37 (2) ) Move layfrg" 'fg
\i= Vv L‘(W L‘(%J)) 40 "Jeffwr ?, ‘
Zitz)
(3

Z, m

10



Adding Bias Variables

Recall fitting line regressmn with a bias:
=Bt

— We avoided this by addlng a column of ones to X.

In neural networks we often want a bias on the output:

— A bias towards this h(z, ) being either O or 1.

Equivalent to adding to vector h(z) an extra value that is always 1.
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Adding Bias Variables
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Jupyter notebook demo



(Very Abridged) Deep Learning History

 1950s and 1960s: initial excitement
— MIT students assigned to solve object recognition over the summer

e 1970s-2000s: progress but also disappointment, “Al winter”
— SVMs very popular in 1990s & 2000s

e Late 2000s-2010s: the return of deep learning
— Similar models but new tricks, bigger data, more processing power, GPUs

— Huge improvements in automatic speech recognition (2009).
e All phones now have deep learning.

— Huge improvements in computer vision (2012).

* This is now finding its way into products



Vocabulary

deep learning

(artificial) neural net(work)

NN, ANN, CNN

layers

units, neurons, activations
hidden, visible

activation function, nonlinearity



Summary

Neural networks: simultaneously learn features and regression
coefficients for supervised learning.

Sigmoid function: avoids degeneracy by introducing non-linearity.
Deep learning: neural networks with many hidden layers.
Unprecedented performance on difficult pattern recognition tasks.



ML and Deep Learning History

Perceptrons

e 1950 and 1960s: Initial excitement.

— Perceptron: linear classifier and stochastic gradient (roughly).

— “the embryo of an electronic computer that [the Navy] expects will be able

to walk, talk, see, write, reproduce itself and be conscious of its existence.” 7
New York Times (1958).

* https://www.youtube.com/watch?v=IEFRtz68m-8

— Marvin Minsky assigns
object recognition to
his students as a
summer project

 Then drop in popularity: Yot
— Quickly realized limitations of linear models

https://mitpress.mit.edu/books/perceptrons/



ML and Deep Learning History

e 1970 and 1980s: Connectionism (brain-inspired ML)

— Want “connected networks of simple units”.

e Use parallel computation and distributed representations.

— Adding hidden layers z; increases expressive power.

* With 1 layer and enough sigmoid units, a universal approximator.

— Success in optical character recognition.
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ML and Deep Learning History

* 1990s and early-2000s: drop in popularity.

— |t proved really difficult to get multi-layer models working robustly.

— We obtained similar performance with simpler models:

e Rise in popularity of logistic regression and SVMs with regularization and kernels.

— ML moved closer to other fields (CPSC 540):

 Numerical optimization.
* Probabilistic graphical models.
e Bayesian methods.
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ML and Deep Learning History

* Late 2000s: push to revive connectionism as “deep learning”.
— Canadian Institute For Advanced Research (CIFAR) NCAP program:

* “Neural Computation and Adaptive Perception”.
* Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio (“Canadian mafia”).

— Unsupervised successes: “deep belief networks” and “autoencoders”.
* Could be used to initialize deep neural networks.

e https://www.youtube.com/watch?v=KuPaiOogiHk
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2010s: DEEP LEARNING!!!

* Bigger datasets, bigger models, parallel computing (GPUs/clusters).
— And some tweaks to the models from the 1980s.

 Huge improvements in automatic speech recognition (2009).

— All phones now have deep learning.

 Huge improvements in computer vision (2012).
— Changed computer vision field almost instantly. ‘_
— This is now finding its way into products. 5= BB person

chair




2010s: DEEP LEARNING!!!

* Media hype:

— “How many computers to identify a cat? 16,000
New York Times (2012).

— “Why Facebook is teaching its machines to think like humans”
Wired (2013).

— “What is ‘deep learning” and why should businesses care?”
Forbes (2013).

— “Computer eyesight gets a lot more accurate”
New York Times (2014).

e 2015: huge improvement in language understanding.



ImageNet Challenge
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ImageNet Challenge

* Object detection task:
— Single label per image.
— Humans: ~5% error.

Classification error

0.3

0.2]
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Image classification

2010
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ImageNet Challenge

* Object detection task:
— Single label per image.
— Humans: ~5% error.

Classification error

0.3

0.2]

017

Image classification

27 Usual improyemeal

2010 2011

25



ImageNet Challenge

* Object detection task:
— Single label per image.
— Humans: ~5% error.

Classification error
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ImageNet Challenge

* Object detection task:
— Single label per image.
— Humans: ~5% error.
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ImageNet Challenge

* Object detection task:
— Single label per image.
— Humans: ~5% error.

Classification error
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ImageNet Challenge

Object detection task:

— Single label per image.

— Humans: ~“5% error.

2015: Won by Microsoft Research Asia

— 3.6% error.

— 152 layers.
2016: Chinese University of Hong Kong:

— Ensembles of existing methods.

2017: fewer entries, organizers decided this would be last year.



Why Sigmoid?
* Consider setting ‘h’ to define binary features z, using:
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— Each h(zi) can be viewed as binary feature.

* “You either have this ‘part’ or you don’t have it.”

— We can make 2k objects by all the Motivation: Pixels vs. Parts
pOSS|bIe ”pa rt Comblnat|on5”. * We could represent other digits as different combinations of “parts”:
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Why Sigmoid?

* Consider setting ‘h’ to define binary features z, using:

»\(Zi(): | if 2. 70
O iF Za(,<O

“24] (Zic)
— Zi.

— Each h(zi) can be viewed as binary feature.

* “You either have this ‘part’ or you don’t have it.”

— We can make 2k objects by all the
possible “part combinations”.

* But this is hard to optimize (non-differentiable/discontinuous).
* Sigmoid is a smooth approximation to these binary features.
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Why “Neural Network”?

Dendrite Axon terminal

Node of
Ranvier

III

Cartoon of “typical” neuron:

Schwann cell

Myelin sheath
Nucleus

Neuron has many “dendrites”, which take an input signal.
Neuron has a single “axon”, which sends an output signal.

With the right input to dendrites:
— “Action potential” along axon (like a binary signal):

Voltage (mV)

-55

-70




Why “Neural Network”?

Dendrite Axon terminal
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Why “Neural Network”?
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Why “Neural Network”?
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Deep Hierarchies in the Brain

DEEP HIERARCHIES IN THE VISUAL SYSTEM
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“Hierarchies of Parts” Motivation for Deep Learning

* Each “neuron” might recognize
a “part” of a digit.

— “Deeper” neurons might recognize
combinations of parts.

— Represent complex objects as
hierarchical combinations of
re-useable parts (a simple “grammar”)

 Watch the full video here:

— https://www.youtube.com/watch?v=aircAruvnKk
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Deep Learning

* For 4 layers, we could write the prediction as:
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Why z. = Wx.?

In PCA we had that the optimal Z = XWT(WWT)-L,
If W had normalized+orthogonal rows, Z = XW' (since WW' =1).

— So z; = Wx; in this normalized+orthogonal case.

Why we would use z, = Wx; in neural networks?

— We didn’t enforce normalization or orthogonality.

The value WH(WW7)1 is just “some matrix”.
— You can think of neural networks as just directly learning this matrix.



III

“Artificial” Neural Nets vs. “Real” Networks Nets

 Artificial neural network:
— X IS measurement of the world.
— z; is internal representation of world.
— y. is output of neuron for classification/regression.

e Real neural networks are more complicated:

— Timing of action potentials seems to be important.
» “Rate coding”: frequency of action potentials simulates continuous output.

— Neural networks don’t reflect sparsity of action potentials.

— How much computation is done inside neuron?

— Brain is highly organized (e.g., substructures and cortical columns).
— Connection structure changes.

— Different types of neurotransmitters.




Cool Picture Motivation for Deep Learning

Faces might be composed of different “parts”:
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
,I,\-'\ /' // 3 *alaarﬁ/fpxs
N\

e Attempt to visualize second layer:

— Corners, angles, surface boundaries?

* Models require many tricks to work.
— We'll discuss these next time.

42



Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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 Visualization of second and third layers trained on specific objects:
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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e Visualization of second and third layers trained on specific objects:
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http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:

=A% SEEINSY // Gt o

. Vlsuallzatlon of second and thlrd Iayers trained on specific objects:
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http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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 Visualization of second and third layers trained on specific objects:

faces cars elephants chairs
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:

=AGSEIENTVIN L4 gmwmf,,;

 Visualization of second and third layers trained on specific objects:

faces cars elephants chairs faces, cars, airplanes, motorbikes
ol = BbL IS
_{<E® =k ]
NEEANSaE
RUERED =N

Oahhenm
N el el e

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf




