CPSC 340: Machine Learning and Data Mining

Neural Networks: the model ("predict")

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. ¹

Admin

- Assignment 5:
 - Due tonight.
- Assignment 6:
 - Will be released very soon.
 - Due in 13 days (Thursday April 5).

Supervised Learning Roadmap

- Part 1: "Direct" Supervised Learning.
 - We learned parameters 'w' based on the original features x_i and target y_i .
- Part 3: Change of Basis.
 - We learned parameters 'w' based on a change of basis z_i and target y_i .
- Part 4: Latent-Factor Models.
 - We learned parameters 'W' for basis z_i based on only on features x_i .

Wn

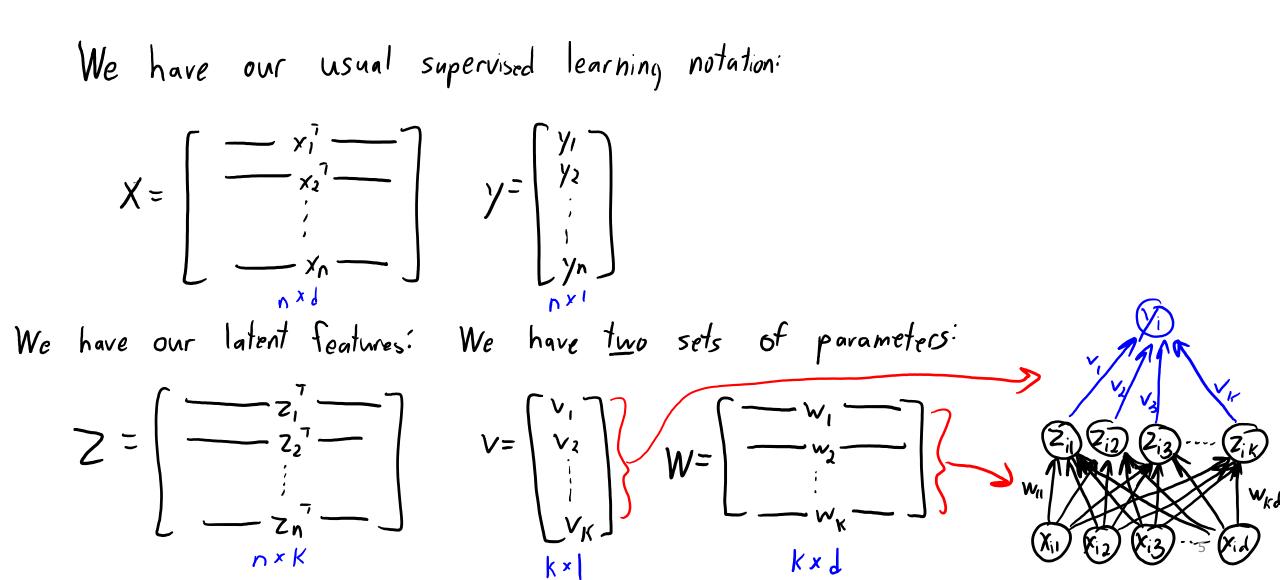
Wkd

- You can then learn 'w' based on change of basis z_i and target y_i .
- Part 5: Neural Networks.
 - Jointly learn 'W' and 'w' based on x_i and y_i .
 - Learn basis z_i that is good for supervised learning.

A Graphical Summary of CPSC 340 Parts 1-5

Part 1: "I have features xi" Part 4: basis from latent-factor Part 5: Neural networks Part 3: change of basis (X ,) 2_{12} (Zik Riz (Ziz) -- (Zik) "PCA will give me good features" TI think this Part 2:"What is the group of x;?" basis will work (Xin) (\mathbf{x}_{1}) (\mathbf{x}_{2}) - - (Xid) Learn features "What are the 'parts' of x;?" classifier at Trainer scpuratel some time.

Notation for Neural Networks



Linear-Linear Model

• Obvious choice: linear latent-factor model with linear regression.

Use features from latent-factor model:
$$z_i = Wx_i$$

Make predictions using a linear model: $y_i = v^T z_i$

• We want to train 'W' and 'v' jointly, so we could minimize:

$$f(W,v) = \frac{1}{2} \sum_{i=1}^{n} (\sqrt{z_i} - y_i)^2 = \frac{1}{2} \sum_{i=1}^{n} (\sqrt{W_{x_i}} - y_i)^2$$

$$\lim_{\substack{\text{linear regression with } z_i \text{ as features}}} \sum_{\substack{i=1 \\ i=1 \\ i=1$$

Introducing Non-Linearity

- To increase flexibility, something needs to be non-linear.
- Typical choice: transform z_i by non-linear function 'h'.

$$z_i = W_{x_i}$$
 $y_i = v^T h(z_i)$

- Here the function 'h' transforms 'k' inputs to 'k' outputs.

• Common choice for 'h': applying sigmoid function element-wise:

$$h(z_{ic}) = \frac{1}{1 + exp(-z_{ic})}$$

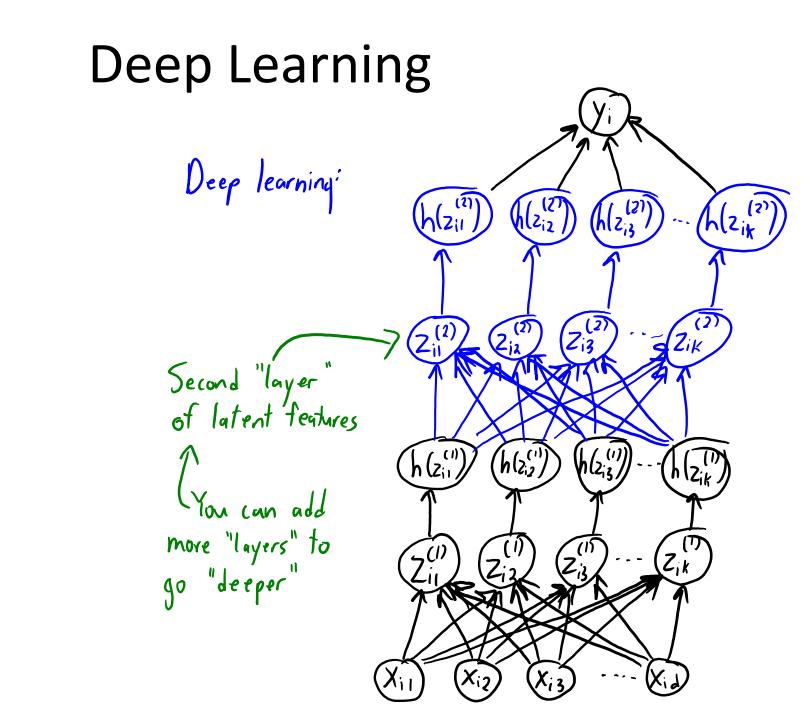
- So this takes the z_{ic} in (- ∞ , ∞) and maps it to (0,1).
- We'll see another activation function next class.
- This is called a "multi-layer perceptron" or a "neural network".

Supervised Learning Roadmap

Hand-engineered features: Learn a latent-factor model: Learn 'n' and 'W' together: Neural network: Wal WKd VK Use latent features "I think this W_{(l} in supervised model: WKd basis will work " (x12) (x13) ---- (x1d) Wn Wkd But still gives a linear model. (\mathbf{X}_{1}) (\mathbf{X}_{2}) (\mathbf{X}_{1}) --- (Zik) (Xid) Good representation of Extra non-linear transformation 'sh'

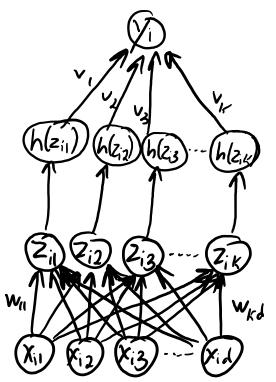
Requires domain Knowledge and can be time- consuming

X; might be bad for predicting y;



9

Neural network:



Deep Learning Linear modeli $\dot{y}_i = w^T x_i$ Deep learning $(h(z_{i3}^{(2)}))$ (h(z(2))) $h(z_{i2}^{(2)})$ Neural network with I hidden layer: $\gamma_i = v^T h(W_{x_i})$ (Zi3 Zik Neural network with 2 hidden layers: $y_i = v^T h(W^{(2)}h(W^{(1)}x_i))$ Second "layer" of latent features h(z_i)) (h(z;2)) $h(\overline{z_{ik}})$ You can add Neural network with 3 hidden layers $\hat{\gamma}_i = v^T h(W^{(3)}h(W^{(2)}h(W^{(1)}x_i)))$ more "layers" to (T , Z, k go "deeper'

10

Adding Bias Variables

• Recall fitting line regression with a bias:

$$\hat{y}_{i} = \underbrace{\hat{z}}_{j=1} w_{j} x_{ij} + \beta$$

We avoided this by adding a column of ones to X.

• In neural networks we often want a bias on the output:

$$y_i = \sum_{c=1}^{k} v_c h(w_c x_i) + \beta$$

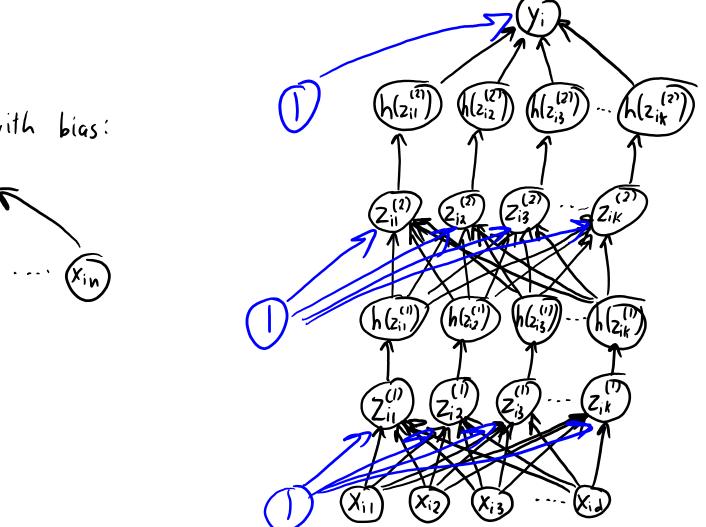
• But we also often also include biases on each z_{ic}:

$$\hat{y}_i = \sum_{c=1}^{lr} v_c h(w_c x_i + \beta_c) + \beta$$

- A bias towards this h(z_{ic}) being either 0 or 1.

• Equivalent to adding to vector $h(z_i)$ an extra value that is always 1.

Adding Bias Variables



Linear model with bigs: (X, 3)

Jupyter notebook demo

(Very Abridged) Deep Learning History

- 1950s and 1960s: initial excitement
 - MIT students assigned to solve object recognition over the summer
- 1970s-2000s: progress but also disappointment, "Al winter"
 SVMs very popular in 1990s & 2000s
- Late 2000s-2010s: the return of deep learning
 - Similar models but new tricks, bigger data, more processing power, GPUs
 - Huge improvements in automatic speech recognition (2009).
 - All phones now have deep learning.
 - Huge improvements in computer vision (2012).
 - This is now finding its way into products

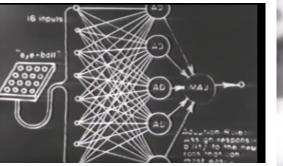
Vocabulary

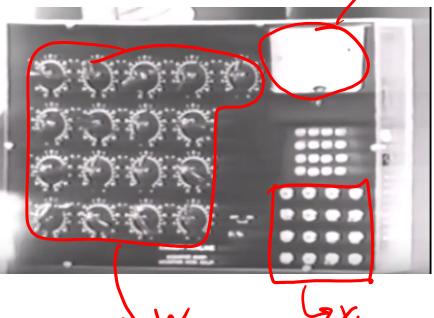
- deep learning
- (artificial) neural net(work)
- NN, ANN, CNN
- layers
- units, neurons, activations
- hidden, visible
- activation function, nonlinearity

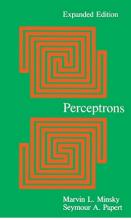
Summary

- Neural networks: simultaneously learn features and regression coefficients for supervised learning.
- Sigmoid function: avoids degeneracy by introducing non-linearity.
- Deep learning: neural networks with many hidden layers.
- Unprecedented performance on difficult pattern recognition tasks.

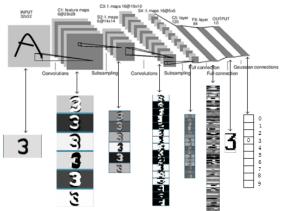
- 1950 and 1960s: Initial excitement.
 - Perceptron: linear classifier and stochastic gradient (roughly).
 - "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence." New York Times (1958).
 - https://www.youtube.com/watch?v=IEFRtz68m-8
 - Marvin Minsky assigns object recognition to his students as a summer project
- Then drop in popularity:
 - Quickly realized limitations of linear models.



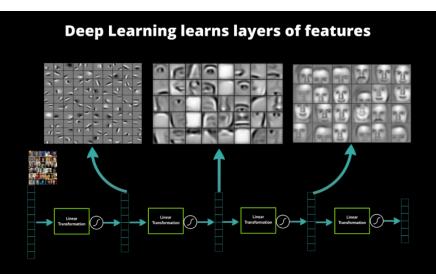


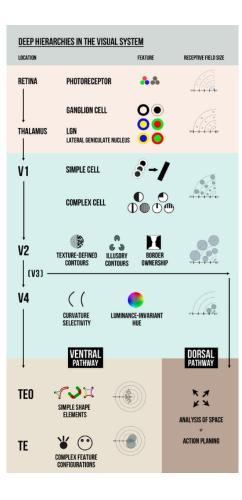


- 1970 and 1980s: Connectionism (brain-inspired ML)
 - Want "connected networks of simple units".
 - Use parallel computation and distributed representations.
 - Adding hidden layers z_i increases expressive power.
 - With 1 layer and enough sigmoid units, a universal approximator.
 - Success in optical character recognition.



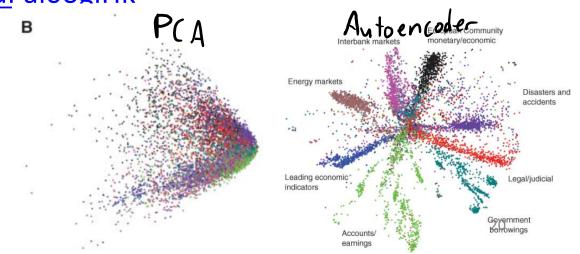
https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing http://www.datarobot.com/blog/a-primer-on-deep-learning/ http://blog.csdn.net/strint/article/details/44163869





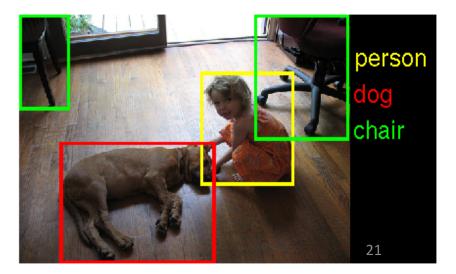
- 1990s and early-2000s: drop in popularity.
 - It proved really difficult to get multi-layer models working robustly.
 - We obtained similar performance with simpler models:
 - Rise in popularity of logistic regression and SVMs with regularization and kernels.
 - ML moved closer to other fields (CPSC 540):
 - Numerical optimization.
 - Probabilistic graphical models.
 - Bayesian methods.

- Late 2000s: push to revive connectionism as "deep learning".
 - Canadian Institute For Advanced Research (CIFAR) NCAP program:
 - "Neural Computation and Adaptive Perception".
 - Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio ("Canadian mafia").
 - Unsupervised successes: "deep belief networks" and "autoencoders".
 - Could be used to initialize deep neural networks.
 - <u>https://www.youtube.com/watch?v=Ku</u>Pai0ogiHk



2010s: DEEP LEARNING!!!

- Bigger datasets, bigger models, parallel computing (GPUs/clusters).
 And some tweaks to the models from the 1980s.
- Huge improvements in automatic speech recognition (2009).
 - All phones now have deep learning.
- Huge improvements in computer vision (2012).
 - Changed computer vision field almost instantly.
 - This is now finding its way into products.



2010s: DEEP LEARNING!!!

- Media hype:
 - "How many computers to identify a cat? 16,000"

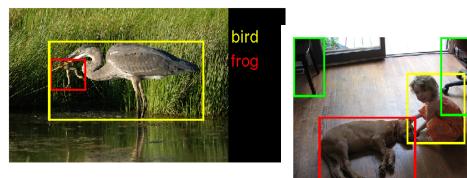
New York Times (2012).

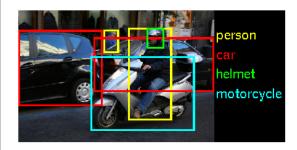
- "Why Facebook is teaching its machines to think like humans" Wired (2013).
- "What is 'deep learning' and why should businesses care?"
 Forbes (2013).
- "Computer eyesight gets a lot more accurate"

New York Times (2014).

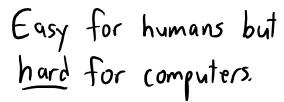
• 2015: huge improvement in language understanding.

• Millions of labeled images, 1000 object classes.





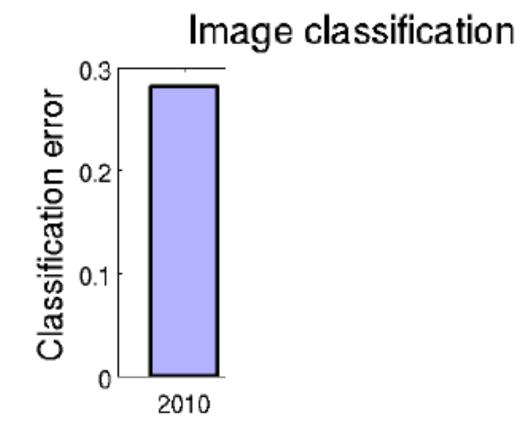
ersoi



- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

(a) Siberian husky

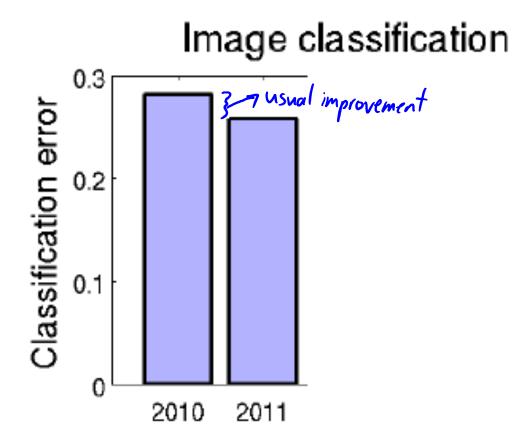
(b) Eskimo dog



- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

(a) Siberian husky

(b) Eskimo dog

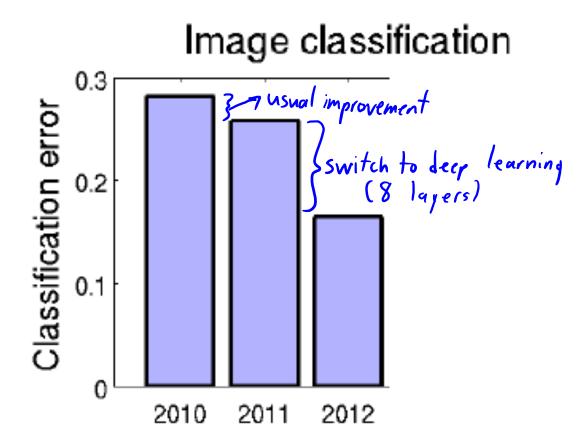


https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/ http://arxiv.org/pdf/1409.0575v3.pdf http://arxiv.org/pdf/1409.4842v1.pdf

- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

(a) Siberian husky

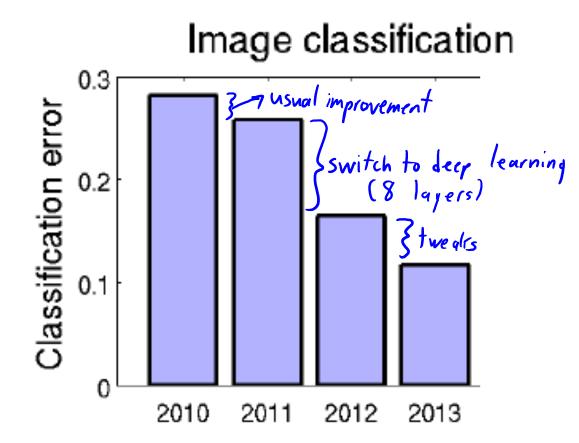
(b) Eskimo dog



- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

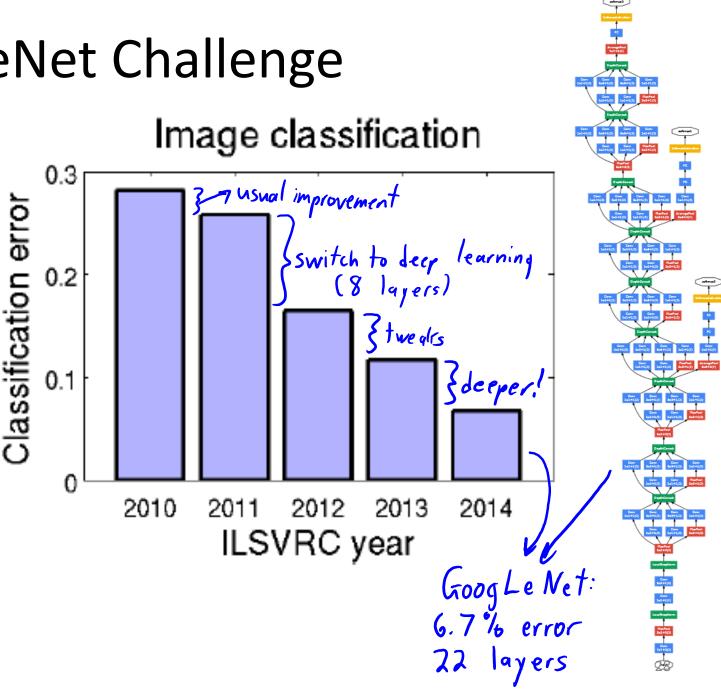
(a) Siberian husky

(b) Eskimo dog



- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

(a) Siberian husky



https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/ http://arxiv.org/pdf/1409.0575v3.pdf http://arxiv.org/pdf/1409.4842v1.pdf

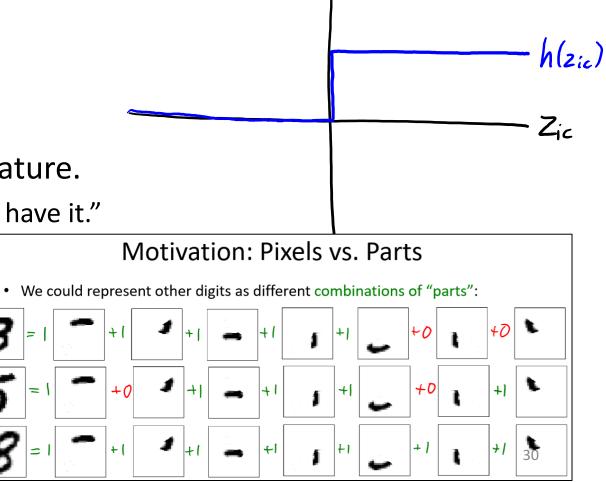
- Object detection task:
 - Single label per image.
 - Humans: ~5% error.
- 2015: Won by Microsoft Research Asia
 - 3.6% error.
 - 152 layers.
- 2016: Chinese University of Hong Kong:
 - Ensembles of existing methods.
- 2017: fewer entries, organizers decided this would be last year.

Why Sigmoid?

• Consider setting 'h' to define binary features z_i using:

$$h(z_{ic}) = \begin{cases} 1 & \text{if } z_{ic} = 70 \\ 20 & \text{if } z_{ic} < 0 \end{cases}$$

- Each h(zi) can be viewed as binary feature.
 - "You either have this 'part' or you don't have it."
- We can make 2^k objects by all the possible "part combinations".

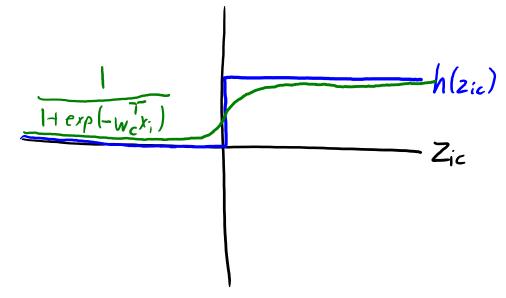


Why Sigmoid?

• Consider setting 'h' to define binary features z_i using:

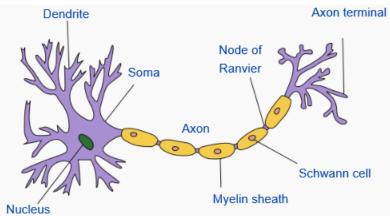
$$h(z_{ic}) = \begin{cases} 1 & \text{if } z_{ic} \neq 0 \\ 2 & \text{if } z_{ic} < 0 \end{cases}$$

- Each h(zi) can be viewed as binary feature.
 - "You either have this 'part' or you don't have it."
- We can make 2^k objects by all the possible "part combinations".
- But this is hard to optimize (non-differentiable/discontinuous).
- Sigmoid is a smooth approximation to these binary features.

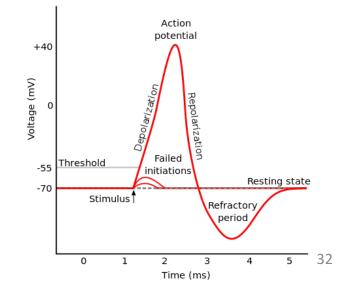


Why "Neural Network"?

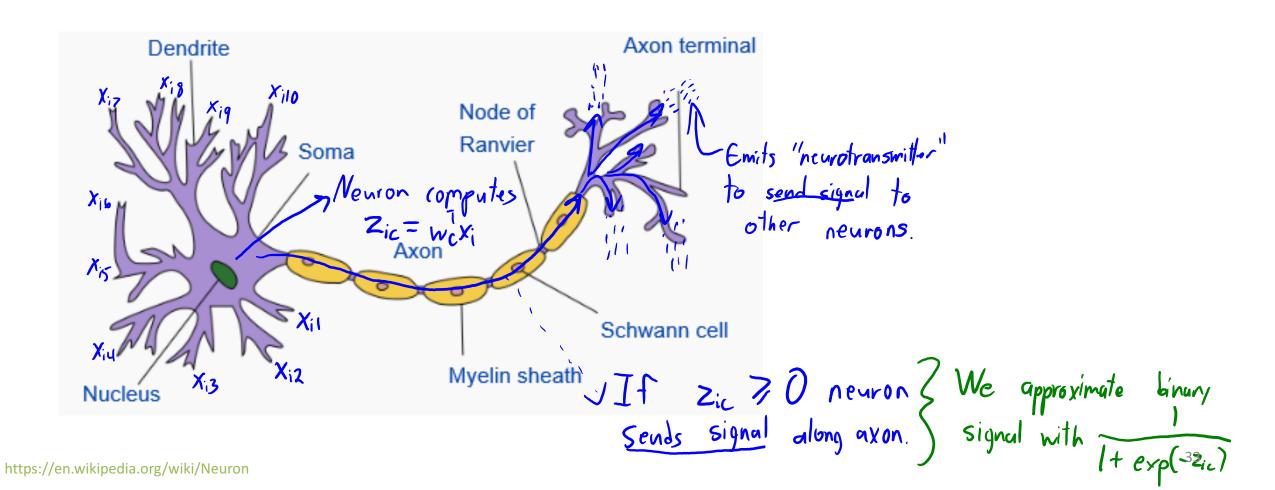
• Cartoon of "typical" neuron:

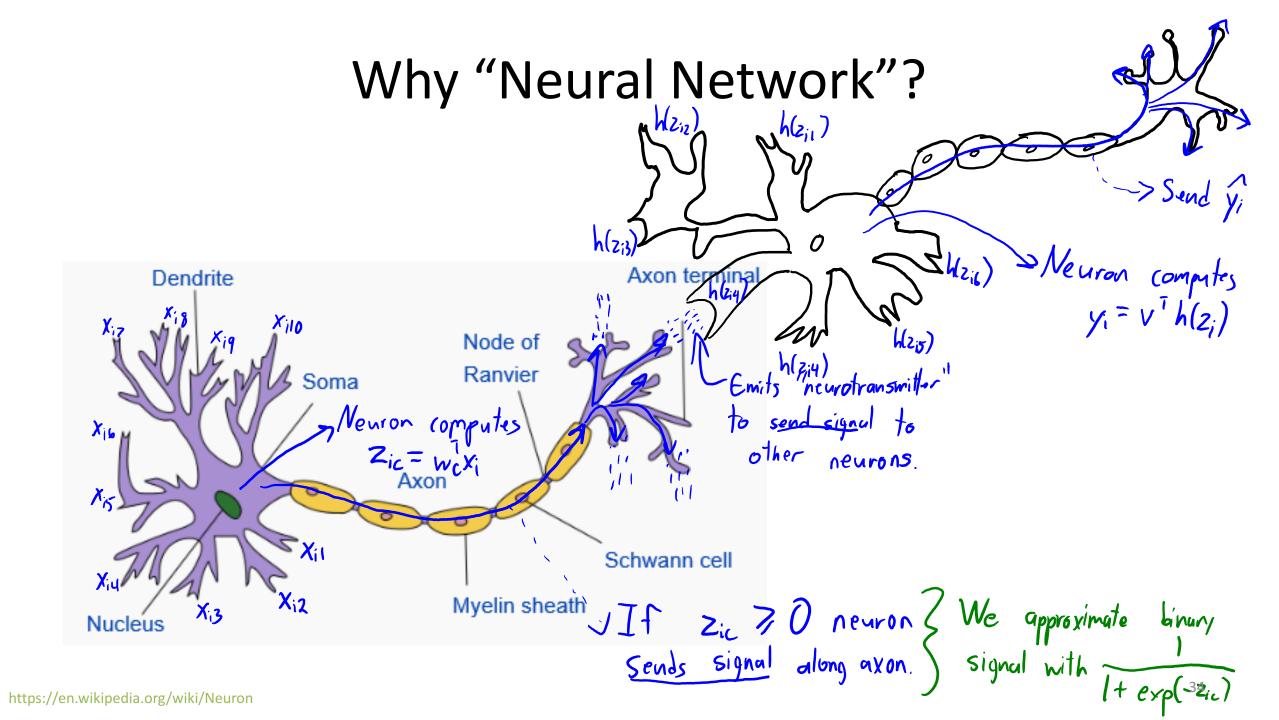


- Neuron has many "dendrites", which take an input signal.
- Neuron has a single "axon", which sends an output signal.
- With the right input to dendrites:
 - "Action potential" along axon (like a binary signal):



Why "Neural Network"?

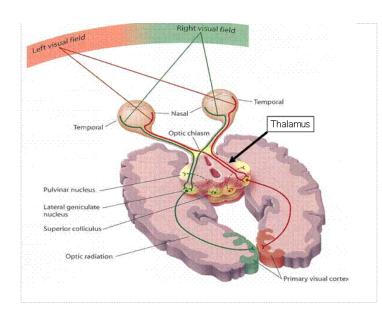




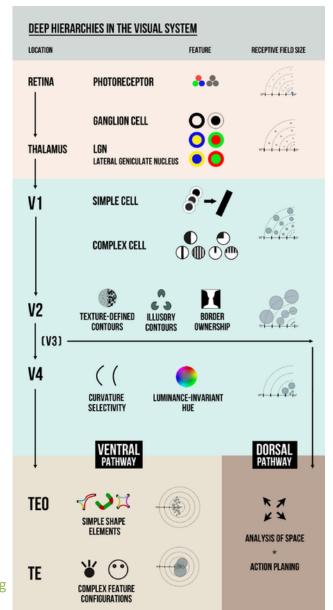
Why "Neural Network"?

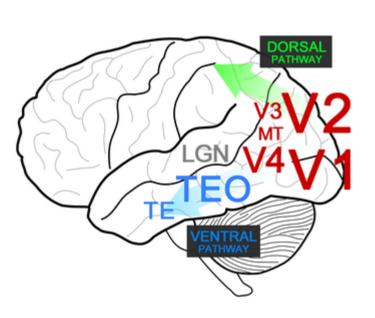
-> Predictions based on aggregation Vh(Wx;) at y: "neuron" -> Synapse between Zik and yi neuron Spinory signal h(wcx;) sent along "axon" $n(Z_{3})$ $h(z_{k})$, Neuron aggregates signals: w. xi "dendrites" for Zik "neuron" are reciving xij values W_{(l} WKd

Deep Hierarchies in the Brain



http://www.strokenetwork.org/newsletter/articles/vision.htm https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing





"Hierarchies of Parts" Motivation for Deep Learning

784

- Each "neuron" might recognize a "part" of a digit.
 - "Deeper" neurons might recognize combinations of parts.
 - Represent complex objects as hierarchical combinations of re-useable parts (a simple "grammar").
- Watch the full video here:
 - <u>https://www.youtube.com/watch?v=aircAruvnKk</u>

 $\bigcirc
_{1}^{0}$

Deep Learning

• For 4 layers, we could write the prediction as:

$$\gamma_{i} = \sqrt{h} \left(W^{(1)} h(W^{(3)} h(W^{(2)} h(W^{(2)} x_{i}))) \right)$$
Sym

• For 'm' layers, we could use:

Symbol:
$$\prod_{k=0}^{n} f_{k}(t)$$
Meaning: $f_{n} \circ f_{n-1} \circ f_{n-2} \circ \dots \circ f_{2} \circ f_{1} \circ f_{0}(t)$

$$\hat{y}_{i} = \mathbf{w}^{\mathsf{T}} \left(\frac{\mathbf{m}}{\mathbf{L}} h(\mathbf{W}^{(l)} \mathbf{x}_{i}) \right)$$

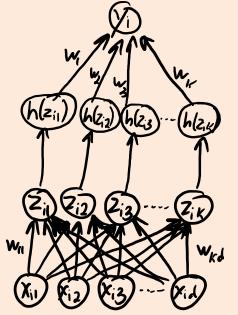
https://mathwithbaddrawings.com/2016/04/27/symbols-that-math-urgently-needs-to-adopt

Why $z_i = Wx_i$?

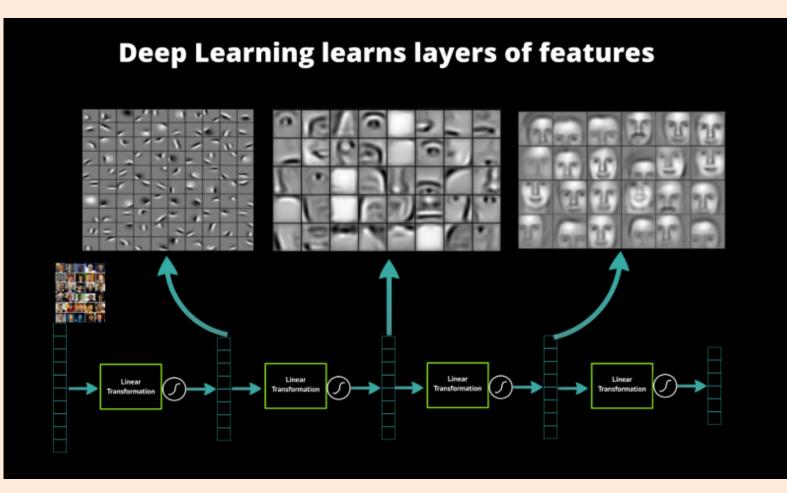
- In PCA we had that the optimal $Z = XW^T(WW^T)^{-1}$.
- If W had normalized+orthogonal rows, $Z = XW^T$ (since $WW^T = I$).
 - So $z_i = Wx_i$ in this normalized+orthogonal case.
- Why we would use $z_i = Wx_i$ in neural networks?
 - We didn't enforce normalization or orthogonality.
- The value W^T(WW^T)⁻¹ is just "some matrix".
 - You can think of neural networks as just directly learning this matrix.

"Artificial" Neural Nets vs. "Real" Networks Nets

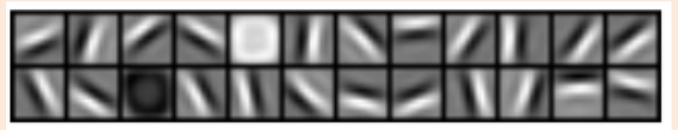
- Artificial neural network:
 - x_i is measurement of the world.
 - z_i is internal representation of world.
 - y_i is output of neuron for classification/regression.
- Real neural networks are more complicated:
 - Timing of action potentials seems to be important.
 - "Rate coding": frequency of action potentials simulates continuous output.
 - Neural networks don't reflect sparsity of action potentials.
 - How much computation is done inside neuron?
 - Brain is highly organized (e.g., substructures and cortical columns).
 - Connection structure changes.
 - Different types of neurotransmitters.



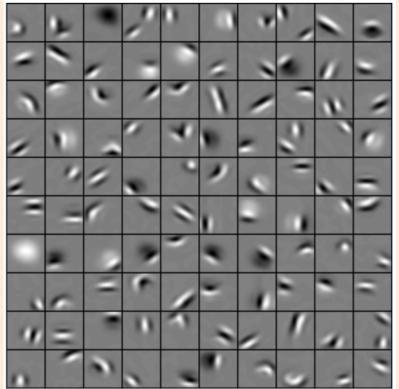
• Faces might be composed of different "parts":



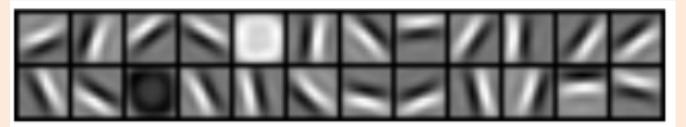
• First layer of z_i trained on 10 by 10 image patches:



- Attempt to visualize second layer:
 - Corners, angles, surface boundaries?
- Models require many tricks to work.
 We'll discuss these next time.

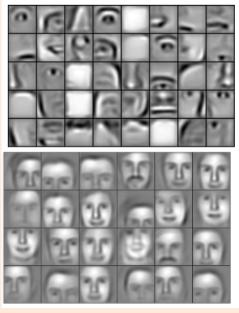


• First layer of z_i trained on 10 by 10 image patches:



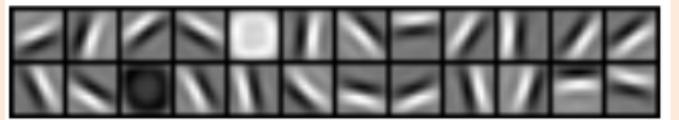
("Gabor filters"

 Visualization of second and third layers trained on specific objects: faces



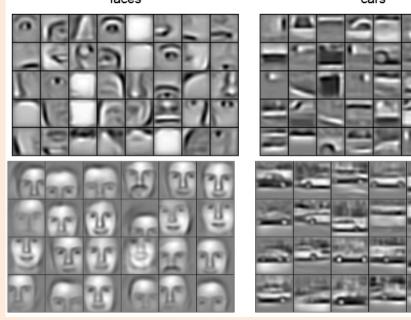
http://www.cs.toronto.edu/~rgrosse

• First layer of z_i trained on 10 by 10 image patches:

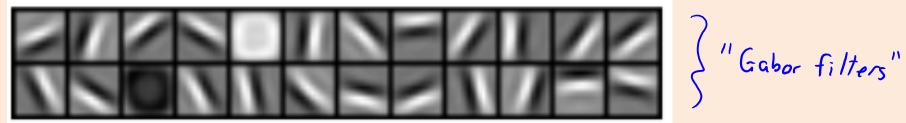


{ "Gabor filters"

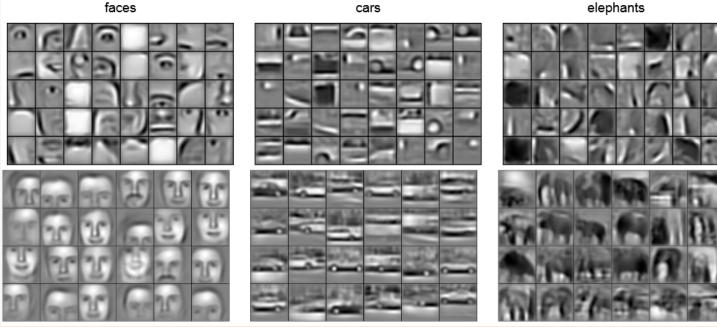
Visualization of second and third layers trained on specific objects:



• First layer of z_i trained on 10 by 10 image patches:



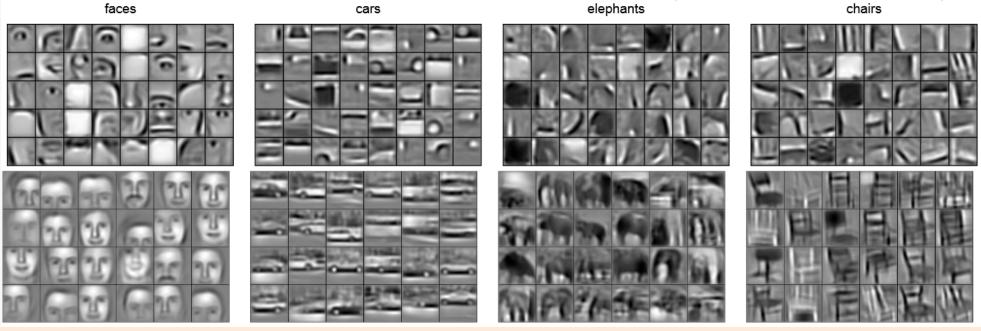
• Visualization of second and third layers trained on specific objects:



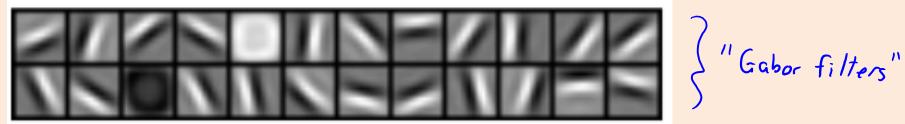
• First layer of z_i trained on 10 by 10 image patches:



• Visualization of second and third layers trained on specific objects:



• First layer of z_i trained on 10 by 10 image patches:



• Visualization of second and third layers trained on specific objects:

