
CPSC	340:
Machine	Learning	and	Data	Mining

Decision	Trees

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart. 1

Admin
• Assignment	0 is	due	Wednesday	at	9pm	(in	2	days)
• Assignment	1	should	be	released	Wednesday,	due	a	week	later
– If	you	want	to	work	with	a	partner,	you	both	must	request	it	BEFORE	a1	release
– Instructions	in	the	Homework	Submission	Instructions	document

• Important	webpages:
– https://www.cs.ubc.ca/getacct/
– https://github.ugrad.cs.ubc.ca/CPSC340-2017W-T2/home
– https://piazza.com/class/j9uk5ecmb7e4ks	

• Tutorials	and	office	hours	start	this	week.
– See	course	homepage	for	tutorial	topics	and	office	hours	schedule.

• Auditing
– No	room	for	official	auditors.
– Unofficial	auditors,	please	do	not	take	seats	if	others	are	standing.

2

Last	Time:	Data	Representation	and	Exploration
• We	discussed	object-feature	representation:
– Examples:	another	name
we’ll	use	for	objects.

• We	discussed	summary	statistics and	visualizing	data.

Age Job? City Rating Income

23 Yes Van A 22,000.00
23 Yes Bur BBB 21,000.00
22 No Van CC 0.00
25 Yes Sur AAA 57,000.00

3

Motivating	Example:	Food	Allergies
• You	frequently	start	getting	an	upset	stomach
• You	suspect	an	adult-onset	food	allergy.

4

Motivating	Example:	Food	Allergies
• To	solve	the	mystery,	you	start	a	food	journal:

• But	it’s	hard	to	find	the	pattern:
– You	can’t	isolate	and	only	eat	one	food	at	a	time.
– You	may	be	allergic	to	more	than	one	food.
– The	quantity	matters:	a	small	amount	may	be	ok.
– You	may	be	allergic	to	specific	interactions.

Egg Milk Fish Wheat Shellfish Peanuts … Sick?

0 0.7 0 0.3 0 0 1

0.3 0.7 0 0.6 0 0.01 1

0 0 0 0.8 0 0 0

0.3 0.7 1.2 0 0.10 0.01 1

0.3 0 1.2 0.3 0.10 0.01 1

5

Supervised	Learning
• We	can	formulate	this	as	supervised	learning:

• Input	for	an	object (day	of	the	week)	is	a	set	of	features (quantities	of	food).
• Output	is	a	desired	class	label	(whether	or	not	we	got	sick).
• Goal	of	supervised	learning:	

– Use	data	to	find	a	model	that	outputs	the	right	label	based	on	the	features.
– Model	predicts	whether	foods	will	make	you	sick	(even	with	new	combinations).

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

6

Supervised	Learning
• General	supervised	learning problem:
– Take	features	of	objects	and	corresponding	labels	as	inputs.
– Find	a	model	that	can	accurately	predict	the	labels	of	new	objects.

• This	is	the	most	successful	machine	learning	technique:
– Spam	filtering,	optical	character	recognition,	Microsoft	Kinect,	speech	
recognition,	classifying	tumours,	etc.

• We’ll	first	focus	on	categorical	labels,	which	is	called	“classification”.
– The	model	is	a	called	a	“classifier”.

7

Naïve	Supervised	Learning:	“Predict	Mode”

• A	very	naïve	supervised	learning	method:
– Count	how	many	times	each	label	occurred	in	the	data	(4	vs.	1	above).
– Always	predict	the	most	common	label,	the	“mode”	(“sick”	above).

• This	ignores	the	features,	so	is	only	accurate	if	we	only	have	1	label.
• There		is	no	unique	“right”	way	to	use	the	features.
– Today	we’ll	consider	a	classic	way	known	as	decision	tree	learning.

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

8

Decision	Trees
• Decision	trees	are	simple	programs	consisting	of:

– A	nested	sequence	of	“if-else”	decisions	based	on	the	features (splitting	rules).
– A	class	label	as	a	return	value	at	the	end	of	each	sequence.

• Example	decision	tree:

if	(milk	>	0.5)	
{

return	‘sick’
}
else	
{

if	(egg	>	1)
return	‘sick’

else
return	‘not	sick’

}

Can	draw	sequences	of	decisions	as	a	tree:

9

Supervised	Learning	as	Writing	A	Program
• There	are	many	possible	decision	trees.
– We’re	going	to	search	for	one	that	is	good	at	our	supervised	learning	problem.

• So	our	input	is	data	and	the	output	will	be	a	program.
– This	is	called	“training”	the	supervised	learning	model.
– Different	than	usual	input/output	specification	for	writing	a	program.

• Supervised	learning	is	useful	when	you	have	lots	of	labeled	data	BUT:
1. problem	is	too	complicated	to	write	a	program	ourselves,	or
2. human	expert	can’t	explain	why	you	assign	certain	labels,	or
3. we	don’t	have	a	human	expert	for	the	problem.

10

Learning	A	Decision	Stump
• We’ll	start	with	"decision	stumps”:
– Simple	decision	tree	with	1	splitting	rule	based	on	thresholding	1	feature.

• How	do	we	find	the	best	“rule”	(feature,	threshold,	and	leaf	labels)?
1. Define	a	‘score’	for	the	rule.
2. Search	for	the	rule	with	the	best	score.

11

Decision	Stump:	Accuracy	Score
• Most	intuitive	score:	classification	accuracy.
– “If	we	use	this	rule,	how	many	objects	do	we	label	correctly?”

• Computing	classification	accuracy	for	(egg	>	1):
– Find	most	common	labels	if	we	use	this	rule:

• When	(egg	>	1),	we	were	“sick”	both	times.
• When	(egg	<=	1),	we	were	“not	sick”	three	out	of	four	times.

– Compute	accuracy:	
• Rule	(egg	>	1)	is	correct	on	5/6	objects.

• Scores	of	other	rules:
– (milk	>	0.5)	obtains	lower	accuracy	of	4/6	.
– (egg	>	0)	obtains	optimal	accuracy	of	6/6.
– ()	obtains	“baseline”	accuracy	of	3/6,	as	does	(egg	>	2).

Egg Milk Fish …

1 0.7 0

2 0.7 0

0 0 0

0 0.7 1.2

2 0 1.2

0 0 0

Sick?

1

1

0

0

1

0

12

Decision	Stump:	Rule	Search	(Attempt	1)
• Accuracy	“score”	evaluates	quality	of	a	rule.
– Find	the	best	rule	by	maximizing	score.

• Attempt	1	(exhaustive	search):

• As	you	go,	keep	track	of	the	highest	score.
• Return	highest-scoring	rule (variable,	threshold,	and	leaf	values).

Compute	score	of	(egg	>	0) Compute	score	of	(milk	>	0) …
Compute	score	of	(egg	>	0.01) Compute	score	of	(milk	>	0.01) …
Compute	score	of	(egg	>	0.02) Compute	score	of	(milk	>	0.02) …
Compute	score	of	(egg	>	0.03) Compute	score	of	(milk	>	0.03) …
… … …
Compute	score	of	(egg	>	99.99) Compute	score	of	(milk	>	0.99) …

13

Supervised	Learning	Notation	(MEMORIZE	THIS)

• Feature	matrix	‘X’ has	rows	as	objects,	columns	as	features.
– xij is	feature	‘j’	for	object	‘i’	(quantity	of	food	‘j’	on	day	‘i’).
– xi is	the	list	of	all	features	for	object	‘i’	(all	the	quantities	on	day	‘i’).
– xj is	column	‘j’	of	the	matrix (the	value	of	feature	‘j’	across	all	objects).	

• Label	vector	‘y’ contains	the	labels	of	the	objects.
– yi is	the	label	of	object ‘i’ (1	for	“sick”,	0	for	“not	sick”).

Egg Milk Fish Wheat Shellfish Peanuts

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

14

Supervised	Learning	Notation	(MEMORIZE	THIS)

• Training	phase:	
– Use	‘X’	and	‘y’	to	find	a	‘model’	(like	a	decision	stump).

• Prediction	phase:	
– Given	an	object	xi,	use	the	‘model’	to	predict	a	label	‘yhati’ (“sick”	or	“not	sick”).

• Training	error:
– Fraction	of	times	our	prediction	‘yhati’	does	not	equal	the	true	yi label.

Egg Milk Fish Wheat Shellfish Peanuts

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

15

Decision	Stump	Learning	Pseudo-Code

16

Cost	of	Decision	Stumps	(Attempt	1)
• How	much	does	this	cost?
• Assume	we	have:
– ‘n’	objects	(days	that	we	measured).
– ‘d’	features	(foods	that	we	measured).
– ‘k’	thresholds	(>0,	>0.01,	>0.02,…)

• Computing	the	score	of	one	rule	costs	O(n):
– We	need	to	go	through	all	‘n’	examples.
– See	notes	on	webpage	for	review	of	“O(n)”	notation.

• To	compute	scores	for	d*k	rules,	total	cost	is	O(ndk).
– But	‘k’	might	be	huge

• Can	we	do	better?
17

Speeding	up	Rule	Search
• We	can	ignore	rules	outside	feature	ranges:
– E.g., we	never	have	(egg	>	50)	in	our	data.
– These	rules	can	never	improve	accuracy.
– Restrict	thresholds	to	range	of	features.

• Most	of	the	thresholds	give	the	same	score.
– If	we	never	have	(0.5	<	egg	<	1)	in	the	data,	

• then	(egg	<	0.6)	and	(egg	<	0.9)	have	the	same	score.

– Restrict	thresholds	to	values	in	data.

18

Decision	Stump:	Rule	Search	(Attempt	2)
• Attempt	2	(search	only	over	features	in	data):

• Now	at	most	‘n’	thresholds	for	each	feature.
• We	only	consider	O(nd)	rules	instead	of	O(dk)	rules:
– Total	cost	changes	from	O(ndk)	to	O(n2d).

Compute	score	of	(eggs	>	0) Compute	score	of	(milk	>	0.5) …
Compute	score	of	(eggs	>	1) Compute	score	of	(milk	>	0.7) …
Compute	score	of	(eggs	>	2) Compute	score	of	(milk	>	1) …
Compute	score	of	(eggs	>	3) Compute	score	of	(milk	>	1.25) …
Compute	score	of	(eggs	>	4) …

19

Decision	Stump:	Rule	Search	(Attempt	3)
• Do	we	have	to	compute	the	score	from	scratch?

– Rule	(egg	>	1)	and	(egg	>	2)	have	same	decisions,	except	when	(egg	==	2).
• We	can	actually	compute	the	best	rule	involving	‘egg’	in	O(n	log	n):

– Sort	the	examples	based	on	‘egg’,	and	use	these	positions	to	re-arrange	‘y’.
– Go	through	the	sorted	values	in	order,	updating	the	counts	of	#sick	and	#not-sick	that	

both	satisfy	and	don’t	satisfy	the	rules.
– With	these	counts,	it’s	easy	to	compute	the	classification	accuracy	(see	bonus	slide).

• Sorting	costs	O(n	log	n)	per	feature.
• Total	cost	of	updating	counts	is	O(n)	per	feature.
• Total	cost	is	reduced	from	O(n2d)	to	O(nd log	n).
• This	is	a	good	runtime:

– O(nd)	is	the	size	of	data,	so	O(nd log	n)	is same	as	looking	at	data,	up	to	a	log	factor.
– We	can	apply	this	algorithm	to	huge	datasets.

20

(pause)

21

Decision	Tree	Learning
• Decision	stumps have	only	1	rule	based	on	only	1	feature.
– Very	limited	class	of	models:	usually	not	very	accurate	for	most	tasks.

• Decision	trees	allow	sequences	of	splits based	on	multiple	features.
– Very	general	class	of	models:	can	get	very	high	accuracy.
– However,	it’s	computationally	infeasible	to	find	the	best	decision	tree.

• Most	common	decision	tree	learning	algorithm	in	practice:
– Greedy	recursive	splitting.

22

Example	of	Greedy	Recursive	Splitting
• Start	with	the	full	dataset:

Egg Milk …

0 0.7

1 0.7

0 0

1 0.6

1 0

2 0.6

0 1

2 0

0 0.3

1 0.6

2 0

Find	the	decision	stump	with	the	best	score:

Split	into	two	smaller	datasets	based	on	stump:
Egg Milk …

0 0

1 0

2 0

0 0.3

2 0

Egg Milk …

0 0.7

1 0.7

1 0.6

2 0.6

0 1

1 0.6

Sick?

1

1

0

1

0

1

1

1

0

0

1

Sick?

0

0

1

0

1

Sick?
1

1

1

1

1

023

Greedy	Recursive	Splitting
We	now	have	a	decision	stump	and	two	datasets:

Egg Milk … Sick?

0 0 0

1 0 0

2 0 1

0 0.3 0

2 0 1

Egg Milk … Sick?

0 0.7 1

1 0.7 1

1 0.6 1

2 0.6 1

0 1 1

1 0.6 0

Fit	a	decision	stump	to	each	leaf’s	data.

24

Greedy	Recursive	Splitting
We	now	have	a	decision	stump	and	two	datasets:

Egg Milk … Sick?

0 0 0

1 0 0

2 0 1

0 0.3 0

2 0 1

Egg Milk … Sick?

0 0.7 1

1 0.7 1

1 0.6 1

2 0.6 1

0 1 1

1 0.6 0

Fit	a	decision	stump	to	each	leaf’s	data.
Then	add	these	stumps	to	the	tree.

25

Greedy	Recursive	Splitting
This	gives	a	“depth	2”	decision	tree: It	splits	the	two	datasets	into	four	datasets:

Egg Milk … Sick?

0 0 0

1 0 0

2 0 1

0 0.3 0

2 0 1

Egg Milk … Sick?

0 0.7 1

1 0.7 1

1 0.6 1

2 0.6 1

0 1 1

1 0.6 0

Egg Milk … Sick?

0 0 0

1 0 0

0 0.3 0

Egg Milk … Sick?

2 0 1

2 0 1

Egg Milk … Sick?

0 0.7 1

1 0.7 1

1 0.6 1

2 0.6 1

Egg Milk … Sick?

1 0.6 0

26

Greedy	Recursive	Splitting
We	could	try	to	split	the	four	leaves	to	make	a	“depth	3”	decision	tree:

We	might	continue	splitting	until:
- The	leaves	each	have	only	one	label.
- We	reach	a	user-defined	maximum	depth.

27

Discussion	of	Decision	Tree	Learning
• Advantages:

– Interpretable.
– Fast	to	learn.
– Very	fast	to	classify

• Disadvantages:
– Hard	to	find	optimal	set	of	rules.
– Greedy	splitting	often	not	accurate,	requires	very	deep	trees.

• Issues:
– Can	you	revisit	a	feature?

• Yes,	knowing	other	information	could	make	feature	relevant	again.
– More	complicated	rules?

• Yes,	but	searching	for	the	best	rule	gets	much	more	expensive.
– Is	accuracy	the	best	score?

• No,	there	may	be	no	split	that	increase	accuracy.	Alternative:	information	gain (bonus	slides).
– What	depth?

28

Summary
• Supervised	learning:	
– Using	data	to	write	a	program	based	on	input/output	examples.

• Decision	trees:	predicting	a	label	using	a	sequence	of	simple	rules.	
• Decision	stumps:	simple	decision	tree	that	is	very	fast	to	fit.
• Greedy	recursive	splitting:	uses	a	sequence	of	stumps	to	fit	a	tree.
– Very	fast	and	interpretable,	but	not	always	the	most	accurate.

29

Other	Considerations	for	Food	Allergy	Example
• What	types	of	preprocessing might	we	do?

– Data	cleaning:	check	for	and	fix	missing/unreasonable	values.
– Summary	statistics:

• Can	help	identify	“unclean”	data.
• Correlation	might	reveal	an	obvious	dependence	(“sick”	ó “peanuts”).

– Data	transformations:	
• Convert	everything	to	same	scale?	(e.g.,	grams)
• Add	foods	from	day	before?	(maybe	“sick”	depends	on	multiple	days)
• Add	date?	(maybe	what	makes	you	“sick”	changes	over	time).

– Data	visualization:	look	at	a	scatterplot	of	each	feature	and	the	label.
• Maybe	the	visualization	will	show	something	weird	in	the	features.
• Maybe	the	pattern	is	really	obvious!

• What	you	do	might	depend	on	how	much	data	you	have:
– Very	little	data:

• Represent	food	by	common	allergic	ingredients	(lactose,	gluten,	etc.)?
– Lots	of	data:

• Use	more	fine-grained	features	(bread	from	bakery	vs.	hamburger	bun)?

30

How	do	we	fit	stumps	in	O(dn log	n)?
• Let’s	say	we’re	trying	to	find	the	best	rule	involving	milk:

Egg Milk …

0 0.7

1 0.7

0 0

1 0.6

1 0

2 0.6

0 1

2 0

0 0.3

1 0.6

2 0

Sick?

1

1

0

1

0

1

1

1

0

0

1

First	grab	the	milk	column	and	sort	it	
(using	the	sort	positions	to	re-arrange	
the	sick	column). This	step	costs	
O(n	log	n)	due	to	sorting.

Now,	we’ll	go	through	the	milk	values	
in	order,	keeping	track	of	#sick	and	
#not	sick	that	are	above/below	the	
current	value.	E.g.,	#sick	above	0.3	is	5.

With	these	counts,	accuracy	score	is	
(sum	of	most	common	label	above	and	
below)/n.

Milk

0

0

0

0

0.3

0.6

0.6

0.6

0.7

0.7

1

Sick?

0

0

0

0

0

1

1

0

1

1

1
31

How	do	we	fit	stumps	in	O(dn log	n)?

Milk

0

0

0

0

0.3

0.6

0.6

0.6

0.7

0.7

1

Sick?

0

0

0

0

0

1

1

0

1

1

1

Start	with	the	baseline	rule	()	which	is	always	“satisfied”:
If	satisfied,	#sick=5	and	#not-sick=6.
If	not	satisfied,	#sick=0	and	#not-sick=0.
This	gives	accuracy	of	(6+0)/n	=	6/11.

Next	try	the	rule	(milk	>	0),	and	update	the	counts	based	on	these	4	rows:
If	satisfied,	#sick=5 and	#not-sick=2.
If	not	satisfied,	#sick=0	and	#not-sick=4.
This	gives	accuracy	of	(5+4)/n	=	9/11,	which	is	better.

Next	try	the	rule	(milk	>	0.3),	and	update	the	counts	based	on	this	1	row:
If	satisfied,	#sick=5 and	#not-sick=1.
If	not	satisfied,	#sick=0	and	#not-sick=5.
This	gives	accuracy	of	(5+5)/n	=	10/11,	which	is	better.
(and	keep	going	until	you	get	to	the	end…)

32

How	do	we	fit	stumps	in	O(dn log	n)?

Milk

0

0

0

0

0.3

0.6

0.6

0.6

0.7

0.7

1

Sick?

0

0

0

0

0

1

1

0

1

1

1

Notice	that	for	each	row,	updating	the	counts	only	costs	O(1).
Since	there	are	O(n)	rows,	total	cost	of	updating	counts	is	O(n).

Instead	of	2	labels	(sick	vs.	not-sick),	consider	the	case	of	‘k’	labels:
- Updating	the	counts	still	costs	O(n),	since	each	row	has	one	label.
- But	computing	the	‘max’	across	the	labels	costs	O(k),	so	cost	is	O(kn).

With	‘k’	labels,	you	can	decrease	cost	using	a	“max-heap”	data	structure:
- Cost	of	getting	max	is	O(1),	cost	of	updating	heap	for	a	row	is	O(log	k).
- But	k	<=	n	(each	row	has	only	one	label).
- So	cost	is	in	O(log	n)	for	one	row.

Since	the	above	shows	we	can	find	best	rule	in	one	column	in	O(n	log	n),
total	cost	to	find	best	rule	across	all	‘d’	columns	is	O(nd log	n).

33

Can	decision	trees	re-visit	a	feature?
• Yes.

Knowing	(ice	cream	>	0.3)	makes	small	milk	quantities	relevant.34

Can	decision	trees	have	more	complicated	rules?

• Yes:

• But	searching	for	best	rule	can	get	expensive.

35

Does	being	greedy	actually	hurt?
• Can’t	you	just	go	deeper	to	correct	greedy	decisions?
– Yes,	but	you	need	to	“re-discover”	rules	with	less	data.

• Consider	that	you	are	allergic	to	milk	(and	drink	this	often),	and	
also	get	sick	when	you	(rarely)	combine	diet	coke	with	mentos.

• Greedy	method	should	first	split	on	milk	(helps	accuracy	the	most):

36

Does	being	greedy	actually	hurt?
• Can’t	you	just	go	deeper	to	correct	greedy	decisions?
– Yes,	but	you	need	to	“re-discover”	rules	with	less	data.

• Consider	that	you	are	allergic	to	milk	(and	drink	this	often),	and	
also	get	sick	when	you	(rarely)	combine	diet	coke	with	mentos.

• Greedy	method	should	first	split	on	milk	(helps	accuracy	the	most).
• Non-greedy	method	could	get	simpler	tree	(split	on	milk	later):

37

Which	score	function	should	a	decision	tree	used?

• Shouldn’t	we	just	use	accuracy	score?
– For	leafs:	yes,	just	maximize	accuracy.
– For	internal	nodes:	maybe	not.

• There	may	be	no	simple	rule	like	(egg	>	0.5)	that	improves	accuracy.

• Most	common	score	in	practice:	information	gain.
– Choose	split	that	decreases	entropy (“randomness”)	of	labels	the	most.
– Motivation:	try	to	make	split	data	“less	random”	or	“more	predictable”.

• Might	then	be	easier	to	find	high-accuracy	on	the	“less	random”	split	data.

38

Decision	Trees	with	Probabilistic	Predictions
• Often,	we’ll	have	multiple	‘y’	values	at	each	leaf	node.
• In	these	cases,	we	might	return	probabilities	instead	of	a	label.

• E.g.,	if	in	the	leaf	node	we	5	have	“sick”	objects	and	1	“not	sick”:
– Return	p(y	=	“sick”	|	xi)	=	5/6	and	p(y	=	“not	sick”	|	xi)	=	1/6.

• In	general,	a	natural	estimate	of	the	probabilities	at	the	leaf	nodes:
– Let	‘nk’	be	the	number	of	objects	that	arrive	to	leaf	node	‘k’.
– Let	‘nkc’	be	the	number	of	times	(y	==	c)	in	the	objects	at	leaf	node	‘k’.
– Maximum	likelihood	estimate	for	this	leaf	is	p(y	=	c	|	xi)	=	nkc/nk.

39

Alternative	Stopping	Rules
• There	are	more	complicated	rules	for	deciding	when	*not*	to	split.

• Rules	based	on	minimum	sample	size.
– Don’t	split	any	nodes	where	the	number	of	objects	is	less	than	some	‘m’.
– Don’t	split	any	nodes	that	create	children	with	less	than	‘m’	objects.

• These	types	of	rules	try	to	make	sure	that	you	have	enough	data	to	justify	decisions.

• Alternately,	you	can	use	a	validation	set	(see	next	lecture):
– Don’t	split	the	node	if	it	decreases	an	approximation	of	test	accuracy.

40

