
CPSC	340:	
Machine	Learning	and	Data	Mining	

Neural	networks:	training	
and	

Convolutions	

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.	 1	



Admin	
•  Assignment	6:	
– Due	next	Thursday	(April	5)	

2	



Last	Time:	Deep	Learning	

3	



Two	things	I	forgot	to	say	last	time	
•  Check	out	the	3Blue1Brown	video	on	the	course	website	
•  Biological	motivation:	L29	bonus	slides	

4	



Artificial	Neural	Networks	
•  With	squared	loss,	our	objective	function	for	one	hidden	layer	is:	

	
•  Usual	training	procedure:	stochastic	gradient.	
–  Compute	gradient	of	random	example	‘i’,	update	both	‘v’	and	‘W’.	
– Highly	non-convex	and	can	be	difficult	to	tune.	

•  Computing	the	gradient	is	known	as	“backpropagation”.	
–  Video	giving	motivation	on	course	webpage.	

5	



Backpropagation	
•  Overview	of	how	we	compute	neural	network	gradient:	

–  Forward	propagation:	
•  Compute	zi(1)	from	xi.	
•  Compute	zi(2)	from	zi(1).	
•  …	
•  Compute	yhati	from	zi(m),	and	use	this	to	compute	error.	

–  Backpropagation:	
•  Compute	gradient	with	respect	to	regression	weights	‘v’.	
•  Compute	gradient	with	respect	to	zi(m)	and	weights	W(m).	
•  Compute	gradient	with	respect	to	zi(m-1)	and	weights	W(m-1).	
•  …	
•  Compute	gradient	with	respect	to	zi(1)	and	weights	W(1).	

•  “Backpropagation”	is	the	chain	rule	plus	some	bookkeeping	for	speed.	
6	



Backpropagation	
•  I’ve	put	the	backprop	math	in	the	bonus	slides.	

–  Usually	handled	for	you	with	neural	network	/	automatic	differentiation	
software	

•  Do	you	need	to	know	how	to	do	this?	
–  Exact	details	are	probably	not	vital	(there	are	many	implementations),	
but	understanding	basic	idea	helps	you	know	what	can	go	wrong.	

–  See	discussion	here	by	a	neural	network	expert	(and	UBC	grad)	Andrej	Karpathy.	
–  But	right	now	CPSC	340	is	serving	a	very	broad	audience,	and	time	is	limited	

•  What	I	want	you	to	know:	
–  The	intuition	of	why,	if	you	naively	computed	all	derivatives,	it	would	be	wasteful	
–  Cost	dominated	by	matrix	multiplications	by	W(1),	W(2),	W(3),	and	‘v’.	

•  If	have	‘m’	layers	and	all	zi	have	‘k’	units,	cost	would	be	O(dk	+	mk2).	 7	



Neural	networks	for	classification	
•  We’ve	been	thinking	of	NNs	as	“crazy	features	+	linear	regression”	
–  For	classification,	we	can	do	the	same	but	with	logistic	regression	

•  For	multi-class	with	’k’	classes,	our	last	layer	has	size	‘k’	
–  So	we	replace	‘v’	by	a	matrix	
–  Softmax	activation	at	last	layer,	to	produce	probabilities	
–  Softmax	loss	is	often	called	“cross	entropy”	in	neural	network	papers.	
–  Typically	prepare	the	labels	with	a	one-hot	encoding	into	a	matrix	‘Y’.	
–  Similar	approaches	work	for	multi-label	classification	

8	



ImageNet	Challenge	
•  ImageNet	challenge:	
– Use	millions	of	images	to	recognize	1000	objects.	

•  ImageNet	organizer	visited	UBC	summer	2015.	
•  “Besides	huge	dataset/model/cluster,	what	is	the	most	
important?”	
1.  Image	transformations	(translation,	rotation,	scaling,	lighting,	etc.).	
2.  Optimization.	

•  Why	would	optimization	be	so	important?	
– Neural	network	objectives	are	highly	non-convex	(and	worse	with	depth).		
– Optimization	has	huge	influence	on	quality	of	model.	

9	



Stochastic	Gradient	Training	
•  Challenging	to	make	SG	work:	
– Often	doesn’t	work	as	a	“black	box”	learning	algorithm.	
–  But	people	have	developed	a	lot	of	tricks/modifications	to	make	it	work.	

•  Highly	non-convex,	so	are	local	mimina	hurting	us?	
–  Some	empirical/theoretical	evidence	that	local	minima	are	not	the	
problem.	

–  If	the	network	is	“deep”	and	“wide”	enough,	we	think	all	local	minima	are	
good.	

–  But	it	can	be	hard	to	get	SG	to	even	find	a	local	minimum.	

10	



Parameter	Initialization	
•  Parameter	initialization	is	crucial:	
–  Can’t	initialize	weights	in	same	layer	to	zero,	or	they	will	stay	same.	
–  Can’t	initialize	weights	too	large,	it	will	take	too	long	to	learn.	

•  A	traditional	random	initialization:	
–  Initialize	bias	variables	to	0.	
–  Sample	from	Gaussian	with	small	std	dev	(e.g.,	0.00001).	
–  Performing	multiple	initializations	does	not	seem	to	be	important.	

•  Popular	approach	from	10	years	ago:		
–  Initialize	with	deep	unsupervised	model	(like	“autoencoders”	–	see	bonus).	

11	



Setting	the	Step-Size	
•  Stochastic	gradient	is	very	sensitive	to	the	step	size	in	deep	
models.	

•  Common	approach:	manual	“babysitting”	of	the	step-size.	
–  Run	SG	for	a	while	with	a	fixed	step-size.	
– Occasionally	measure	error	and	plot	progress:	

–  If	error	is	not	decreasing,	decrease	step-size.	 12	



Setting	the	Step-Size	
•  Stochastic	gradient	is	very	sensitive	to	the	step	size	in	deep	
models.	

•  Bias	step-size	multiplier:	use	bigger	step-size	for	the	bias	variables.	
•  Momentum:	
– Add	term	that	moves	in	previous	direction:	

– Usually	βt	=	0.9.	

13	



Setting	the	Step-Size	(bonus)	
•  Automatic	method	to	set	step	size	is	Bottou	trick:		

1.  Grab	a	small	set	of	training	examples	(maybe	5%	of	total).	
2.  Do	a	binary	search	for	a	step	size	that	works	well	on	them.	
3.  Use	this	step	size	for	a	long	time	(or	slowly	decrease	it	from	there).	

•  Several	recent	methods	using	a	step	size	for	each	variable:	
–  AdaGrad,	RMSprop,	Adam	(often	work	better	“out	of	the	box”).	
–  Seem	to	be	losing	popularity	to	stochastic	gradient	(often	with	momentum).	

•  Often	yields	lower	test	error	but	this	requires	more	tuning	of	step-size.	

•  Batch	size	(number	of	random	examples)	also	influences	results.	
–  Bigger	batch	sizes	often	give	faster	convergence	but	to	worse	solutions.	

•  Another	recent	trick	is	batch	normalization:	
–  Try	to	“standardize”	the	hidden	units	within	the	random	samples	as	we	go.	

14	



Vanishing	Gradient	Problem	
•  Consider	the	sigmoid	function:	

•  Away	from	the	origin,	the	gradient	is	nearly	zero.	
•  The	problem	gets	worse	when	you	take	the	sigmoid	of	a	sigmoid:	

•  In	deep	networks,	many	gradients	can	be	nearly	zero	everywhere.	
15	



Rectified	Linear	Units	(ReLU)	
•  Replace	sigmoid	with	hinge-like	loss	(ReLU):	

•  Just	sets	negative	values	zic	to	zero.	
–  Fixes	vanishing	gradient	problem.	
– Works	well	in	practice.	

16	



Deep	Learning	and	the	Fundamental	Trade-Off	
•  Neural	networks	are	subject	to	the	fundamental	trade-off:	
– As	we	increase	the	depth,	training	error	decreases.	
– As	we	increase	the	depth,	training	error	no	longer	approximates	test	error.	

•  We	want	deep	networks	to	model	highly	non-linear	data.	
–  But	increasing	the	depth	leads	to	overfitting.	

•  How	could	GoogLeNet	(L29	bonus	slides)	use	22	layers?	
– Many	forms	of	regularization	and	keeping	model	complexity	under	
control.	

17	



Standard	Regularization	
•  We	typically	add	our	usual	L2-regularizers:	

•  L2-regularization	is	called	“weight	decay”	in	neural	network	
papers.	
–  Could	also	use	L1-regularization.	

•  Hyperparameter	optimization:	
–  Try	to	optimize	validation	error	in	terms	of	λ1,	λ2,	λ3,	λ4,	…	

•  Unlike	linear	models,	typically	use	multiple	types	of	regularization.		
18	



Early	Stopping	
•  Another	common	type	of	regularization	is	“early	stopping”:	
– Monitor	the	validation	error	as	we	run	stochastic	gradient.	
–  Stop	the	algorithm	if	validation	error	starts	increasing.	

•  Training	accuracy	should	continue	going	up.	

19	



Dropout	
•  Dropout	is	a	more	recent	form	of	regularization:	
– On	each	iteration,	randomly	set	some	xi	and	zi	to	zero	(often	use	50%).	

•  Prevents	“co-adaptation”	
– After	a	lot	of	success,	dropout	may	already	be	going	out	of	fashion.	
–  See	bonus	slides	for	more	info	

20	



Vocabulary	
•  One-hot	encoding	
•  Dropout	
•  Weight	decay	
•  Momentum	
•  Batch	normalization	
•  Vanishing	gradient	

21	



(pause)	

22	



Convolutions	
•  Next	class	we’ll	talk	about	convolutional	neural	networks	
–  These	dominate	computer	vision	

•  For	the	rest	of	today	we’ll	talk	about	convolutions	

23	



1D	Convolution	(notation	is	specific	to	this	lecture)	

•  1D	convolution	input:	
–  Signal	‘x’	which	is	a	vector	length	‘n’.	

•  Indexed	by	i=1,2,…,n.	
–  Filter	‘w’	which	is	a	vector	of	length	‘2m+1’:	

•  Indexed	by	i=-m,-m+1,…-2,0,1,2,…,m-1,m	

•  Output	is	a	vector	of	length	‘n’	with	elements:	

–  You	can	think	of	this	as	centering	w	at	zi	and	taking	a	dot	product.		

24	



1D	Convolution	
•  1D	convolution	example:	
–  Signal:		

–  Filter:	

–  Convolution:	

25	



1D	Convolution	
•  1D	convolution	example:	
–  Signal:		

–  Filter:	

–  Convolution:	

26	



1D	Convolution	Examples	
•  Examples:		
–  “Identity”	

–  “Translation”	

27	



1D	Convolution	Examples	
•  Examples:		
–  “Identity”	

	
–  “Local	Average”	

28	



Boundary	Issue	
•  What	can	we	about	the	“?”	at	the	edges?	

•  Can	assign	values	past	the	boundaries:	
•  “Zero”:	

•  “Replicate”:	

•  “Mirror”:	

•  Or	just	ignore	the	“?”	values	and	return	a	shorter	vector:	

29	



1D	Convolution	Examples	
•  Translation	convolution	shift	signal:	

30	



1D	Convolution	Examples	
•  Averaging	convolution	computes	local	mean:	

31	



1D	Convolution	Examples	
•  Averaging	over	bigger	window	gives	coarser	view	of	signal:	

32	



1D	Convolution	Examples	
•  Gaussian	convolution	blurs	signal:	
–  Compared	to	averaging	it’s	more	smooth	and	maintains	peaks	better.	

33	



1D	Convolution	Examples	
•  Sharpen	convolution	enhances	peaks.	
– An	“average”	that	places	negative	weights	on	the	surrounding	pixels.	

34	



1D	Convolution	Examples	
•  Laplacian	convolution	approximates	second	derivative:	
–  “Sum	to	zero”	filters	“respond”	if	input	vector	looks	like	the	filter	

35	



Digression:	Derivatives	and	Integrals	
•  Numerical	derivative	approximations	can	be	viewed	as	filters:	
–  Centered	difference:	[-1,	0,	1]	.	
– Gradient	checkers	often	use	forward	difference:	[-1,	1]	
	

•  Numerical	integration	approximations	can	be	viewed	as	filters:	
–  “Simpson’s”	rule:	[1/6,	4/6,	1/6]	(a	bit	like	Gaussian	filter).	

•  Derivative	filters	add	to	0,	integration	filters	add	to	1,		
–  For	constant	function,	derivative	should	be	0	and	average	=	constant.	

36	



1D	Convolution	Examples	
•  Laplacian	of	Gaussian	is	a	smoothed	2nd-derivative	approximation:	

37	



Summary	
•  Backpropagation	computes	neural	network	gradient	via	chain	rule.	
•  Parameter	initialization	is	crucial	to	neural	net	performance.	
•  Optimization	and	step	size	are	crucial	to	neural	net	performance.	
•  Regularization	is	crucial	to	neural	net	performance:	
–  L2-regularizaiton,	early	stopping,	dropout.	

•  Convolutions	are	linear	operators	that	capture	local	information	

38	



Backpropagation	
•  Let’s	illustrate	backpropagation	in	a	simple	setting:	
–  1	training	example,	3	hidden	layers,	1	hidden	“unit”	in	layer.	

39	



Backpropagation	
•  Let’s	illustrate	backpropagation	in	a	simple	setting:	
–  1	training	example,	3	hidden	layers,	1	hidden	“unit”	in	layer.	

40	



Backpropagation	
•  Let’s	illustrate	backpropagation	in	a	simple	setting:	
–  1	training	example,	3	hidden	layers,	1	hidden	“unit”	in	layer.	

– Only	the	first	‘r’	changes	if	you	use	a	different	loss.	
– With	multiple	hidden	units,	you	get	extra	sums.	

•  Efficient	if	you	store	the	sums	rather	than	computing	from	scratch.	
41	



•  Autoencoders	are	an	unsupervised	deep	learning	model:	
– Use	the	inputs	as	the	output	of	the	neural	network.	

– Middle	layer	could	be	latent	features	in	non-linear	latent-factor	model.	
•  Can	do	outlier	detection,	data	compression,	visualization,	etc.	

– A	non-linear	generalization	of	PCA.	

Autoencoders	

http://inspirehep.net/record/1252540/plots	 42	



Autoencoders	

https://www.cs.toronto.edu/~hinton/science.pdf	 43	



•  Denoising	autoencoders	add	noise	to	the	input:	

–  Learns	a	model	that	can	remove	the	noise.	

Denoising	Autoencoder	

http://inspirehep.net/record/1252540/plots	 44	



Parameter	Initialization	
•  Parameter	initialization	is	crucial:	
–  Can’t	initialize	weights	in	same	layer	to	same	value,	or	they	will	stay	same.	
–  Can’t	initialize	weights	too	large,	it	will	take	too	long	to	learn.	

•  Also	common	to	standardize	data:	
–  Subtract	mean,	divide	by	standard	deviation,	“whiten”,	standardize	yi.	

•  More	recent	initializations	try	to	standardize	initial	zi:	
– Use	different	initialization	in	each	layer.	
–  Try	to	make	variance	of	zi	the	same	across	layers.	
– Use	samples	from	standard	normal	distribution,	divide	by	sqrt(2*nInputs).	
– Use	samples	from	uniform	distribution	on	[-b,b],	where	

45	



Dropout	
•  Dropout	is	a	more	recent	form	of	regularization:	
– On	each	iteration,	randomly	set	some	xi	and	zi	to	zero	(often	use	50%).	

–  Encourages	distributed	representation	rather	than	using	specific	zi.	
–  Like	ensembling	a	lot	of	models	but	without	the	high	computational	cost.	
– After	a	lot	of	success,	dropout	may	already	be	going	out	of	fashion.	

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf	 46	


