
CPSC	340:	
Machine	Learning	and	Data	Mining	

Convolutional	Neural	Networks	

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.	 1	



Admin	
•  Assignment	6:	
– Due	Friday.	

•  Final	exam:	
–  Saturday	April	14,	3:30pm,	SUB	2201.		
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Recap	
•  Last	couple	lectures:	neural	networks	&	deep	learning	
–  Simultaneously	learn	the	basis	and	the	linear/logistic	regression	weights	
– Alternate	between	matrix	multiplication	and	element-wise	nonlinearity	
–  Very	non	convex,	a	huge	bag	of	tricks	out	there	to	make	them	works	

•  Last	lecture:	convolutions	
– A	way	of	thinking	about	a	linear	function	operating	on	a	vector	
–  Can	represent	translation,	averaging,	approximate	derivatives,	and	more	
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Images	and	Higher-Order	Convolution	
•  2D	convolution:	
–  Signal	‘x’	is	the	pixel	intensities	in	an	‘n’	by	‘n’	image.	
–  Filter	‘w’	is	the	pixel	intensities	in	a	‘2m+1’	by	‘2m+1’	image.	

•  	The	2D	convolution	is	given	by:	

•  3D	and	higher-order	convolutions	are	defined	similarly.	
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Jupyter	notebook	demo	
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Today:	Convolutional	Neural	Networks	
•  We	will	solve	some	problems:	
–  Flattening	an	image	into	a	vector	discards	valuable	spatial	information	
– Using	a	fully	connected	networks	leads	to	HUGE	numbers	of	parameters	

•  By	making	some	assumptions:	
–  Low-level	local	features	can	help	us	understand	images	
– We	don’t	need	every	pixel	feeding	into	a	unit	at	the	next	layer	
– We	can	represent	these	transformations	with	convolutions	
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Representing	Neighbourhoods	with	Convolutions	

•  Consider	a	1D	dataset:	
– Want	to	classify	each	
time	into	yi	in	{1,2,3}.	

–  Example:	speech	data.	

	

•  Easy	to	distinguish	class	2	from	the	other	classes	(xi	are	smaller).	
•  Harder	to	distinguish	between	class	1	and	class	3	(similar	xi	range).	
–  But	convolutions	can	represent	that	class	3	is	in	“spiky”	region.	
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Representing	Neighbourhoods	with	Convolutions	

•  Original	features	(left)	and	features	from	convolutions	(right):	

•  Easy	to	distinguish	the	3	classes	with	these	2	features.	
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1D	Convolution	Examples	
•  We	often	use	maximum	over	several	convolutions	as	features:	
– We	could	take	maximum	of	Laplacian	of	Gaussian	over	xi	and	neighbours.	
– We	use	different	convolutions	as	our	features	(derivatives,	integrals,	etc.).	
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1D	Convolution	as	Matrix	Multiplication	
•  Each	element	of	a	convolution	is	an	inner	product:	

	
•  So	convolution	is	a	matrix	multiplication	(I’m	ignoring	boundaries):	

•  The	shorter	‘w’	is,	the	more	sparse	the	matrix	is.	
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Last	Lectures:	Deep	Learning	

Deep	computer	vision	models	are	all	convolutional	neural	networks:	
–  The	W(m)	are	very	sparse	and	have	repeated	parameters	(“tied	weights”).	
– Drastically	reduces	number	of	parameters	(speeds	training,	reduces	
overfitting).	
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Motivation	for	Convolutional	Neural	Networks	
•  Consider	training	neural	networks	on	256	by	256	images.	
–  This	is	256	by	256	by	3	≈	200,000	inputs.	

•  If	first	layer	has	k=10,000,	then	it	has	about	2	billion	parameters.	
– We	want	to	avoid	this	huge	number	(due	to	storage/speed	and	overfitting).	

•  Key	idea:	make	Wxi	act	like	convolutions	(to	make	it	smaller):	
1.  Each	row	of	W	only	applies	to	part	of	xi.	
2.  Use	the	same	parameters	between	rows.	

	
•  Forces	most	weights	to	be	zero,	and	others	to	be	shared:	
–  Reduces	number	of	parameters.	
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Convolutional	Neural	Networks	
•  Convolutional	Neural	Networks	classically	have	3	layer	“types”:	
–  Fully	connected	layer:	usual	neural	network	layer	with	unrestricted	W.	
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Convolutional	Neural	Networks	
•  Convolutional	Neural	Networks	classically	have	3	layer	“types”:	
–  Fully	connected	layer:	usual	neural	network	layer	with	unrestricted	W.	
–  Convolutional	layer:	restrict	W	to	results	of	several	convolutions.	
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Convolutional	Neural	Networks	
•  Convolutional	Neural	Networks	classically	have	3	layer	“types”:	
–  Fully	connected	layer:	usual	neural	network	layer	with	unrestricted	W.	
–  Convolutional	layer:	restrict	W	to	results	of	several	convolutions.	
–  Pooling	layer:	combine	results	of	convolutions.	

•  Can	add	invariances	or	just	make	the	number	of	parameters	smaller.	
•  Usual	choice	is	‘max	pooling’:	
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Back	to	Jupyter:	counting	parameters	
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Summary	
•  Convolutions	are	flexible	class	of	signal/image	transformations.	
–  Can	approximate	derivatives	and	integrals	at	different	scales.	

•  Max(convolutions)	can	yield	features	that	make	classification	easy.	
•  Convolutional	neural	networks:	
–  Restrict	W(m)	matrices	to	represent	sets	of	convolutions.	
– Often	combined	with	max	(pooling).	
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Image	Convolution	Examples	
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Image	Convolution	Examples	

19	



Image	Convolution	Examples	
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Image	Convolution	Examples	
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Image	Convolution	Examples	
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Image	Convolution	Examples	
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Image	Convolution	Examples	
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Image	Convolution	Examples	
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Image	Convolution	Examples	
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Image	Convolution	Examples	
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Image	Convolution	Examples	
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Image	Convolution	Examples	

http://setosa.io/ev/image-kernels	 29	



Image	Convolution	Examples	
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Image	Convolution	Examples	
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Image	Convolution	Examples	
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Image	Convolution	Examples	
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Image	Convolution	Examples	

34	



3D	Convolution	
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3D	Convolution	
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3D	Convolution	
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3D	Convolution	
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3D	Convolution	
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Filter	Banks	
•  To	characterize	context,	we	used	to	use	filter	bank	like	“MR8”:	
–  1	Gaussian	filter,	1	Laplacian	of	Gaussian	filter.	
–  6	max(Gabor)	filters:	3	scales	of	sine/cosine	(maxed	over	orientations).	

•  Convolutional	neural	networks	are	now	replacing	filter	banks.	
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html	 40	



Motivation:	Automatic	Brain	Tumor	Segmentation	
•  Task:	segmentation	tumors	and	normal	tissue	in	multi-modal	MRI	data.	

•  Applications:	
–  Radiation	therapy	target	planning,	quantifying	treatment	responses.	
– Mining	growth	patterns,	image-guided	surgery.	

•  Challenges:	
–  Variety	of	tumor	appearances,	similarity	to	normal	tissue.	
–  “You	are	never	going	to	solve	this	problem.”	

Input:	 Output:	
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Naïve	Voxel-Level	Classifier	
•  We	could	treat	classifying	a	voxel	as	supervised	learning:	

•  We	can	formulate	predicting	yi	given	xi	as	supervised	learning.	
•  But	it	doesn’t	work	at	all	with	these	features.	

42	



Need	to	Summarize	Local	Context	
•  The	individual	voxel	values	are	almost	meaningless:	
–  This	xi	could	lead	to	different	yi.	

•  Intensities	not	standardized.	
•  Non-trivial	overlap	in	signal	for	different	tissue	types.	
•  “Partial	volume”	effects	at	boundaries	of	tissue	types.	
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Need	to	Summarize	Local	Context	
•  We	need	to	represent	the	spatial	“context”	of	the	voxel.	

	
–  Include	all	the	values	of	neighbouring	voxels?	

•  Variation	on	coupon	collection	problem:	requires	lots	of	data	to	find	patterns.	

– Measure	neighbourhood	summary	statistics	(mean,	variance,	histogram)?	
•  Variation	on	bag	of	words	problem:	loses	spatial	information	present	in	voxels.	

–  Standard	approach	uses	convolutions	to	represent	neighbourhood.	
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Number	of	parameters?		
•  Example	with	1	conv/pool	layer	and	2	fully	connected	layers:	

–  you	start	with	a	28x28x3	RGB	image		
–  32	filters	each	of	size	5x5x3	
–  2x2	max	pooling	
–  fully	connected	layer	with	128	hidden	units	
–  fully	connected	layer	going	to	10	output	units	for	10-class	classification	

•  How	many	parameters	does	this	model	have?	
–  the	first	convolutional	layer	has	5x5x3x32	(+32	bias).		
–  this	results	in	images	of	size	24x24	(this	depends	on	how	you	handle	convolutions	at	boundaries).		
–  After	2x2	max	pooling	they	are	12x12.		
–  When	we	flatten	this	representation,	we	get	12x12x32	activations.	This	gives	us	12x12x32x128	

(+128	bias).		
–  Finally	we	have	a	dense	layer	with	128x10	(+10	bias)	parameters.		
–  The	grand	total	is	5x5x32x3	+	12x12x32x128	+	128x10	+	32	+	128	+	10	=	2400	+	589824	+	1280	+	

170	=	593674.	
•  Most	of	the	parameters	come	from	the	dense	layer	in	this	case	(non-sparse).	
•  This	kind	of	calculation	is	tedious	but	it’s	a	good	way	to	understand	the	details.	 45	



FFT	implementation	of	convolution	
•  Convolutions	can	be	implemented	using	fast	Fourier	transform:	
–  Take	FFT	of	image	and	filter,	multiply	elementwise,	and	take	inverse	FFT.	

•  It	has	faster	asymptotic	running	time	but	there	are	some	catches:	
–  You	need	to	be	using	periodic	boundary	conditions	for	the	convolution.	
–  Constants	matter:	it	may	not	be	faster	in	practice.	

•  Especially	compared	to	using	GPUs	to	do	the	convolution	in	hardware.	

–  The	gains	are	largest	for	larger	filters	(compared	to	the	image	size).	
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Motivation:	Automatic	Brain	Tumor	Segmentation	

•  Brain	tumour	segmentation	formulated	as	supervised	learning:	
–  Pixel-level	classifier	that	predicts	“tumour”	or	“non-tumour”.	
–  Features:	convolutions,	expected	values	(in	aligned	template),	and	
symmetry	(all	at	multiple	scales).	
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Image	Coordinates	
•  Should	we	use	the	image	coordinates?	
–  E.g.,	the	pixel	is	at	location	(124,	78)	in	the	image.	

•  Considerations:	
–  Is	the	interpretation	different	in	different	areas	of	the	image?	
– Are	you	using	a	linear	model?	
– Would	“distance	to	center”	be	more	logical?	
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SIFT	Features	
•  Scale-invariant	feature	transform	(SIFT):	
–  Features	used	for	object	detection	(“is	particular	object	in	the	image”?)	
– Designed	to	detect	unique	visual	features	of	objects	at	multiple	scales.	
–  Proven	useful	for	a	variety	of	object	detection	tasks.	

http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html	 49	



LeNet	for	Optical	Character	Recognition	

http://blog.csdn.net/strint/article/details/44163869	 50	


