CPSC 340:
Machine Learning and Data Mining

Convolutional Neural Networks

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1



Admin

* Assignment 6:
— Due Friday.

* Final exam:
— Saturday April 14, 3:30pm, SUB 2201.



Recap

e Last couple lectures: neural networks & deep learning
— Simultaneously learn the basis and the linear/logistic regression weights
— Alternate between matrix multiplication and element-wise nonlinearity
— Very non convex, a huge bag of tricks out there to make them works

* Last lecture: convolutions
— A way of thinking about a linear function operating on a vector
— Can represent translation, averaging, approximate derivatives, and more



Images and Higher-Order Convolution

e 2D convolution:
— Signal X" is the pixel intensities in an ‘n” by ‘n” image.
— Filter ‘W’ is the pixel intensities in a 2m+1’ by 2m+1’ image.
 The 2D convolution is given by:
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* 3D and higher-order convolutions are defined similarly.
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Jupyter notebook demo



Today: Convolutional Neural Networks

* We will solve some problems:
— Flattening an image into a vector discards valuable spatial information
— Using a fully connected networks leads to HUGE numbers of parameters

* By making some assumptions:

— Low-level local features can help us understand images
— We don’t need every pixel feeding into a unit at the next layer
— We can represent these transformations with convolutions



Representing Neighbourhoods with Convolutions

e Consider a 1D dataset:

— Want to classify each
time intoy, in {1,2,3}.

— Example: speech data.

* Easy to distinguish class 2 from the other classes (x;, are smaller).

* Harder to distinguish between class 1 and class 3 (similar x, range).
— But convolutions can represent that class 3 is in “spiky” region.



Representing Neighbourhoods with Convolutions

e Original features (left) and features from convolutions (right):
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e Easy to distinguish the 3 classes with these 2 features.



1D Convolution Examples

We often use maximum over several convolutions as features:

— We could take maximum of Laplacian of Gaussian over x, and neighbours.

— We use different convolutions as our features (derivatives, integrals, etc.).
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1D Convolution as Matrix Multiplication

* Each element of a convolution is an inner product:
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e So convolution is a matrix multiplication (I’'m ignoring boundaries):
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 The shorter ‘W’ is, the more sparse the matrix is.
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Last Lectures: Deep Learning

Deep computer vision models are all convolutional neural networks:

— The W™ are very sparse and have repeated parameters (“tied weights”).

— Drastically reduces number of parameters (speeds training, reduces
overfitting).
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Motivation for Convolutional Neural Networks

Consider training neural networks on 256 by 256 images.
— This is 256 by 256 by 3 = 200,000 inputs.

If first layer has k=10,000, then it has about 2 billion parameters.

— We want to avoid this huge number (due to storage/speed and overfitting).

Key idea: make Wx, act like convolutions (to make it smaller):

1. Each row of W only applies to part of x. w=L0 0 O w —
2. Use the same parameters between rows.

00
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Forces most weights to be zero, and others to be shared:
— Reduces number of parameters.
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Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer: usual neural network layer with unrestricted W.
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Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to results of several convolutions.
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Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer: usual neural network layer with unrestricted W.

— Convolutional layer: restrict W to results of several convolutions.
— Pooling layer: combine results of convolutions.

e Can add invariances or just make the number of parameters smaller.
e Usual choice is ‘max pooling’:
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Back to Jupyter: counting parameters



Summary

* Convolutions are flexible class of signal/image transformations.

— Can approximate derivatives and integrals at different scales.
* Max(convolutions) can yield features that make classification easy.
 Convolutional neural networks:

— Restrict WM™ matrices to represent sets of convolutions.
— Often combined with max (pooling).



Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples , .1
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Image Convolution Examples

fanslq'“w\ CmVa’M‘,;OA:



Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples e
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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3D Convolution
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3D Convolution
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3D Convolution
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3D Convolution
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3D Convolution
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Filter Banks

 To characterize context, we used to use filter bank like “MR8":
— 1 Gaussian filter, 1 Laplacian of Gaussian filter.

— 6 max(Gabor) filters: 3 scales of sine/cosine (maxed over orientations).
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* Convolutional neural networks are now replacing filter banks.
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Motivation: Automatic Brain Tumor Segmentation

e Task: segmentation tumors and normal tissue in multi-modal MRI data.

Input: Output:

* Applications:
— Radiation therapy target planning, quantifying treatment responses.
— Mining growth patterns, image-guided surgery.

* Challenges:

— Variety of tumor appearances, similarity to normal tissue.
— “You are never going to solve this problem.”
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Naive Voxel-Level Classifier

 We could treat classifying a voxel as supervised learning:

xi= (78, 197, 246) Y= Tumour

* We can formulate predicting y; given x. as supervised learning.

e Butit doesn’t work at all with these features.
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Need to Summarize Local Context

* The individual voxel values are almost meaningless:
— This x; could lead to differenty..

* Intensities not standardized.
* Non-trivial overlap in signal for different tissue types.

e “Partial volume” effects at boundaries of tissue types.
43



Need to Summarize Local Context

— Include all the values of neighbouring voxels?

 Variation on coupon collection problem: requires lots of data to find patterns.
— Measure neighbourhood summary statistics (mean, variance, histogram)?

* Variation on bag of words problem: loses spatial information present in voxels.

— Standard approach uses convolutions to represent neighbourhood.
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Number of parameters?

 Example with 1 conv/pool layer and 2 fully connected layers:
— you start with a 28x28x3 RGB image
— 32 filters each of size 5x5x3
— 2x2 max pooling
— fully connected layer with 128 hidden units
— fully connected layer going to 10 output units for 10-class classification

* How many parameters does this model have?
— the first convolutional layer has 5x5x3x32 (+32 bias).
— this results in images of size 24x24 (this depends on how you handle convolutions at boundaries).
— After 2x2 max pooling they are 12x12.

— When we flatten this representation, we get 12x12x32 activations. This gives us 12x12x32x128
(+128 bias).

— Finally we have a dense layer with 128x10 (+10 bias) parameters.

— The grand total is 5x5x32x3 + 12x12x32x128 + 128x10 + 32 + 128 + 10 = 2400 + 589824 + 1280 +
170 = 593674.

* Most of the parameters come from the dense layer in this case (non-sparse).
e This kind of calculation is tedious but it’s a good way to understand the details.



FFT implementation of convolution

e Convolutions can be implemented using fast Fourier transform:

— Take FFT of image and filter, multiply elementwise, and take inverse FFT.

* It has faster asymptotic running time but there are some catches:

— You need to be using periodic boundary conditions for the convolution.

— Constants matter: it may not be faster in practice.
* Especially compared to using GPUs to do the convolution in hardware.

— The gains are largest for larger filters (compared to the image size).



Motivation: Automatic Brain Tumor Segmentation

* Brain tumour segmentation formulated as supervised learning:
— Pixel-level classifier that predicts “tumour” or “non-tumour”.

— Features: convolutions, expected values (in aligned template) and
symmetry (all at multiple scales). @eN @@ o0 @ (D
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Image Coordinates

* Should we use the image coordinates?
— E.g., the pixel is at location (124, 78) in the image.

* Considerations:
— |s the interpretation different in different areas of the image?
— Are you using a linear model?
— Would “distance to center” be more logical?



SIFT Features

e Scale-invariant feature transform (SIFT):
— Features used for object detection (“is particular object in the image”?)
— Designed to detect unique visual features of objects at multiple scales.
— Proven useful for a variety of object detection tasks.
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LeNet for Optical Character Recognition
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