CPSC 340: Machine Learning and Data Mining

Convolutional Neural Networks

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1

Admin

- Assignment 6:
	- Due Friday.
- Final exam:
	- Saturday April 14, 3:30pm, SUB 2201.

Recap

- Last couple lectures: neural networks & deep learning
	- $-$ Simultaneously learn the basis and the linear/logistic regression weights
	- Alternate between matrix multiplication and element-wise nonlinearity
	- $-$ Very non convex, a huge bag of tricks out there to make them works
- Last lecture: convolutions
	- $-$ A way of thinking about a linear function operating on a vector
	- $-$ Can represent translation, averaging, approximate derivatives, and more

Images and Higher-Order Convolution

• 2D convolution:

- $-$ Signal 'x' is the pixel intensities in an 'n' by 'n' image.
- $-$ Filter 'w' is the pixel intensities in a '2m+1' by '2m+1' image.
- The 2D convolution is given by:

$$
\sum [i_{1,j} i_{2}] = \sum_{j_{1}=-m}^{m} \sum_{j_{2}=-m}^{m} w[j_{1,j} j_{2}] \times [i_{1} + i_{1,j} i_{2} + j_{2}]
$$

• 3D and higher-order convolutions are defined similarly.

$$
Z[i_1, i_2, i_3] = \sum_{j_1=1}^{m} \sum_{j_2=m}^{m} \sum_{j_3=m}^{m} w[i_1, i_2, j_3] \times [i_1 + i_3, i_2 + i_3, i_3 + i_3]
$$

Jupyter notebook demo

Today: Convolutional Neural Networks

- We will solve some problems:
	- $-$ Flattening an image into a vector discards valuable spatial information
	- $-$ Using a fully connected networks leads to HUGE numbers of parameters
- By making some assumptions:
	- Low-level local features can help us understand images
	- We don't need every pixel feeding into a unit at the next layer
	- We can represent these transformations with convolutions

Representing Neighbourhoods with Convolutions

- Consider a 1D dataset:
	- $-$ Want to classify each time into y_i in $\{1,2,3\}$.
	- Example: speech data.

- Easy to distinguish class 2 from the other classes (x_i are smaller).
- Harder to distinguish between class 1 and class 3 (similar x_i range).
	- $-$ But convolutions can represent that class 3 is in "spiky" region.

Representing Neighbourhoods with Convolutions

• Original features (left) and features from convolutions (right):

• Easy to distinguish the 3 classes with these 2 features.

1D Convolution Examples

- We often use maximum over several convolutions as features:
	- We could take maximum of Laplacian of Gaussian over x_i and neighbours.
	- We use different convolutions as our features (derivatives, integrals, etc.).

1D Convolution as Matrix Multiplication

• Each element of a convolution is an inner product:

• So convolution is a matrix multiplication (I'm ignoring boundaries):

$$
z = W_x
$$
 where $W = \begin{bmatrix} 0 & -\omega & -\omega & 0 & 0 \\ 0 & 0 & -\omega & \omega & -\omega \\ 0 & 0 & 0 & -\omega & \omega \end{bmatrix}$
where $W = \begin{bmatrix} 0 & -\omega & -\omega & 0 & 0 \\ 0 & 0 & -\omega & \omega & \omega \\ 0 & 0 & 0 & \omega & \omega \end{bmatrix}$ and $W = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \omega & \omega \\ 0 & 0 & 0 & \omega \end{bmatrix}$

• The shorter 'w' is, the more sparse the matrix is.

Last Lectures: Deep Learning

Deep computer vision models are all convolutional neural networks:

- $-$ The W^(m) are very sparse and have repeated parameters ("tied weights").
- $-$ Drastically reduces number of parameters (speeds training, reduces overfitting).

Motivation for Convolutional Neural Networks

- Consider training neural networks on 256 by 256 images. – This is 256 by 256 by $3 \approx 200,000$ inputs.
- If first layer has k=10,000, then it has about 2 billion parameters.
	- We want to avoid this huge number (due to storage/speed and overfitting).
- Key idea: make Wx; act like convolutions (to make it smaller):
	- 1. Each row of W only applies to part of x_i . 2. Use the same parameters between rows.
	-
- Forces most weights to be zero, and others to be shared:
	- Reduces number of parameters.

Convolutional Neural Networks

- Convolutional Neural Networks classically have 3 layer "types":
	- $-$ Fully connected layer: usual neural network layer with unrestricted W.

Convolutional Neural Networks

- Convolutional Neural Networks classically have 3 layer "types":
	-
	- Convolutional layer: restrict W to results of several convolutions.

Convolutional Neural Networks

- Convolutional Neural Networks classically have 3 layer "types":
	- $-$ Fully connected layer: usual neural network layer with unrestricted W.
	- Convolutional layer: restrict W to results of several convolutions.
	- $-$ Pooling layer: combine results of convolutions.
		- Can add invariances or just make the number of parameters smaller.
		- Usual choice is 'max pooling':

Back to Jupyter: counting parameters

Summary

- Convolutions are flexible class of signal/image transformations.
	- Can approximate derivatives and integrals at different scales.
- Max(convolutions) can yield features that make classification easy.
- Convolutional neural networks:
	- Restrict $W^{(m)}$ matrices to represent sets of convolutions.
	- Often combined with max (pooling).

Identity convolution
(zeroes with a 'l' at $w_{0,0}$) W multiply element-wise
and add up result to got 19

 \boldsymbol{Z}

Translation Convolution: \ast

Boundary: "2010"

Image Convolution Examples presents

Translation Convolution:

Boundary: "replicate"

Translation Complution:

Boundary: "mirror"

Translation Convolution:

Boundary: "ignore"

Average convolution:

$$
* \frac{1}{51} \left[\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ 1 & 1 & \ddots & 1 \\ 1 & 1 & \ddots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{array} \right] =
$$

Gaussian Comolution:

 \ast

blurs image to represent
average
(smootning)

Gaussian Complution:

Laplacion of Gaussian

"How much doo it look
like a black dot
surrounded by white?"

 \boldsymbol{i} s $\boldsymbol{0}$

Laplacion of Gaussian

*

(larger variance)

Similar preprocesohy may be
done in basal ganglia and LEN.

"Emboss" filter:

$$
\frac{1}{2} \left[\begin{array}{rrr} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{array} \right]
$$

Gabor Filter
(Ganssian multiplied by
Sine or cosine)

Ganssion

Gabor Filter
(Ganssian multiplied by
Sine or cosine)

Different orientations of the sine leasine let us
detect changes with different
[[[

Gabor Filter
(Ganssian multiplied by
Sine or cosine)

 \bigstar

(smaller variance)

Gabor Filter
(Ganssian multiplied by
Sine or cosine)

*

(smaller variance) Vertical orientation - Can obtain other orientations by -May be similar to effect of VI "simple cells."

May absolute value between horizontal and Vertical Gabor: $\frac{1}{\sqrt{2}}$ muximum absolute value A \ast

"Hurizontal/vertical elge detector"

Can apply 3D
Convolutions

Ganssian filter

Ganssian filter (higher variance on
green channel)

Sharpen the blue
channel.

$$
\begin{pmatrix}\n\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}\n\end{pmatrix}
$$

$$
\bigg\}
$$

Filter Banks

- To characterize context, we used to use filter bank like "MR8":
	- -1 Gaussian filter, 1 Laplacian of Gaussian filter.
	- -6 max(Gabor) filters: 3 scales of sine/cosine (maxed over orientations).

• Convolutional neural networks are now replacing filter banks.

Motivation: Automatic Brain Tumor Segmentation

• Task: segmentation tumors and normal tissue in multi-modal MRI data.

- Applications:
	- $-$ Radiation therapy target planning, quantifying treatment responses.
	- Mining growth patterns, image-guided surgery.
- Challenges:
	- $-$ Variety of tumor appearances, similarity to normal tissue.
	- "You are never going to solve this problem."

Naïve Voxel-Level Classifier

• We could treat classifying a voxel as supervised learning:

- We can formulate predicting y_i given x_i as supervised learning.
- But it doesn't work at all with these features.

Need to Summarize Local Context

- The individual voxel values are almost meaningless:
	- This x_i could lead to different y_i.

- Intensities not standardized.
- Non-trivial overlap in signal for different tissue types.
- "Partial volume" effects at boundaries of tissue types.

Need to Summarize Local Context

• We need to represent the spatial "context" of the voxel.

- Include all the values of neighbouring voxels?
	- Variation on coupon collection problem: requires lots of data to find patterns.
- Measure neighbourhood summary statistics (mean, variance, histogram)?
	- Variation on bag of words problem: loses spatial information present in voxels.
- Standard approach uses convolutions to represent neighbourhood.

Number of parameters?

- Example with 1 conv/pool layer and 2 fully connected layers:
	- $-$ you start with a 28x28x3 RGB image
	- 32 filters each of size 5x5x3
	- $-$ 2x2 max pooling
	- fully connected layer with 128 hidden units
	- $-$ fully connected layer going to 10 output units for 10-class classification
- How many parameters does this model have?
	- the first convolutional layer has 5x5x3x32 (+32 bias).
	- $-$ this results in images of size 24x24 (this depends on how you handle convolutions at boundaries).
	- $-$ After 2x2 max pooling they are 12x12.
	- When we flatten this representation, we get 12x12x32 activations. This gives us 12x12x32x128 (+128 bias).
	- Finally we have a dense layer with 128x10 (+10 bias) parameters.
	- $-$ The grand total is 5x5x32x3 + 12x12x32x128 + 128x10 + 32 + 128 + 10 = 2400 + 589824 + 1280 + $170 = 593674.$
- Most of the parameters come from the dense layer in this case (non-sparse).
- This kind of calculation is tedious but it's a good way to understand the details. \blacksquare

FFT implementation of convolution

- Convolutions can be implemented using fast Fourier transform: $-$ Take FFT of image and filter, multiply elementwise, and take inverse FFT.
- It has faster asymptotic running time but there are some catches:
	- You need to be using periodic boundary conditions for the convolution.
	- Constants matter: it may not be faster in practice.
		- Especially compared to using GPUs to do the convolution in hardware.
	- The gains are largest for larger filters (compared to the image size).

Motivation: Automatic Brain Tumor Segmentation

- Brain tumour segmentation formulated as supervised learning:
	- Pixel-level classifier that predicts "tumour" or "non-tumour".
	- $-$ Features: convolutions, expected values (in aligned template), and symmetry (all at multiple scales).

Image Coordinates

- Should we use the image coordinates?
	- $-$ E.g., the pixel is at location (124, 78) in the image.

- Considerations:
	- Is the interpretation different in different areas of the image?
	- Are you using a linear model?
	- Would "distance to center" be more logical?

SIFT Features

- Scale-invariant feature transform (SIFT):
	- Features used for object detection ("is particular object in the image"?)
	- Designed to detect unique visual features of objects at multiple scales.
	- $-$ Proven useful for a variety of object detection tasks.

http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html 49

LeNet for Optical Character Recognition

