CPSC 340: Machine Learning and Data Mining

More CNNs and Deep Learning Software

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1

Admin

- Assignment 6:
 - Due Thursday
- Final exam:
 - Saturday April 14, 3:30pm-6:00pm, SUB 2201
 - Covers Assignments 1-6, Lectures 2-31 (not today or Friday)

- ImageNet 2012 won by AlexNet:
 - 15.4% error vs. 26.2% for closest competitor.
 - 5 convolutional layers.
 - 3 fully-connected layers.
 - SG with momentum.
 - ReLU non-linear functions.
 - Data translation/reflection/ cropping.
 - L2-regularization + Dropout.
 - 5-6 days on two GPUs.

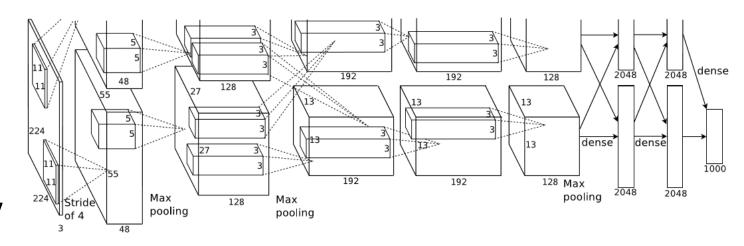
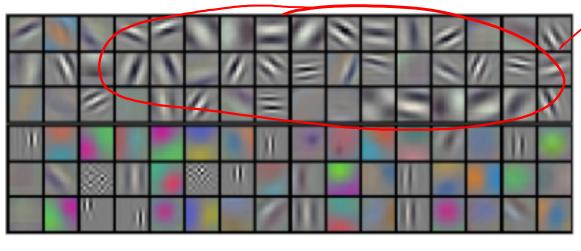


Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

- ImageNet 2012 won by AlexNet:
 - 15.4% error vs. 26.2% for closest competitor.



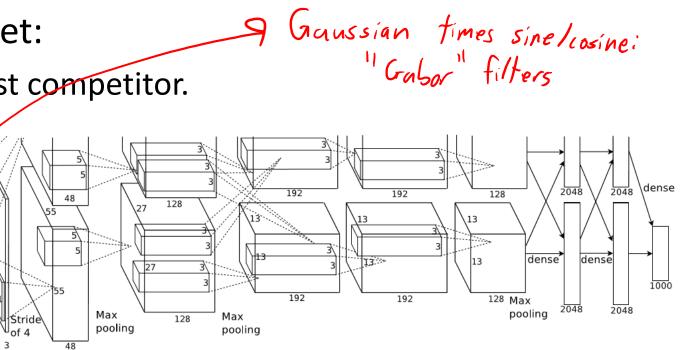


Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images. The

ure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities veen the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts ne bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–6–4096–1000.

Bonus slides: other well-known networks

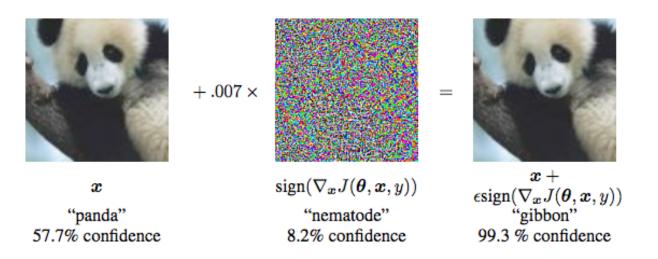
- ZFNet (2013)
 - "deconvolutional networks" to see what CNNs learn
- VGGNet (2014)
 - Small (3x3) convolutions, many (19) layers
- GoogLeNet (2014)
 - 22 layers, no fully connected layers
 - Try to predict labels at multiple locations
- ResNet (2015) we saw this last class
 - Learn "residuals" between input and desired signal
- DenseNet (2016)
 - Layer layers see values in early layers

Mission Accomplished?

- For speech recognition and object detection:
 - No other methods have ever given the current level of performance.
 - Deep models continue to improve performance on these and related tasks.
 - We don't know how to scale up other universal approximators.
 - There is likely some overfitting to popular datasets like ImageNet.
- CNNs are now making their way into products.
 - Apple face recognition.
 - Amazon Go
 - Self-driving cars.

Mission Accomplished?

- Despite high-level of abstraction, deep CNNs are easily fooled:
 - But progress on fixing 'blind spots'.
- Recent work: imperceptible noise that changes the predicted label



Can someone repaint a stop sign and fool self-driving cars?

Beyond Classification (CPSC 540)

• "Fully convolutional" neural networks allow "dense" prediction:

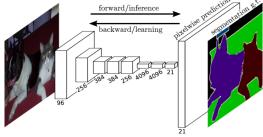


Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

• Image segmentation:

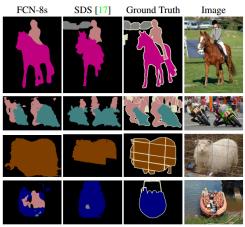


Figure 6. Fully convolutional segmentation nets produce stateof-the-art performance on PASCAL. The left column shows the output of our highest performing net, FCN-8s. The second shows the segmentations produced by the previous state-of-the-art system by Hariharan *et al.* [17]. Notice the fine structures recovered (first

Beyond Classification (CPSC 540)

• "Fully convolutional" neural networks allow "dense" prediction:

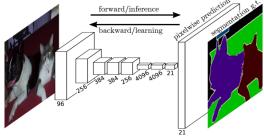


Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

• Depth Estimation:

Beyond Classification

• Image colorization:

Colorado National Park, 1941

– Image Gallery, Video

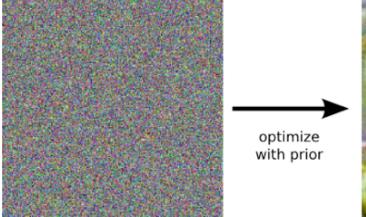
Textile Mill, June 1937

Berry Field, June 1909

Hamilton, 1936

http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/er

- A crazy idea:
 - Instead of weights, use backpropagation to take gradient with respect to x_i.
- Inceptionism with trained network:
 - Fix the label y_i (e.g., "banana").
 - Start with random noise image x_i.
 - Use gradient descent on image x_i.
 - Add a spatial regularizer on x_{ij} :
 - Encourages neighbouring x_{ij} to be similar.



http://googleresearch.blogspot.ca/2015/06/inceptionism-going-deeper-into-neural.html

• Inceptionism for different class labels:

Starfish

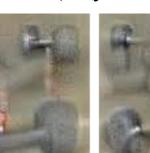
Anemone Fish

Banana

Parachute

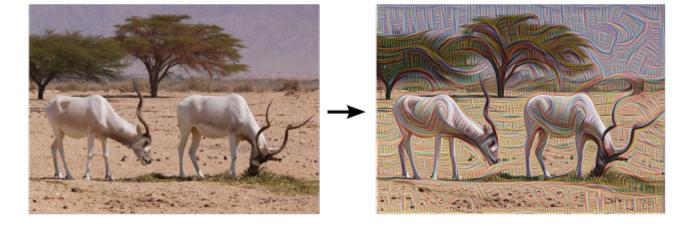
Screw

Dumbbell

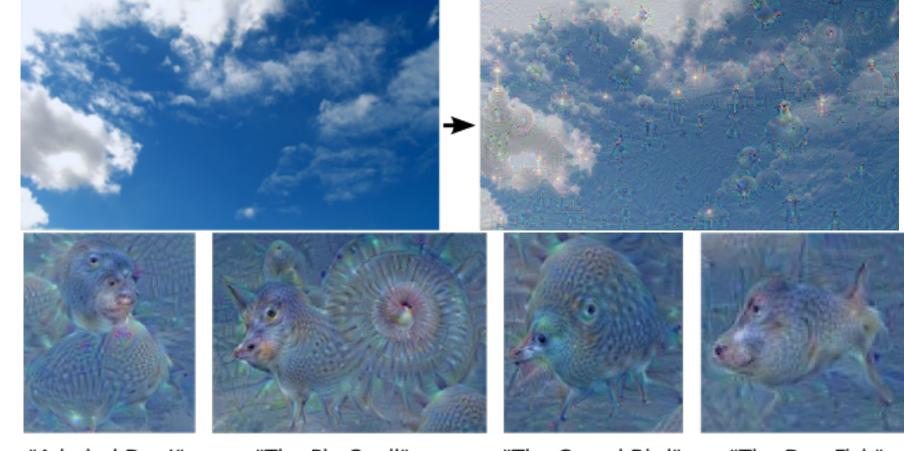


p://googleresearch.blogspot.ca/2015/06/inceptionism-going-deeper-into-neural.html

- Inceptionism where we try to match $z_i^{(m)}$ values instead of y_i .
 - Shallow 'm':



- Inceptionism where we try to match $z_i^{(m)}$ values instead of y_i .
 - Deepest 'm':



"Admiral Dog!"

"The Pig-Snail"

"The Camel-Bird"

"The Dog-Fish"

http://googleresearch.blogspot.ca/2015/06/inceptionism-going-deeper-into-neural.html

- Inceptionism where we try to match $z_i^{(m)}$ values instead of y_i .
 - "Deep dream" starts from random noise:

- <u>Inceptionism gallery</u>
- Deep Dream video googleresearch.blogspol.ca/2015/00/inceptionism-going-deeper-into-neural.html

Artistic Style Transfer

- Artistic style transfer:
 - Given a content image 'C' and a style image 'S'.
 - Make a image that has content of 'C' and style of 'S'.

Content:

Artistic Style Transfer

Image Gallery

Examples

Figure: Left: My friend Grant, Right: Grant as a pizza

Artistic Style Transfer

• Recent methods combine CNNs with graphical models (CPSC 540):

Input A

Input B

Content A + Style B Content B + Style A

Artistic Style Transfer

• Recent methods combine CNNs with graphical models (CPSC 540):

Input style

Input content

Ours

Artistic Style Transfer for Video

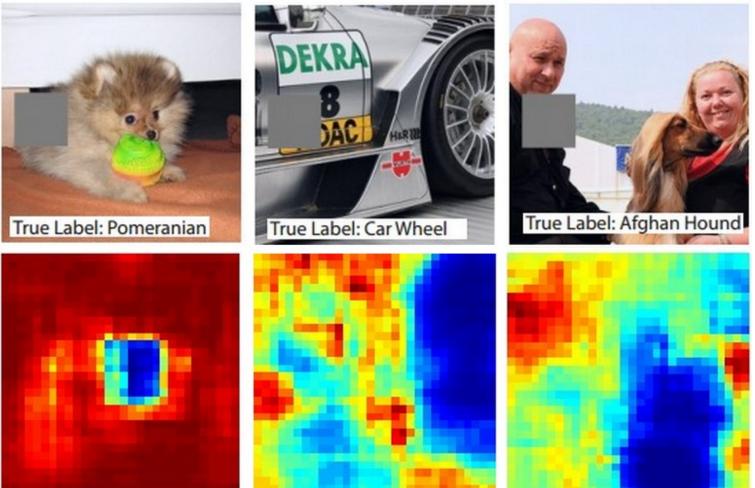
- Combining style transfer with optical flow:
 - <u>https://www.youtube.com/watch?v=Khuj4ASldmU</u>
- Videos from a former CPSC 340 student/TA's paper:

Move to Jupyter for deep learning software

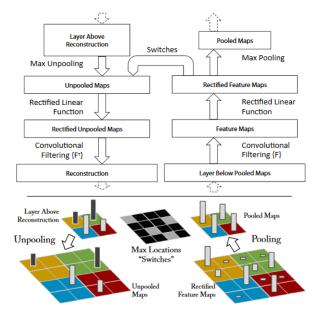
Summary

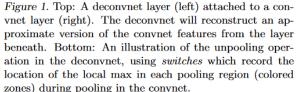
- Convnets can do a lot of cool stuff
- You can train models on GPUs in the cloud with minimal hassle

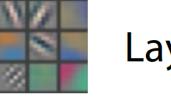
• Looked at how prediction changes if we hide part of the image:



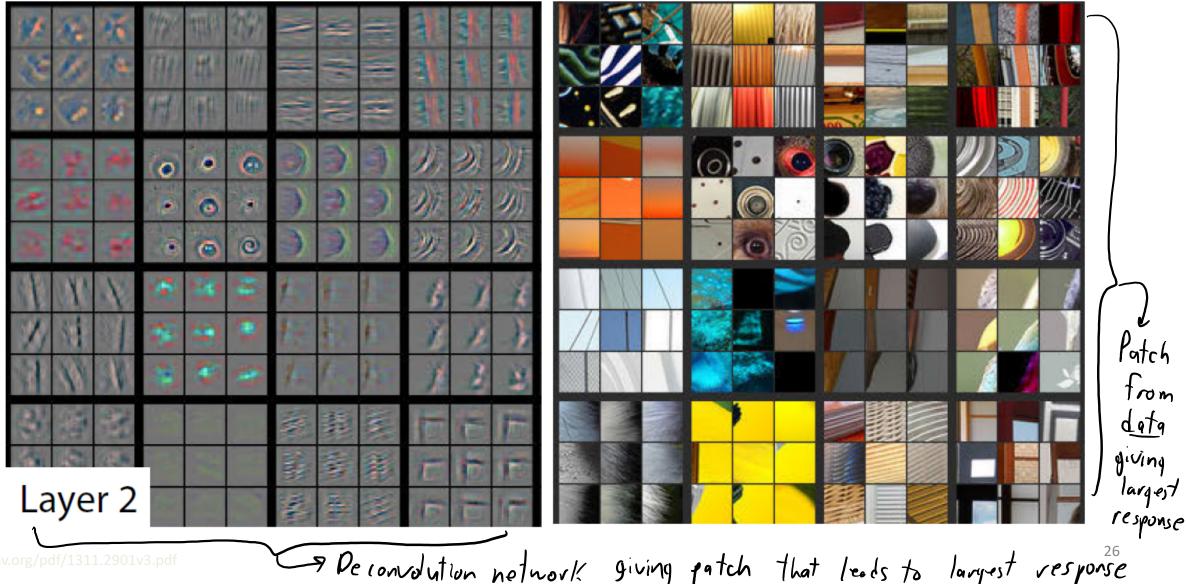
- ImageNet 2013 won by variation of AlexNet called ZF Net:
 - 11.2% error (now using 7x7 stride 2 instead of 11x11 stride 4).
 - Introduced deconvolutional networks to visualize what CNNs learn.

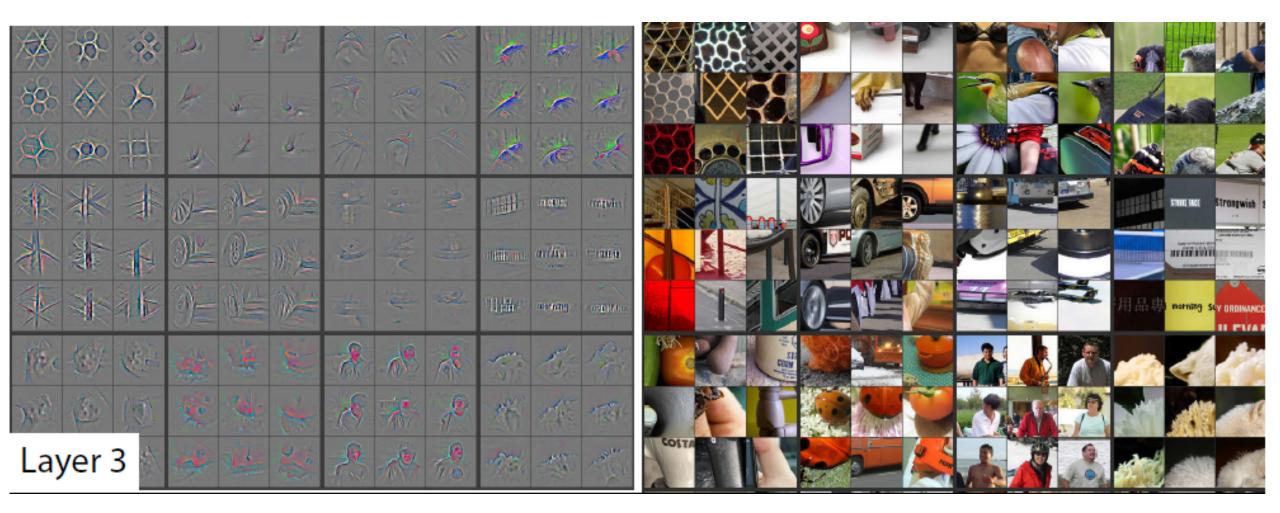


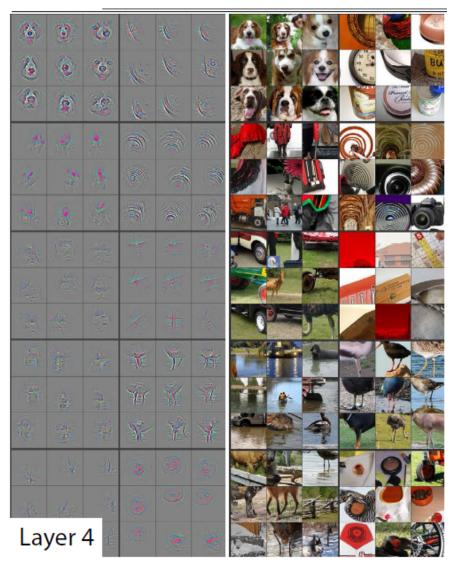




Layer 1



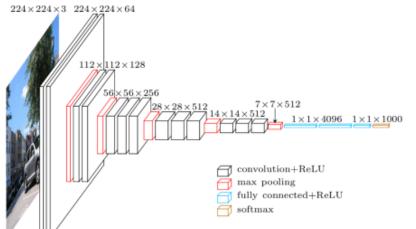




		1		424						
			16.		-			X=		A.
					- 10 - 10			1.1		P
aldi -'	- un	(H)	97.	Ŕ	*	NUMBER SOLVER STOLES	6	2	-	Y.
æ	-	000	1	- Sige	1		Launte		Ar	
		No.	ġ.	÷#	Ś.			C.A.	tal.	1
	and the second	*	10	6	8			-0-		
10 ⁻¹		and a second	Ø	10	- (9)	S.C.	X		8	8
Note:	3pr	8.42			8	X		0	8	
1		4	×.	X	×.		-	M	X	M
2	×.	<u>()</u>		A.	×.		6	R.	A	TA
1	16	-	95	(ji)		031	F		S.	M
0	Q.	0	(C)	0	Ø	8 8	S.		9	11
e)	3	(G.		Ø	9	Stand L			90)	0
Lay	yer	5	Ś			50	0	20	2	e

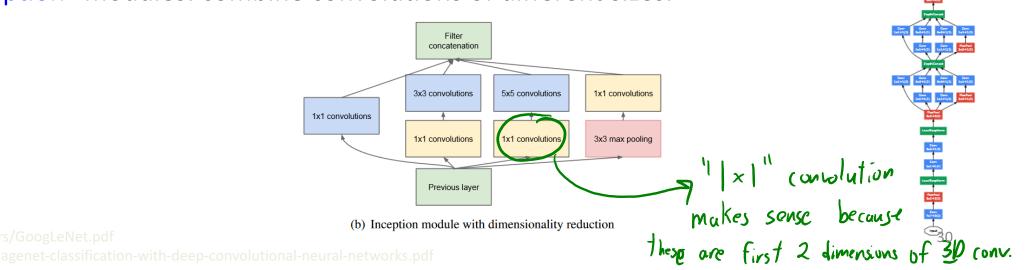
VGG Convolutional Neural Network

- Image 2014 "Localization" Task won by a 19-layer VGG network:
 - -7.3% error for classification (2nd place).
 - Uses 3x3 convolution layers with stride of 1:
 - 3x3 followed by 3x3 simulates a 5x5, and another 3x3 simulates a 7x7, and so on.
 - Speeds things up and reduces number of parameters.
 - Increases number of non-linear ReLU operations.
 - "Deep and simple": variants of VGG are among the most popular CNNs.



GoogLeNet

- Image 2014 classification task won by GoogLeNet:
 - 6.7% errors.
 - 22 layers
 - No fully connected layers.
 - During training, try to predict label at multiple locations.
 - During testing, just take the deepest predictions.
 - "Inception" modules: combine convolutions of different sizes.



ResNet

- Image 2015 won by Resnet (all 5 tasks):
 - 3.6% error (below estimate 5% human error).
 - 152 layers (2-3 weeks on 8 GPUs to train).
 - "Residual learning" allows better performance with deep networks:
 - Include input to layer in addition to non-linear transform.

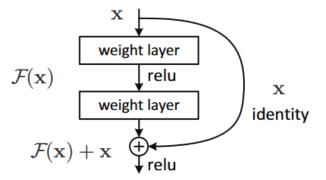


Figure 2. Residual learning: a building block.

- Network just focuses on "residual": what is not captured in original signal.
- Along with VGG, this is another of the most popular architectures.

DenseNet

- More recent variation is "DenseNets":
 - Each layer gets to see all the values in the previous layers.
 - Gets rid of vanishing gradients.

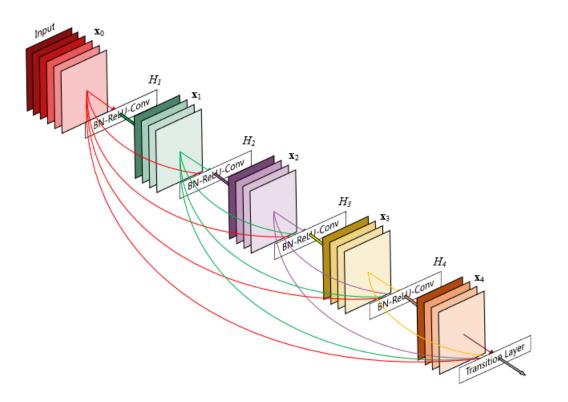


Figure 1: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature-maps as input.

CNNs for Rating Selfies

Our training data

Bad selfies

Good selfies

https://karpathy.github.io/2015/10/25/selfie,

CNNs for Rating Selfies

- Doi - Be femal - Have face be 1/3 of image - Cut off forehead
- -Show long hair
- Oversaturate face
- Use Filter
- -Add border

Don't: - Use low lighting - Make head too big - Take group shots 2

CNNs for Rating Selfies

score 66.5

score 44.5

score 62.8

score 52.0

score 67.3

score 56.3

Finding best image crop:

CNNs for Choosing YouTube Thumbnails

Artistic Style Transfer

- Artistic style transfer:
 - Given a content image 'C' and a style image 'S'.
 - Make a image that has content of 'C' and style of 'S'.
- CNN-based approach applies gradient descent with 2 terms:
 - Loss function: match deep latent representation of content image 'C':
 - Difference between $z_i^{(m)}$ for deepest 'm' between x_i and 'C'.
 - Regularizer: match all latent representation covariances of style image 'S'.
 - Difference between covariance of $z_i^{(m)}$ for all 'm' between x_i and 'S'.