CPSC 340: Machine Learning and Data Mining

Conclusion

Admin

- Assignments:
 - No more of these. Congratulations!
- Final exam:
 - April 14 (3:30-6pm, location SUB 2201).
 - Covers Assignments 1-6, Lectures 2-31.
 - Past exams posted on GitHub.
 - Closed-book, cheat sheet: 1-page double-sided (same as midterm).
- Office hours:
 - Currently 14 office hours next week
 - Check the calendar for updates

Big ideas of the course

- Supervised vs. Unsupervised learning
 - Supervised: regression, classification; focus on prediction
 - Unsupervised: find "structure" or "patterns" in the data; clustering; dimensionality reduction
- Fundamental tradeoff of ML
 - under/overfitting, (cross-)validation
- Golden rule
 - test data should not (significantly?) influence training
- No free lunch theorem
 - there is no "best" ML model (so we learn lots)
- The different decisions you need to make and their effects:
 - 1. Collecting/preprocessing your data
 - 2. Choosing a model
 - 3. Choosing a loss
 - 4. Choosing an optimizer

Individual topics covered

- Part 1: EDA, decision trees, NB, KNN, ensembles & random forests
- Part 2: k-means, DBSCAN, hierarchical clustering, outlier detection
- Part 3: linear regression, basis & other non-linear regression, regularization (L2, L1, L0), gradient descent & SGD, logistic regression, SVM & kernels, maximum likelihood & MAP
- Part 4: PCA & variants, NMF, recommender systems, nonlinear dimensionality reduction (MDS, ISOMAP, t-SNE)
- Part 5: Neural networks, CNNs, deep learning software.
- (blue indicates that this topic appeared on one of the assignments)

Some things we didn't cover

- We did not say much about...
 - Data collection/preparation
 - Causality
 - Sequences, time series data
 - Risks & societal/ethical implications of ML
 - Large scale problems and/or distributed computing
 - Communicating your results
 - Much more...
- Despite all this we covered a lot of ground.
 You all should feel a sense of accomplishment!

CPSC 340 vs. CPSC 540

- Goals of CPSC 340: implementing practical machine learning methods.
 - Present most of the fundamental ideas, sometimes in simplified ways.
 - Choose models that are widely-used in practice.
 - Focus on the model fitting part of the pipeline
- Goals of CPSC 540: research-level machine learning.
 - Covers complicated details/topics/models that we avoided.
 - Targeted at people with algorithms/math/stats/numerical background.
 - Goal is to be able to understand ICML/NIPS papers at the end of course.
- Example 540 topics:
 - How many iterations of gradient descent do we need?
 - What if y_i is a sentence or an image or a protein? (Graphical models and RNNs.)
 - What if data isn't IID?

Other ML-Related Courses

- CPSC 532R:
 - Probabilistic graphical models.
- CPSC 532L:
 - Deep learning for vision, sound, and language.
- STAT 406:
 - Similar/complementary topics, focus on mathematical details and applications.
- STAT 460/461:
 - Advanced statistical issues (what happens when 'n' goes to ∞ ?)
- STAT 5xx
 - These all cover related topics.
- EECE 592:
 - Deep learning and reinforcement learning.
- EOSC 510:
 - Similar/complementary topics, emphasis on EOSC applications.
- EOSC 550:
 - Optimization methods for deep learning.
- LIBR 559d:
 - Language and social media data.

Evaluations & surveys (10-15 minutes)

- Science course evaluation
 - <u>https://eval.ctlt.ubc.ca/science</u>
 - Deadline is Monday (April 9) at 11:59pm
- TA evaluations (paper)
 - Mainly for the tutorial TAs: Clement Fung, Angad Kalra
 - Other TAs: Tanner Johnson, Michael Przystupa
 - Need 2 volunteers to take them to the CS main office (ICCS 201) after class
 - Please put all blank forms back in the envelope as well
 - Please share any pencils you have

Prizes

- I'd like to thank a few students who participated a lot in class.
 - This makes it a lot more meaningful for me.
 - I didn't announce this at the beginning because I didn't want people to participate "for the prize".
- Top Piazza answerers:
 - Winners: Oliver (most endorsed answers), Jonathan (most asked)
 - Honourable mention to Eric C, Trevin, Kyle
- Most lively in-class participants:
 - Winners: Fed, Connor
 - Honourable mention to Edwin C, Mohamed E, Tom
- Best excuse for missing class:
 - Aly, Arie, Kevin S
- Unofficial course troublemaker:
 - Fred

Grad School Advice / FAQs

- Don't do it!
 - Or, if you insist...
- Get as much work experience as possible: co-op full-time work after undergrad, grad school internships
 - Build skills, confidence, awareness in what's out there and, sometimes, boredom (or curiosity)
- Research Master's vs. Professional Master's
 - Research Master's ("pays you"): reading/writing papers, inventing new things, leads to PhD
 - Professional Master's (you pay): practical skills to get you a job, leads to industry
- Keep in mind that Canada is a world leader in ML
 - you don't necessarily need to go far to find a world-class research group
- Improving your graduate school applications:
 - Do interesting side-projects and post them on your GitHub profile (also great for industry)
 - Make a personal website and/or blog (also great for industry)
 - For a research Master's, prior ML research experience is a huge boost to your application
 - Pick your referees carefully
 - Knows you well in an academic/professional context >> is famous
 - Try to gauge if the person is enthusiastic about writing the letter
 - If there's something that needs explaining (e.g., low grades), explain it!
- Next steps at UBC:
 - Take CPSC 540 (open to undergrads) and other courses mentioned earlier
 - Get work experience, do projects

(Unsolicited) General Life Advice

- Try to find an intersection of work you enjoy and careers with enough jobs
 - It's up to you to determine both of those things
 - Do your own research, make your own decisions
 - Don't let your parents influence you too much
- Don't obsess over grades (gamification)
 - You should know when/why you need good grades; they are not worth anything inherently
 - They do not reflect the skills needed for success (not even close)
 - Don't measure peoples' worth by grades: having a C+ vs. A+ GPA doesn't make you "inferior" or "superior"
- Make sure you're happy in the present moment
 - Don't sacrifice happiness because you're "working towards something"
 - You should enjoy university!
- Don't assume the system makes sense
 - For example, undergraduate achievement has little to do with graduate school or research achievement
 - Your education may not focus on the skills you need to succeed in 2017-2100 (we try, but it's hard)
 - Older or more "senior" people (like me) can be wrong!
- You are lucky
 - UBC is one of the best schools in Canada
 - But the above applies even in the best places \bigcirc

Thank you

• Thank you for being a great audience!