
CPSC	340:
Machine	Learning	and	Data	Mining

Fundamentals	of	Learning

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.



Admin
• Assignment	0 is	due	tonight:	you	should	be	almost	done.
• Assignment	1 coming	very	soon:	you	should	have	declared	partners
• Waitlist	at	80	students,	with	one	week	to	go.	
– Please	do	not	ask	me	to	make	an	exception.

• Prerequisites:
– If	there	is	a	problem,	you	will	be	emailed.	Follow	instructions	there.

• Important	webpages:
– https://www.cs.ubc.ca/getacct/
– https://github.ugrad.cs.ubc.ca/CPSC340-2017W-T2/home
– https://piazza.com/class/j9uk5ecmb7e4ks	
– https://www.cs.ubc.ca/students/undergrad/courses-deadlines/prerequisites



Last	Time:	Supervised	Learning	Notation

• Feature	matrix	‘X’ has	rows	as	objects,	columns	as	features.
– xij is	feature	‘j’	for	object	‘i’	(quantity	of	food	‘j’	on	day	‘i’).
– xi is	the	list	of	all	features	for	object	‘i’	(all	the	quantities	on	day	‘i’).
– xj is	column	‘j’	of	the	matrix (the	value	of	feature	‘j’	across	all	objects).	

• Label	vector	‘y’ contains	the	labels	of	the	objects.
– yi is	the	label	of	object	‘i’ (1	for	“sick”,	0	for	“not	sick”).

Egg Milk Fish Wheat Shellfish Peanuts

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1



Supervised	Learning	Application
• We	motivated	supervised	learning	by	the	“food	allergy”	example.

• But	we	can	use	supervised	learning	for	any	input:output mapping.
– E-mail	spam	filtering.
– Optical	character	recognition	on	scanners.
– Recognizing	faces	in	pictures.
– Recognizing	tumours	in	medical	images.
– Speech	recognition	on	phones.
– Your	problem	in	industry/research?



(Switch	to	Jupyter demo)



Supervised	Learning	Notation
• We	are	given	training	data where	we	know	labels:

• But	there	is	also	testing	data we	want	to	label:

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

X	=	 y	=	

Egg Milk Fish Wheat Shellfish Peanuts …

0.5 0 1 0.6 2 1

0 0.7 0 1 0 0

3 1 0 0.5 0 0

Sick?

?

?

?

𝑋"=	 𝑦$=	



Supervised	Learning	Notation
• Typical	supervised	learning	steps:

1. Build	model	based	on	training	data	X	and	y.
2. Model	makes	predictions	𝑦% on	test	data	𝑋".

• Instead	of	training	error,	consider	test	error:	
– Are	predictions	𝑦%	similar	to	true	unseen	labels	𝑦$?



Goal	of	Machine	Learning
• In	machine	learning:
– What	we	care	about	is	the	test	error!

• Midterm	analogy:
– The	training	error	is	the	practice	midterm.
– The	test	error	is	the	actual	midterm.
– Goal:	do	well	on	actual	midterm,	not	the	practice	one.

• Memorization	vs	learning:
– Can	do	well	on	training	data	by	memorizing	it.
– You’ve	only	learned	if	you	can	do	well	in	new	situations.



Golden	Rule	of	Machine	Learning
• Even	though	what	we	care	about	is	test	error:
– THE	TEST	DATA	CANNOT	INFLUENCE	THE	TRAINING	PHASE	IN	ANY	WAY.

• We’re	measuring	test	error	to	see	how	well	we	do	on	new	data:
– If	used	during	training,	doesn’t	measure	this.
– You	can	start	to	overfit if	you	use	it	during	training.
– Midterm	analogy:	you	are	cheating	on	the	test.



Is	Learning	Possible?
• Does	training	error	say	anything	about	test	error?
– In	general,	NO:	Test	data	might	have	nothing	to	do	with	training	data.
– E.g.,	test	labels	are	random	numbers

• In	order	to	learn,	we	need	assumptions:
– The	training	and	test	data	need	to	be	related	in	some	way.
– Most	common	assumption:	independent	and	identically	distributed	(IID).



IID	Assumption
• Training/test	data	is	independent	and	identically	distributed	(IID)	if:
– All	objects	come	from	the	same	distribution	(identically	distributed).
– The	object	are	sampled	independently	(order	doesn’t	matter).

• Examples	in	terms	of	cards:
– Pick	a	card,	put	it	back	in	the	deck,	re-shuffle,	repeat.
– Pick	a	card,	put	it	back	in	the	deck,	repeat.
– Pick	a	card,	don’t	put	it	back,	re-shuffle,	repeat.

Age Job? City Rating Income

23 Yes Van A 22,000.00
23 Yes Bur BBB 21,000.00
22 No Van CC 0.00
25 Yes Sur AAA 57,000.00



IID	Assumption	and	Food	Allergy	Example
• Is	the	food	allergy	data	IID?
– Do	all	the	objects	come	from	the	same	distribution?	
– Does	the	order	of	the	objects	matter?

• No!	
– Being	sick	might	depend	on	what	you	ate	yesterday (not	independent).
– Your	eating	habits	might	changed	over	time	(not	identically	distributed).

• What	can	we	do	about	this?
– Just	ignore	that	data	isn’t	IID	and	hope	for	the	best?
– For	each	day,	maybe	add	the	features	from	the	previous	day?
– Maybe	add	time	as	an	extra	feature?



Learning	Theory
• Why	does	the	IID	assumption	make	learning	possible?
– Patterns	in	training	examples	are	likely	to	be	the	same	in	test	examples.

• The	IID	assumption	is	rarely	true:
– But	it	is	often	a	good	approximation.

• Learning	theory	explores	how	training	error	is	related	to	test	error.
• We’ll	look	at	a	simple	example,	using	this	notation:
– Etrain is	the	error	on	training	data.
– Etest is	the	error	on	testing	data.



Fundamental	Trade-Off
• Start	with	Etest =	Etest,	then	add	and	subtract	Etrain on	the	right:

• How	does	this	help?
– If	Eapprox is	small,	then	Etrain is	a	good	approximation	to	Etest.

• What	does	Eapprox depend	on?
– It	tends	to	gets	smaller	as	‘n’	gets	larger.
– It	tends	to	grow	as	model	get	more	“complicated”.



Fundamental	Trade-Off
• This	leads	to	a	fundamental	trade-off:

1. Etrain:	how	small	you	can	make	the	training	error.
vs.

2. Eapprox:	how	well	training	error	approximates	the	test	error.

• Simple	models (like	decision	stumps):
– Eapprox is	low	(not	very	sensitive	to	training	set).
– But	Etrain might	be	high.

• Complex	models	(like	deep	decision	trees):
– Etrain can	be	low.
– But	Eapprox might	be	high	(very	sensitive	to	training	set).



Fundamental	Trade-Off
• Training	error	vs.	test	error	for	choosing	depth:
– Training	error	gets	better	with	depth.
– Test	error	initially	goes	down,	but	eventually	increases	(overfitting).



Validation	Error
• How	do	we	decide	decision	tree	depth?
• We	care	about	test	error.
• But	we	can’t	look	at	test	data.
• So	what	do	we	do?????

• One	answer:	Use	part	of	your	dataset	to	approximate	test	error.
• Split	training	objects	into	training set	and	validation set:
– Train	model	based	on	the	training	data.
– Test	model	based	on	the	validation	data.



Validation	Error



Validation	Error
• Validation	error	gives	an	unbiased	approximation	of	test	error.

• Midterm	analogy:
– You	have	2	practice	midterms.
– You	hide	one	midterm,	and	spend	a	lot	of	time	working	through	the	other.
– You	then	do	the	other	practice	term,	to	see	how	well	you’ll	do	on	the	test.

• We	typically	use	validation	error	to	choose	“hyper-parameters”…



Notation:	Parameters	and	Hyper-Parameters
• The	decision	tree	rule	values	are	called	“parameters”.
– Parameters	control	how	well	we	fit	a	dataset.
– We	“train”	a	model	by	trying	to	find	the	best	parameters	on	training	data.

• The	decision	tree	depth	is	a	called	a	“hyper-parameter”.
– Hyper-parameters	control	how	complex	our	model	is.
– We	can’t	“train”	a	hyper-parameter.

• You	can	always	fit	training	data	better	by	making	the	model	more	complicated.

– We	“validate”	a	hyper-parameter	using	a	validation	score.



Choosing	Hyper-Parameters	with	Validation	Set
• So	to	choose	a	good	value	of	depth	(“hyper-parameter”),	we	could:
– Try	a	depth-1	decision	tree,	compute	validation	error.
– Try	a	depth-2	decision	tree,	compute	validation	error.
– Try	a	depth-3	decision	tree,	compute	validation	error.
– …
– Try	a	depth-20	decision	tree,	compute	validation	error.
– Return	the	depth	with	the	lowest	validation	error.

• After	you	choose	the	hyper-parameter,	we	usually	
re-train	on	the	full	training	set	with	the	chosen	hyper-parameter.



Choosing	Hyper-Parameters	with	Validation	Set
• This	leads	to	much	less	overfitting	than	using	the	training	error.
– We	optimize	the	validation	error	over	20	values	of	“depth”.
– Unlike	training	error,	where	we	optimize	over	tons	of	decision	trees.

• But	it	can	still	overfit (very	common	in	practice):
– Validation	error	is	only	an	unbiased	approximation	if	you	use	it	once.
– If	you	minimize	it	to	choose	a	model,	introduces	optimization	bias:

• If	you	try	lots	of	models,	one	might	get	a	low	validation	error	by	chance.

• Remember,	our	goal	is	still	to	do	well	on	the	test	set (new	data),
not	the	validation	set	(where	we	already	know	the	labels).



Summary
• Training	error	vs.	testing	error:
– What	we	care	about	in	machine	learning	is	the	testing	error.

• Golden	rule	of	machine	learning:
– The	test	data	cannot	influence	training	the	model	in	any	way.

• Independent	and	identically	distributed	(IID):
– One	assumption	that	makes	learning	possible.

• Fundamental	trade-off:
– Trade-off	between	getting	low	training	error	and	having	training	error	
approximate	test	error.

• Validation	set:
– We	can	save	part	of	our	training	data	to	approximate	test	error.

• Hyper-parameters:
– Parameters	that	control	model	complexity,	typically	set	with	a	validation	set.



Golden	Rule	of	Machine	Learning
• Even	though	what	we	care	about	is	test	error:
– THE	TEST	DATA	CANNOT	INFLUENCE	THE	TRAINING	PHASE	IN	ANY	WAY.

http://www.technologyreview.com/view/538111/why-and-how-baidu-cheated-an-artificial-intelligence-test/



Golden	Rule	of	Machine	Learning
• Even	though	what	we	care	about	is	test	error:
– THE	TEST	DATA	CANNOT	INFLUENCE	THE	TRAINING	PHASE	IN	ANY	WAY.

• You	also	shouldn’t	change	the	test	set	to	get	the	result	you	want.

– http://blogs.sciencemag.org/pipeline/archives/2015/01/14/the_dukepotti_scandal_from_the_inside

https://www.cbsnews.com/news/deception-at-duke-fraud-in-cancer-care/



Bounding	Eapprox
• Let’s	assume	we	have	a	fixed	model	‘h’	(like	a	decision	tree),
and	then	we	collect	a	training	set	of	‘n’	examples.

• What	is	the	probability	that	the	error	on	this	training	set	(Etrain),	is	
within	some	small	number	ε of	the	test	error	(Etest)?

• From	“Hoeffding’s inequality”	we	have:

• This	is	great!	In	this	setting	the	probability	that	our	training	error	is	
far	from	our	test	error	goes	down	exponentially	in	terms	of	the	
number	of	samples	‘n’.



Bounding	Eapprox
• Unfortunately,	the	last	slide	gets	it	backwards:
– We	usually	don’t	pick	a	model	and	then	collect	a	dataset.
– We	usually	collect	a	dataset	and	then	pick	the	model	‘w’ based	on	the	data.

• We	now	picked	the	model	that	did	best	on	the	data,	and	Hoeffding’s
inequality	doesn’t	account	for	the	optimization	bias	of	this	procedure.

• One	way	to	get	around	this	is	to	bound	(Etest – Etrain)	for	allmodels	in	the	
space	of	models	we	are	optimizing	over.
– If	bound	it	for	all	models,	then	we	bound	it	for	the	best	model.
– This	gives	looser	but	correct	bounds.



Bounding	Eapprox
• If	we	only	optimize	over	a	finite	number	of	events	‘k’,	we	can	use	
the	“union	bound”	that	for	events	{A1,	A2,	…,	Ak}	we	have:

• Combining	Hoeffding’s inequality	and	the	union	bound	gives:



Bounding	Eapprox
• So,	with	the	optimization	bias	of	setting	“h*”	to	the	best	‘h’	among	
‘k’	models,	probability	that	(Etest – Etrain)	is	bigger	than	ε satisfies:

• So	optimizing	over	a	few	models	is	ok	if	we	have	lots	of	examples.
• If	we	try	lots	of	models	then	(Etest – Etrain)	could	be	very	large.
• Later	in	the	course	we’ll	be	searching	over	continuous	models	
where	k	= infinity,	so	this	bound	is	useless.

• To	handle	continuous	models,	one	way	is	via	the	VC-dimension.
– Simpler	models	will	have	lower	VC-dimension.



Refined	Fundamental	Trade-Off
• Let	Ebest be	the	irreducible	error	(lowest	possible	error	for	anymodel).

• For	example,	irreducible	error	for	predicting	coin	flips	is	0.5.

• Some	learning	theory	results	use	Ebest to	futher decompose	Etest:

• This	is	similar	to	the	bias-variance	decomposition:
– Term	1:	measure	of	variance	(how	sensitive	we	are	to	training	data).
– Term	2:	measure	of	bias (how	low	can	we	make	the	training	error).
– Term	3:	measure	of	noise (how	low	can	any	model	make	test	error).



Refined	Fundamental	Trade-Off
• Decision	tree	with	high	depth:
– Very	likely	to	fit	data	well,	so	bias	is	low.
– But	model	changes	a	lot	if	you	change	the	data,	so	variance	is	high.

• Decision	tree	with	low	depth:
– Less	likely	to	fit	data	well,	so	bias	is	high.
– But	model	doesn’t	change	much	you	change	data,	so	variance	is	low.

• And	degree	does	not	affect	irreducible	error.
– Irreducible	error	comes	from	the	best	possible	model.



Bias-Variance	Decomposition
• Analysis	of	expected	test	error	of	any	learning	algorithm:



Learning	Theory
• Bias-variance	decomposition	is	a	bit	weird	compared	to	our	previous	
decompositions	of	Etest:
– Bias-variance	decomposition	considers	expectation	over	possible	training	sets.
– But	doesn’t	say	anything	about	test	error	with	your training	set.

• Some	keywords	if	you	want	to	learn	about	learning	theory:
– Bias-variance	decomposition,	sample	complexity,	probably	approximately	correct	
(PAC)	learning,	Vapnik-Chernovenkis (VC)	dimension,	Rademacher complexity.

• A	gentle	place	to	start	is	the	“Learning	from	Data”	book:
– https://work.caltech.edu/telecourse.html



A	Theoretical	Answer	to	“How	Much	Data?”
• Assume	we	have	a	source	of	IID	examples	and	a	fixed	class	of	parametric	
models.

• Like	“all	depth-5	decision	trees”.
• Under	some	nasty	assumptions,	with	‘n’	training	examples	it	holds	that:

E[test	error	of	best	model	on	training	set]	– (best	test	error	in	class)	=	O(1/n).

• You	rarely	know	the	constant	factor,	but	this	gives	some	guidelines:
– Adding	more	data	helps	more	on	small	datasets	than	on	large	datasets.

• Going	from	10	training	examples	to	20,	difference	with	best	possible	error	gets	cut	in	half.
– If	the	best	possible	error	is	15%	you	might	go	from	20%	to	17.5%	(this	does	notmean	20%	to	10%).

• Going	from	110	training	examples	to	120,	error	only	goes	down	by	~10%.
• Going	from	1M	training	examples	to	1M+10,	you	won’t	notice	a	change.

– Doubling	the	data	size	cuts	the	error	in	half:
• Going	from	1M	training	to	2M	training	examples,	error	gets	cut	in	half.
• If	you	double	the	data	size	and	your	test	error	doesn’t	improve,	more	data	might	not	help.



Can	you	test	the	IID	assumption?


