CPSC 340: Machine Learning and Data Mining

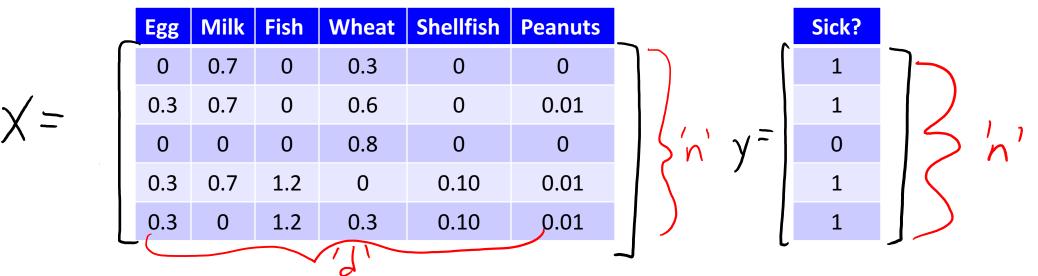
Fundamentals of Learning

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.

Admin

- Assignment 0 is due tonight: you should be almost done.
- Assignment 1 coming very soon: you should have declared partners
- Waitlist at 80 students, with one week to go.
 - Please do not ask me to make an exception.
- Prerequisites:
 - If there is a problem, you will be emailed. Follow instructions there.
- Important webpages:
 - <u>https://www.cs.ubc.ca/getacct/</u>
 - <u>https://github.ugrad.cs.ubc.ca/CPSC340-2017W-T2/home</u>
 - <u>https://piazza.com/class/j9uk5ecmb7e4ks</u>
 - <u>https://www.cs.ubc.ca/students/undergrad/courses-deadlines/prerequisites</u>

Last Time: Supervised Learning Notation



- Feature matrix 'X' has rows as objects, columns as features.
 - $-x_{ij}$ is feature 'j' for object 'i' (quantity of food 'j' on day 'i').
 - $-x_i$ is the list of all features for object 'i' (all the quantities on day 'i').
 - $-x^{j}$ is column 'j' of the matrix (the value of feature 'j' across all objects).
- Label vector 'y' contains the labels of the objects.
 - $-y_i$ is the label of object 'i' (1 for "sick", 0 for "not sick").

Supervised Learning Application

• We motivated supervised learning by the "food allergy" example.

- But we can use supervised learning for any input:output mapping.
 - E-mail spam filtering.
 - Optical character recognition on scanners.
 - Recognizing faces in pictures.
 - Recognizing tumours in medical images.
 - Speech recognition on phones.
 - Your problem in industry/research?

(Switch to Jupyter demo)

Supervised Learning Notation

• We are given training data where we know labels:

X =	Egg	Milk	Fish	Wheat	Shellfish	Peanuts		y =	Sick?
	0	0.7	0	0.3	0	0			1
	0.3	0.7	0	0.6	0	0.01			1
	0	0	0	0.8	0	0			0
	0.3	0.7	1.2	0	0.10	0.01			1
	0.3	0	1.2	0.3	0.10	0.01			1

• But there is also testing data we want to label:

	Egg	Milk	Fish	Wheat	Shellfish	Peanuts	•••		Sick?
\widetilde{X} =	0.5	0	1	0.6	2	1		ỹ=	?
	0	0.7	0	1	0	0			?
	3	1	0	0.5	0	0			?

Supervised Learning Notation

- Typical supervised learning steps:
 - 1. Build model based on training data X and y.
 - 2. Model makes predictions \hat{y} on test data \tilde{X} .
- Instead of training error, consider test error:
 - Are predictions \hat{y} similar to true unseen labels \tilde{y} ?

Goal of Machine Learning

- In machine learning:
 - What we care about is the test error!
- Midterm analogy:
 - The training error is the practice midterm.
 - The test error is the actual midterm.
 - Goal: do well on actual midterm, not the practice one.
- Memorization vs learning:
 - Can do well on training data by memorizing it.
 - You've only learned if you can do well in new situations.

Golden Rule of Machine Learning

- Even though what we care about is test error:
 THE TEST DATA CANNOT INFLUENCE THE TRAINING PHASE IN ANY WAY.
- We're measuring test error to see how well we do on new data:
 - If used during training, doesn't measure this.
 - You can start to overfit if you use it during training.
 - Midterm analogy: you are cheating on the test.

Is Learning Possible?

- Does training error say anything about test error?
 - In general, NO: Test data might have nothing to do with training data.
 - E.g., test labels are random numbers
- In order to learn, we need assumptions:
 - The training and test data need to be related in some way.
 - Most common assumption: independent and identically distributed (IID).

IID Assumption

- Training/test data is independent and identically distributed (IID) if:
 - All objects come from the same distribution (identically distributed).
 - The object are sampled independently (order doesn't matter).

Row 1 comes	Age	Job?	City	Rating	Income	PROV 4 does not
from same	23	Yes	Van	А	22,000.00	depend on values
	23	Yes	Bur	BBB	21,000.00	
distribution	22	No	Van	CC	0.00	In rows 1-3.
as rows 2-3.	25	Yes	Sur	AAA	57,000.00	

Tosting II.

- Examples in terms of cards:
 - Pick a card, put it back in the deck, re-shuffle, repeat.

 - Pick a card, put it back in the deck, repeat. Pick a card, don't put it back, re-shuffle, repeat. $N_0 + IID$

IID Assumption and Food Allergy Example

- Is the food allergy data IID?
 - Do all the objects come from the same distribution?
 - Does the order of the objects matter?
- No!
 - Being sick might depend on what you ate yesterday (not independent).
 - Your eating habits might changed over time (not identically distributed).
- What can we do about this?
 - Just ignore that data isn't IID and hope for the best?
 - For each day, maybe add the features from the previous day?
 - Maybe add time as an extra feature?

Learning Theory

- Why does the IID assumption make learning possible?
 - Patterns in training examples are likely to be the same in test examples.
- The IID assumption is rarely true:
 - But it is often a good approximation.
- Learning theory explores how training error is related to test error.
- We'll look at a simple example, using this notation:
 - E_{train} is the error on training data.
 - E_{test} is the error on testing data.

Fundamental Trade-Off

• Start with $E_{test} = E_{test}$, then add and subtract E_{train} on the right:

- How does this help?
 - If E_{approx} is small, then E_{train} is a good approximation to E_{test} .
- What does E_{approx} depend on?
 - It tends to gets smaller as 'n' gets larger.
 - It tends to grow as model get more "complicated".

Fundamental Trade-Off

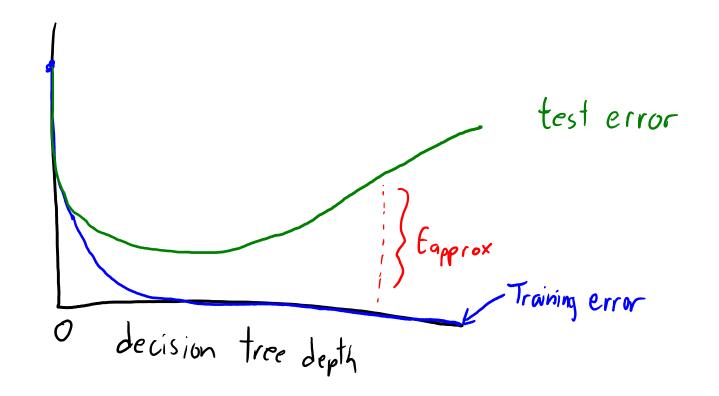
- This leads to a fundamental trade-off:
 - 1. E_{train} : how small you can make the training error.

VS.

- 2. E_{approx}: how well training error approximates the test error.
- Simple models (like decision stumps):
 - E_{approx} is low (not very sensitive to training set).
 - But E_{train} might be high.
- Complex models (like deep decision trees):
 - E_{train} can be low.
 - But E_{approx} might be high (very sensitive to training set).

Fundamental Trade-Off

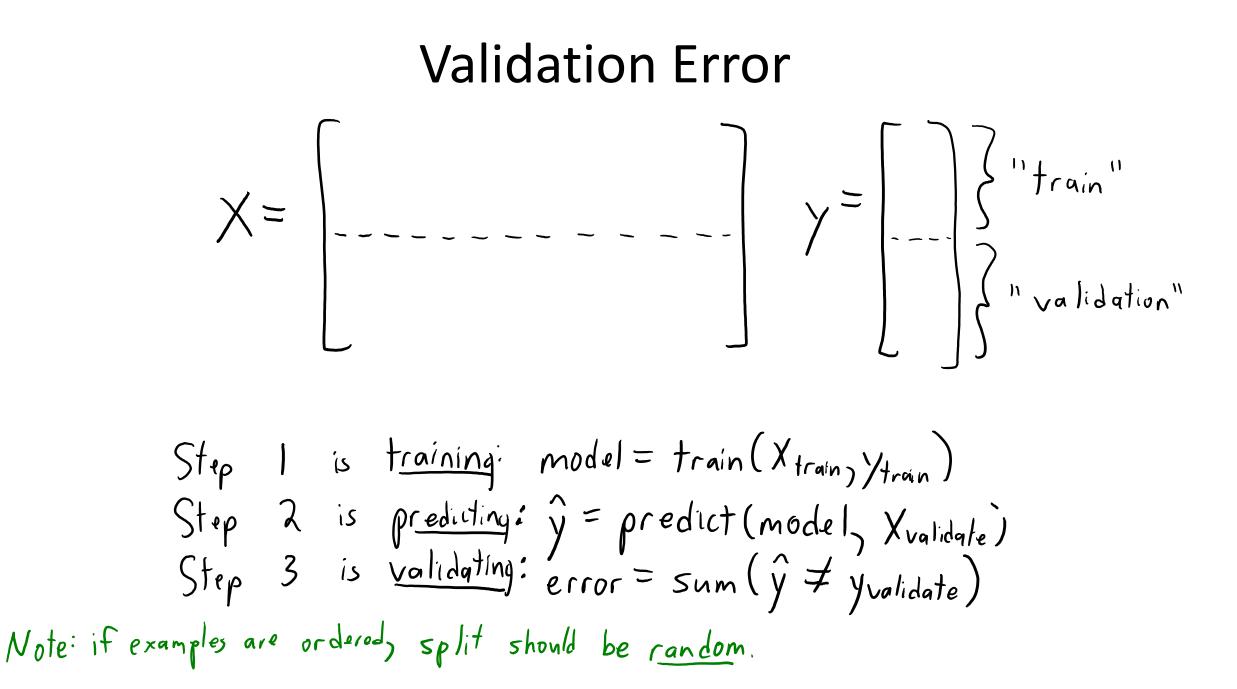
- Training error vs. test error for choosing depth:
 - Training error gets better with depth.
 - Test error initially goes down, but eventually increases (overfitting).



Validation Error

- How do we decide decision tree depth?
- We care about test error.
- But we can't look at test data.
- So what do we do?????

- One answer: Use part of your dataset to approximate test error.
- Split training objects into training set and validation set:
 - Train model based on the training data.
 - Test model based on the validation data.



Validation Error

• Validation error gives an unbiased approximation of test error.

- Midterm analogy:
 - You have 2 practice midterms.
 - You hide one midterm, and spend a lot of time working through the other.
 - You then do the other practice term, to see how well you'll do on the test.
- We typically use validation error to choose "hyper-parameters"...

Notation: Parameters and Hyper-Parameters

- The decision tree rule values are called "parameters".
 - Parameters control how well we fit a dataset.
 - We "train" a model by trying to find the best parameters on training data.
- The decision tree depth is a called a "hyper-parameter".
 - Hyper-parameters control how complex our model is.
 - We can't "train" a hyper-parameter.
 - You can always fit training data better by making the model more complicated.
 - We "validate" a hyper-parameter using a validation score.

Choosing Hyper-Parameters with Validation Set

- So to choose a good value of depth ("hyper-parameter"), we could:
 - Try a depth-1 decision tree, compute validation error.
 - Try a depth-2 decision tree, compute validation error.
 - Try a depth-3 decision tree, compute validation error.
 - ...
 - Try a depth-20 decision tree, compute validation error.
 - Return the depth with the lowest validation error.
- After you choose the hyper-parameter, we usually re-train on the full training set with the chosen hyper-parameter.

Choosing Hyper-Parameters with Validation Set

- This leads to much less overfitting than using the training error.
 - We optimize the validation error over 20 values of "depth".
 - Unlike training error, where we optimize over tons of decision trees.
- But it can still overfit (very common in practice):
 - Validation error is only an unbiased approximation if you use it once.
 - If you minimize it to choose a model, introduces optimization bias:
 - If you try lots of models, one might get a low validation error by chance.
- Remember, our goal is still to do well on the test set (new data), not the validation set (where we already know the labels).

Summary

- Training error vs. testing error:
 - What we care about in machine learning is the testing error.
- Golden rule of machine learning:
 - The test data cannot influence training the model in any way.
- Independent and identically distributed (IID):
 - One assumption that makes learning possible.
- Fundamental trade-off:
 - Trade-off between getting low training error and having training error approximate test error.
- Validation set:
 - We can save part of our training data to approximate test error.
- Hyper-parameters:
 - Parameters that control model complexity, typically set with a validation set.

Golden Rule of Machine Learning

- Even though what we care about is test error:
 - THE TEST DATA CANNOT INFLUENCE THE TRAINING PHASE IN ANY WAY.

Golden Rule of Machine Learning

- Even though what we care about is test error:
 - THE TEST DATA CANNOT INFLUENCE THE TRAINING PHASE IN ANY WAY.
- You also shouldn't change the test set to get the result you want.

DECEPTION AT DUKE: FRAUD IN CANCER CARE?

Were some cancer patients at Duke University given experimental treatments based on fabricated data? Scott Pelley reports.

<u>http://blogs.sciencemag.org/pipeline/archives/2015/01/14/the_dukepotti_scandal_from_the_inside</u>

- Let's assume we have a fixed model 'h' (like a decision tree), and then we collect a training set of 'n' examples.
- What is the probability that the error on this training set (E_{train}) , is within some small number ε of the test error (E_{test}) ?
- From "Hoeffding's inequality" we have:

$$P\left[\left|E_{\text{froin}}(h) - E_{\text{test}}(h)\right| \neq E\right] \leq 2\exp\left(-2E^{2}n\right)$$

• This is great! In this setting the probability that our training error is far from our test error goes down exponentially in terms of the number of samples 'n'.

- Unfortunately, the last slide gets it backwards:
 - We usually don't pick a model and then collect a dataset.
 - We usually collect a dataset and then pick the model 'w' based on the data.
- We now picked the model that did best on the data, and Hoeffding's inequality doesn't account for the optimization bias of this procedure.
- One way to get around this is to bound (E_{test} E_{train}) for *all* models in the space of models we are optimizing over.
 - If bound it for all models, then we bound it for the best model.
 - This gives looser but correct bounds.

 If we only optimize over a finite number of events 'k', we can use the "union bound" that for events {A₁, A₂, ..., A_k} we have:

$$p(A_1 \cup A_2 \cup \cdots \cup A_K) \leq \sum_{i=1}^{k} p(A_i)$$

• Combining Hoeffding's inequality and the union bound gives: $p\left(\left|\mathcal{E}_{train}(h_{1})-\mathcal{E}_{tryt}(h_{1})\right| > \mathcal{E} \quad \bigcup \quad \left|\mathcal{E}_{train}(h_{2})-\mathcal{E}_{tryt}(h_{2})\right| > \mathcal{E} \quad \bigcup \quad \bigcup \quad \left|\mathcal{E}_{train}(h_{k})-\mathcal{E}_{tryt}(h_{k})\right| > \mathcal{E} \right)$ $\leq \sum_{i=1}^{k} p\left(\left|\mathcal{E}_{train}(h_{i})-\mathcal{E}_{tryt}(h_{i})\right| > \mathcal{E} \right)$ $\leq \sum_{i=1}^{k} 2exp\left(-2\varepsilon^{2}n\right)$ $\leq 2K exp\left(-2\varepsilon^{2}n\right)$

 So, with the optimization bias of setting "h*" to the best 'h' among 'k' models, probability that (Etest – Etrain) is bigger than ε satisfies:

$$(|E_{train}(h^*) - E_{test}(h^*)| 7 \epsilon) \le 2kexp(-2\epsilon^2n)$$

- So optimizing over a few models is ok if we have lots of examples.
- If we try lots of models then $(E_{test} E_{train})$ could be very large.
- Later in the course we'll be searching over continuous models where k = infinity, so this bound is useless.
- To handle continuous models, one way is via the VC-dimension.
 Simpler models will have lower VC-dimension.

Refined Fundamental Trade-Off

- Let E_{best} be the irreducible error (lowest possible error for *any* model).
 - For example, irreducible error for predicting coin flips is 0.5.
- Some learning theory results use E_{best} to futher decompose E_{test} :

$$E_{test} = (E_{test} - E_{train}) + (E_{train} - E_{best}) + (E_{best}) + (E_{bes$$

- This is similar to the bias-variance decomposition:
 - Term 1: measure of variance (how sensitive we are to training data).
 - Term 2: measure of bias (how low can we make the training error).
 - Term 3: measure of noise (how low can any model make test error).

Refined Fundamental Trade-Off

- Decision tree with high depth:
 - Very likely to fit data well, so bias is low.
 - But model changes a lot if you change the data, so variance is high.
- Decision tree with low depth:
 - Less likely to fit data well, so bias is high.
 - But model doesn't change much you change data, so variance is low.
- And degree does not affect irreducible error.
 - Irreducible error comes from the best possible model.

Bias-Variance Decomposition

• Analysis of expected test error of any learning algorithm:

Assume
$$y_i = f(x_i) + E_7$$
 for some function 'f'
and random error \mathcal{E} with a mean of \mathcal{O}
and a variance of \mathcal{O}^2 .
Assume we have a "learner" that can take a training set $\mathcal{E}(x_{15}y_{1})(x_{57}y_{2})\dots(x_{57}y_{7})(x_{57}y_{7})\dots(x_{57}y_{7})$
and use these to make predictions $f(x_i)$.
Then for a new example $(x_{i,2}y_{i})$ the error averaged over training sets is
 $E L(y_{1} - f(x_{i}))^{2}] = Bias [f(x_{i})]^{2} + Var [f(x_{i})] + \mathcal{O}^{2}$
where $Bias [f(x_{i})] = E[f(x_{n})] - f(x_{i})$, hope for
ying wrong model.
How sensitive is the model
to the particular training set? Var [f(x_{i})] = E[(f(x_{i}) - E[f(x_{i})])^{2}]

Learning Theory

- Bias-variance decomposition is a bit weird compared to our previous decompositions of E_{test}:
 - Bias-variance decomposition considers expectation over *possible training sets*.
 - But doesn't say anything about test error with *your* training set.
- Some keywords if you want to learn about learning theory:
 - Bias-variance decomposition, sample complexity, probably approximately correct (PAC) learning, Vapnik-Chernovenkis (VC) dimension, Rademacher complexity.
- A gentle place to start is the "Learning from Data" book:
 - https://work.caltech.edu/telecourse.html

A Theoretical Answer to "How Much Data?"

- Assume we have a source of IID examples and a fixed class of parametric models.
 - Like "all depth-5 decision trees".
- Under some nasty assumptions, with 'n' training examples it holds that:
 E[test error of best model on training set] (best test error in class) = O(1/n).
- You rarely know the constant factor, but this gives some guidelines:
 - Adding more data helps more on small datasets than on large datasets.
 - Going from 10 training examples to 20, difference with best possible error gets cut in half.
 If the best possible error is 15% you might go from 20% to 17.5% (this does not mean 20% to 10%).
 - Going from 110 training examples to 120, error only goes down by ~10%.
 - Going from 1M training examples to 1M+10, you won't notice a change.
 - Doubling the data size cuts the error in half:
 - Going from 1M training to 2M training examples, error gets cut in half.
 - If you double the data size and your test error doesn't improve, more data might not help.

Can you test the IID assumption?