CPSC 340:
Machine Learning and Data Mining

Fundamentals of learning (continued)
and
the k-nearest neighbours classifier

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.

Admin

* Assignment 1 is out:
— Due Wednesday.
— Fairly representative of workload in this course, but difficultly will increase.

* Add/drop deadline is Wednesday.

— Good news: we may be expanding this section by a few seats... stay tuned.

Last Time: Training, Testing, and Validation
* Training step:

_Lnfo:ff set of 'n' training examples wiTh | abels Y.
J L

Ovﬂl‘)v«'}"& {‘c_\gcl_ej '}'La‘f qu‘g me qr()i'}rary X,' '}0 Qa \/,

* Prediction step:

’—IV\@\A“" §€+ of /{) TM)?,/ Ov\cl 0, M_g_cie_/‘
Om‘reu‘\'\ Vrcé'\dim\j)/'\. ‘FOr 'Hoe 7‘@5'}/./\9 €Xawpr’5

* What we are interested in is the test error:
— Error made by prediction step on new data.

Last Time: Fundamental Trade-Off

* We decomposed test error to get a fundamental trade-off:

EJL est - rf”’" Efmm
/| {,‘P)‘/ frrar ar‘,rox,m (g 1\«wwv\) \ 1
e vror ercor
'(Ces{ error
— Where Eapprox = (Etest o Etrain)' .,
Lo,
. . / d ramq errw

* Ei.in 80€s down as model gets complicated: ¢ dedsion free o4

— Training error goes down as a decision tree gets deeper.
e ButkE goes up as model gets complicated:

approxr
— Training error becomes a worse approximation of test error.

Last Time: Validation Error

* Golden rule: we can’t look at test data during training.

* But we can approximate E

test

with a validation error:

— Error on a set of training examples we “hid” during training.

ri

o
—
e v ~ — — — —~— — — -

e’

ﬁ

—

— W
(B o
g -,-ro\lﬂ

" V2 ,iclcﬂlio,-\“

L

— Find the decision tree based on the “train” rows.
— Validation error is the error of the decision tree on the “validation” rows.

Notation: Parameters and Hyperparameters

* The decision tree rule values are called “parameters”.
— Parameters control how well we fit a dataset.
— We “train” a model by trying to find the best parameters on training data.

* The decision tree depth is a called a “hyperparameter”.
— Hyper-parameters control how complex our model is.

— We can’t “train” a hyperparameter.

* You can always fit training data better by making the model more complicated.

— We “validate” a hyperparameter using a validation score.

Choosing Hyper-Parameters with Validation Set

* So to choose a good value of depth (“hyperparameter”), we could:
— Try a depth-1 decision tree, compute validation error.
— Try a depth-2 decision tree, compute validation error.
— Try a depth-3 decision tree, compute validation error.
— Try a depth-20 decision tree, compute validation error.
— Return the depth with the lowest validation error.

e After you choose the hyper-parameter, we usually
re-train on the full training set with the chosen hyper-parameter.

Choosing Hyper-Parameters with Validation Set

* This leads to much less overfitting than using the training error.
— We optimize the validation error over 20 values of “depth”.
— Unlike training error, where we optimize over tons of decision trees.

e But it can still overfit (very common in practice):
— Validation error is only an unbiased approximation if you use it once.
— If you minimize it to choose a model, introduces optimization bias:

 If you try lots of models, one might get a low validation error by chance.

« Remember, our goal is still to do well on the test set (new data),
not the validation set (where we already know the labels).

Should you trust them?

* Scenario 1:
— “I' built a model based on the data you gave me.”
— “It classified your data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably not:
— They are reporting training error.
— This might have nothing to do with test error.
— E.g., they could have fit a very deep decision tree.
* Why ‘probably’?
— If they only tried a few very simple models, the 98% might be reliable.
— E.g., they only considered decision stumps with simple 1-variable rules.

Should you trust them?

e Scenario 2:

— “I built a model based on half of the data you gave me.”
— “It classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:
— They computed the validation error once.
— This is an unbiased approximation of the test error.
— Trust them if you believe they didn’t violate the golden rule.

Should you trust them?

* Scenario 3:
— “I built 10 models based on half of the data you gave me.”
— “One of them classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:
— They computed the validation error a small number of times.
— Maximizing over these errors is a biased approximation of test error.
— But they only maximized it over 10 models, so bias is probably small.
— They probably know about the golden rule.

Should you trust them?

* Scenario 4:
— “I' built 1 billion models based on half of the data you gave me.”
— “One of them classified the other half of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably not:
— They computed the validation error a huge number of times.
— Maximizing over these errors is a biased approximation of test error.
— They tried so many models, one of them is likely to work by chance.
* Why ‘probably’?
— If the 1 billion models were all extremely-simple, 98% might be reliable.

Should you trust them?

* Scenario 5:
— “I'built 1 billion models based on the first third of the data you gave me.”
— “One of them classified the second third of the data with 98% accuracy.”
— “It also classified the last third of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.”

* Probably:

— They computed the first validation error a huge number of times.

— But they had a second validation set that they only looked at once.

— The second validation set gives unbiased test error approximation.

— This is ideal, as long as they didn’t violate golden rule on the last third.
— And assuming you are using |ID data in the first place.

Validation Error and Optimization Bias

e Optimization bias is small if you only compare a few models:
— Best decision tree on the training set among depths, 1, 2, 3,..., 10.
— Risk of overfitting to validation set is low if we try 10 things.

* Optimization bias is large if you compare a lot of models:
— All possible decision trees of depth 10 or less.
— Here we’re using the validation set to pick between a billion+ models:

* Risk of overfitting to validation set is high: could have low validation error by chance.

— If you did this, you might want a second validation set to detect overfitting.

14

Cross-Validation (CV)

* Isn’t it wasteful to only use part of your data?

e 5-fold cross-validation:
— Train on 80% of the data, validate on the other 20%.
— Repeat this 5 more times with different splits, and average the score.

07 fold"
|3 "Foll" 2
P[RR FTR
B FO‘J Y
Fol“\lg’

,Trmfn on folds il Z) Lff COMrufe €yror o6n Fou g

:2 lrm(w on {' lJS El 2 3 (()mrql‘e Lvrom oA (o'c‘ L’
flls 31 2460
3, lram or S))SS ((,w.‘y\,,‘t‘ erroy Qn -FUU 3

. Tak(averagt OF The S errors as approximation of fest ervor

Cross-Validation (CV)

 You can take this idea further:
— 10-fold cross-validation: train on 90% of data and validate on 10%.
* Repeat 10 times and average.

— Leave-one-out cross-validation: train on all but one training example.
* Repeat n times and average.
* This is the same as n-fold cross validation.

* Gets more accurate but more expensive with more folds.

— To choose depth we compute the cross-validation score for each depth.

* As before, if data is ordered then folds should be random splits.

— Randomize first, then split into fixed folds.

16

(pause)

The “Best” Machine Learning Model

Decision trees are not always most accurate on test error.
What is the “best” machine learning model?

First we need to define generalization error:
— Test error restricted to new feature combinations (no x, from train set).

No free lunch theorem:

— There is no “best” model achieving the best generalization error for every
problem.

— If model A generalizes better to new data than model B on one dataset,
there is another dataset where model B works better.

This question is like asking which is “best” among “rock”, “paper”,
and “scissors”.

18

The “Best” Machine Learning Model

Implications of the lack of a “best” model:
— We need to learn about and try out multiple models.

So which ones to study in CPSC 3407?

— We'll usually motivate each method by a specific application.
— But we’re focusing on models that have been effective in many applications.

Caveat of no free lunch (NFL) theorem:
— The world is very structured.

— Some datasets are more likely than others.
— Model A really could be better than model B on every real dataset in practice.
Machine learning research:

— Large focus on models that are useful across many applications.

w N

2.5
3.5

1R o o T+ t
3
3
2
1
1

K-Nearest Neighbours (KNN)

* To classify an object X :
1. Findthe 'k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” examples.

20

w N

2.5
3.5

FZ.’ [pew example +
T2 o o\ ot
3
3
2
1
1

K-Nearest Neighbours (KNN)

* To classify an object X :
1. Findthe 'k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” examples.

0 0 o ? + + -|--f/ new exqm/o’(’,
; OO +++'i’-_1~
0 0 f +
o

21

w N

2.5
3.5

K-Nearest Neighbours (KNN)

* To classify an object X :

1.

Find the ‘k’ training examples x; that are “nearest” to X..

2. Classify using the most common label of “nearest” examples.

O

0

0
0
o

/ Nt examp'@ F-'- —'- +
bt
o\ @

@ T ® Q/ new Exarf e
@@ te
@@é—/“; r\fm!s“f r\ar7héows

O +
5 "newred nei%'mw; "

/

2 3 4 s

w N

2.5
3.5

K-Nearest Neighbours (KNN)

* To classify an object X :

1.

Find the ‘k’ training examples x; that are “nearest” to X..

2. Classify using the most common label of “nearest” examples.

O

0

0
0
o

/ Nt examp'@ F-'- —'- +
bt
o\ @

@ T ® Q/ new Exarf e
@@ te
@@é—/“; r\fm!s“f r\ar7héows

O +
5 "newred nei%'mw; "

/

2 3 4 s

K-Nearest Neighbours (KNN)

* To classify an object X :
1. Find the ‘k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” examples.

g | Wil Fish g | Wik | Fish
07 0 1 03 06 05 IE——m) 2

0 @ K_,\/\/ N
)y 7

—
—
" — v y
—
——>

1.2
&) TS e
Nenrts V\C.\yhl’ww/g’ (aée/ LS

3 |
)7 re . 24\
sul

K-Nearest Neighbours (KNN)

e Most common distance function is Euclidean distance:

d(v,w) = J > (v —w;)?

g=1

— Compute this distance between a test point and all training points.

* Assumption:

— Objects with similar features likely have similar labels.

25

KNN Implementation

* Thereis no training phase in KNN (“lazy” learning).
— You just store the training data.

e But predictions are expensive: O(nd) to classify 1 test object.

— Tons of work on reducing this cost.

e There are also alternatives to Euclidean distance.

Curse of Dimensionality

* “Curse of dimensionality”: problems with high-dimensional spaces.

— Volume of space grows exponentially with dimension.
 Circle has area O(r?), sphere has area O(r3), 4d hyper-sphere has area O(r?),...

— Need exponentially more points to ‘fill’ a high-dimensional volume.

* You might not have any training points “near” a test point.

* KNN is also problematic if features have very different scales.
— A feature with a big scale can dominate all the distances
— A feature with a small scale can be neglected

* Nevertheless, KNN is really easy to use and often hard to beat! .

Parametric vs. Non-Parametric

e Parametric models:

— Have a fixed number of parameters: size of “model” is O(1) in terms ‘n’.
e E.g., fixed-depth decision tree just stores rules.

— You can estimate the fixed parameters more accurately with more data.
— But eventually more data doesn’t help: model is too simple.

* Non-parametric models:

— Number of parameters grows with ‘n’: size of “model” depends on ‘n’.

e E.g., with KNN we need to store O(nd) information.

— Model gets more complicated as you get more data.

* (IMO decision trees are an ambiguous case, but it’s usually clear.)

28

Non-parametric models

e With a small ‘n’, KNN model will be very simple.
* Model gets more complicated as ‘n’ increases.

— Starts to detect subtle differences between examples.

* We say “the complexity grows with the amount of data”.

Norms (abridged)

The notation | | x| | refers to the norm (like the size) of a vector x.

n
2|3 =) a7
i=1

The 2 in the subscript is the type of norm: “L2 norm”
— The L1 norm is the sum of the absolute valued.

The 2 in the superscript is just regular squaring

A norm operates on ONE vector

A distance function operates on TWO vectors, e.g. d(x,y)
However, we can represent distances as norms, as in

dEuclidean(xa y) — H$ — yHQ — HZE — yH
Later in the course we’ll see other types of norms, like L1, LO, etc.
— Surprisingly, some of the key ideas in this course pertain to changing norm types:

Summary

Hyperparameters: high-level choices that control model complexity
— E.g., tree depth for decision trees, ‘k’ for KNN

Optimization bias: unwittingly overfitting your validation set
Cross-validation: many train/validation splits from one data set
— More accurate but requires training more models (slower)

K-Nearest Neighbours: simple non-parametric classifier.
 Appealing “consistency” properties.
* Suffers from high prediction cost and curse of dimensionality.

Non-parametric models grow with number of training examples.
Norms measure the size of a vector (“distance from the origin”).

Back to Decision Trees

Instead of validation set, you can use CV to select tree depth.

But you can also use these to decide whether to split:
— Don’t split if validation/CV error doesn’t improve.
— Different parts of the tree will have different depths.

Or fit deep decision tree and use CV to prune:

— Remove leaf nodes that don’t improve CV error.

Popular implementations that have these tricks and others.

Cross-Validation Theory

Does CV give unbiased estimate of test error?

— Yes!

» Since each data point is only used once in validation, expected validation error on
each data point is test error.

— But again, if you CV to select among models then it is no longer unbiased.

What about variance of CV?

— Hard to characterize.

— CV variance on ‘n’ data points is worse than with a validation set of size ‘n’.
e But we believe it is close.

KNN Distance Functions

Most common KNN distance functions: norm(x; — x;).

— L1-, L2-, and Linf-norm.

— Weighted norms (if some features are more important): f V; l)(\) [

— “Mahalanobis” distance (takes into account correlations)‘.’:' ’(‘V,,Wt} "
Foutre 11

But we can consider other distance/similarity functions:

— Hamming distance.

— Jaccard similarity (if x, are sets).

— Edit distance (if x; are strings).

— Metric learning (learn the best distance function).

Consistency of KNN

* KNN has appealing consistency properties:

— As ‘n’ goes to o, KNN test error is less than twice best possible error.
* For fixed ‘k’ and binary labels (under mild assumptions).

e Stone’s Theorem: KNN is “universally consistent”.

— If k/n goes to zero and ‘k’ goes to oo, converges to the best possible error.
 First algorithm shown to have this property.

* Does Stone’s Theorem violate the no free lunch theorem?
— No: it requires a continuity assumption on the labels.
— Consistency says nothing about finite ‘n’ (see "Dont Trust Asymptotics”).

35

Parametric vs. Non-Parametric Models

)(@n(
Q/\/‘U/R

Polfqm{ 1/ ' podel

i Y

Nambye, o F Uqw\//,5 /0

Parametric vs. Non-Parametric Models

37

More on Weirdness of High Dimensions

* In high dimensions:

— Distances become less meaningful:

* All vectors may have similar distances.

— Emergence of “hubs” (even with random data):

* Some datapoints are neighbours to many more points than average.

— Visualizing high dimensions and sphere-packing

Vectorized Distance Calculation

* To classify ‘t’ test examples based on KNN, cost is O(ndt).

— Need to compare ‘n’ training examples to ‘t” test examples,
and computing a distance between two examples costs O(d).

* You can do this slightly faster using fast matrix multiplication:
— Let D be a matrix such that D; contains:

[l =y 1P = 1 I1F = 2575 501
where ‘i’ is a training example and ‘j’ is a test example.
— We can compute D in Julia using:
D = X. 2xones(d,t) + ones(n,d)*(Xtest’). 2 - 2xXx*Xtest’;

— And you get an extra boost because Julia uses multiple cores.
* Something similar exists in Python

Norms in 1-Dimension

 We can view absolute value, |r|, as ‘size’ or ‘length’ of a number ‘r’:

O - > - - - >
~28 0 _{,g'

e |t satisfies three intuitive properties of ‘length’:
1. Only ‘0" has a ‘length’ of zero.
2. Multiplying ‘r’ by constant ‘a’ multiplies length by |a|: |ar| = |a]|r].

. “If be will twice as long if you multiply by 2”.
3. Length of ‘r+s’ is not more than length of ‘r’ plus length of ‘s’:
. “You can’t get there faster by a detour”.
. “Triangle inequality”: |r+s| <= |r| + |s]. —_S 2 -y < <
Y —

cHs

Norms in 2-Dimensions

In 1-dimension, only scaled absolute values satisfy the 3 properties.

In 2-dimensions, there is no unique function satisfying them.

We call any function satisfying them a norm:
— Measures of “size” or “length” in 2-dimensions.

Three most common examples:

L\ of “/V\anhaﬁﬂn\‘ norm-

| _ "
Lz onr |EU&C|‘C[€GV\ Norm.

”(‘”1 \) r

R \;‘,%l
|

S—

2
th

\ril,
~

L,(’,/\(J)(k ot

Yhe vector.

el = g 1+l

'77 L(\,Ls IG%

:)|

] 2 L[ock’;

-

. —_— —

i g ‘l‘o‘(‘al L‘ockf“

L
el = max E |1, /)/Q)}

-

Or

-

Ir,

J
May

3r)

)
horm:

o

2 "lock
i longe
direction.

Norms as Measures of Distance

* By taking norm of difference, we get a “distance” between vectors:

__ sl
II'e - 4”1 = \Rr\‘gi)l * (" 52)1 ﬂ;@l l
= “r 'S”)lEV\C’ic]\eom J(HL“"‘(C“ S

Hr_ -S”| = lr\ '—5" + \fl bSJ l “/Vumlaff‘ of Llocks yo\,\ /,94,:! 7‘0
WaW]la)€+ Lrom ’}o S.

—

e =5, = my @ o5y Iy “ 08 " Most number of Llocks
m any clrec’hm Yo Wou\u

o\ ve "‘0 Wo‘k

Infinite Series Video

Norms in d-Dimensions

 We can generalize these common norms to d-dimensional vectors:

d
L lm/ﬁréff\ e =) Lo e I

—

2
£y, in 3-dmensions Netaton: el = Cllrla)”
”r’.' ‘S,ﬁ) :(\)ff.z ‘>

|W‘ YN -
2

2
“r“1 '\)r, 4"2 +V3 "’f,,' - Z
* These norms place different “weights” on large values: '
= ~/r

— L,: all values are equal \\r//\)
_ L-bi : o). <
L,: bigger values are more important (because of squaring) o F&M’d)\h

— L..: only biggest value is important. \o Wi f e Ny

Squared/Euclidean-Norm Notation

We're using the following conventions:

The subscript after the norm is used to denote the p-norm, as in these examples:

d
|2 = /35, w?.
]l = 354 [wil.

If the subscript is omitted, we mean the 2-norm:

]| = [l]l2-

If we want to talk about the squared value of the norm we use a superscript of "2™

||:1:||% - Z}Ll wf
2
lalf? = (3 sl) -

If we omit the subscript and have a superscript of "2", we're taking about the squared L2-norm:

22 = 375, w}

44

Lp-norms

* Thel,-, L,-, and L_-norms are special cases of Lp-norms:
d 7
- P
elly=(% 4)
j:l

* This gives a norm for any (real-valued) p > 1.

— The L_.-norm is limit as ‘p’ goes to oe.

 For p <1, notanorm because triangle inequality not satisfied.

