
CPSC	340:
Machine	Learning	and	Data	Mining

Fundamentals	of	learning	(continued)
and

the	k-nearest	neighbours classifier

1Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.

Admin
• Assignment	1 is	out:
– Due	Wednesday.
– Fairly	representative	of	workload	in	this	course,	but	difficultly	will	increase.

• Add/drop	deadline	is	Wednesday.
– Good	news:	we	may	be	expanding	this	section	by	a	few	seats… stay	tuned.

2

Last	Time:	Training,	Testing,	and	Validation
• Training	step:

• Prediction	step:

• What	we	are	interested	in	is	the	test	error:
– Error	made	by	prediction	step	on	new	data.

3

Last	Time:	Fundamental	Trade-Off
• We	decomposed	test	error	to	get	a	fundamental	trade-off:

– Where	Eapprox =	(Etest – Etrain).

• Etrain goes	down	as	model	gets	complicated:
– Training	error	goes	down	as	a	decision	tree	gets	deeper.

• But	Eapproxr goes	up	as	model	gets	complicated:
– Training	error	becomes	a	worse	approximation	of	test	error. 4

Last	Time:	Validation	Error
• Golden	rule:	we	can’t	look	at	test	data	during	training.
• But	we	can	approximate	Etest with	a	validation	error:
– Error	on	a	set	of	training	examples	we	“hid”	during	training.

– Find	the	decision	tree	based	on	the	“train”	rows.
– Validation	error	is	the	error	of	the	decision	tree	on	the	“validation”	rows.

5

Notation:	Parameters	and	Hyperparameters
• The	decision	tree	rule	values	are	called	“parameters”.
– Parameters	control	how	well	we	fit	a	dataset.
– We	“train”	a	model	by	trying	to	find	the	best	parameters	on	training	data.

• The	decision	tree	depth	is	a	called	a	“hyperparameter”.
– Hyper-parameters	control	how	complex	our	model	is.
– We	can’t	“train”	a	hyperparameter.

• You	can	always	fit	training	data	better	by	making	the	model	more	complicated.

– We	“validate”	a	hyperparameter using	a	validation	score.

6

Choosing	Hyper-Parameters	with	Validation	Set
• So	to	choose	a	good	value	of	depth	(“hyperparameter”),	we	could:
– Try	a	depth-1	decision	tree,	compute	validation	error.
– Try	a	depth-2	decision	tree,	compute	validation	error.
– Try	a	depth-3	decision	tree,	compute	validation	error.
– …
– Try	a	depth-20	decision	tree,	compute	validation	error.
– Return	the	depth	with	the	lowest	validation	error.

• After	you	choose	the	hyper-parameter,	we	usually	
re-train	on	the	full	training	set	with	the	chosen	hyper-parameter.

7

Choosing	Hyper-Parameters	with	Validation	Set
• This	leads	to	much	less	overfitting	than	using	the	training	error.
– We	optimize	the	validation	error	over	20	values	of	“depth”.
– Unlike	training	error,	where	we	optimize	over	tons	of	decision	trees.

• But	it	can	still	overfit (very	common	in	practice):
– Validation	error	is	only	an	unbiased	approximation	if	you	use	it	once.
– If	you	minimize	it	to	choose	a	model,	introduces	optimization	bias:

• If	you	try	lots	of	models,	one	might	get	a	low	validation	error	by	chance.

• Remember,	our	goal	is	still	to	do	well	on	the	test	set (new	data),
not	the	validation	set	(where	we	already	know	the	labels). 8

Should	you	trust	them?
• Scenario	1:
– “I	built	a	model	based	on	the	data	you	gave	me.”
– “It	classified	your	data	with	98%	accuracy.”
– “It	should	get	98%	accuracy	on	the	rest	of	your	data.”

• Probably	not:
– They	are	reporting	training	error.
– This	might	have	nothing	to	do	with	test	error.
– E.g.,	they	could	have	fit	a	very	deep	decision	tree.

• Why	‘probably’?
– If	they	only	tried	a	few	very	simple	models,	the	98%	might	be	reliable.
– E.g.,	they	only	considered	decision	stumps	with	simple	1-variable	rules.

9

Should	you	trust	them?
• Scenario	2:
– “I	built	a	model	based	on	half	of	the	data	you	gave	me.”
– “It	classified	the	other	half	of	the	data	with	98%	accuracy.”
– “It	should	get	98%	accuracy	on	the	rest	of	your	data.”

• Probably:
– They	computed	the	validation	error	once.
– This	is	an	unbiased	approximation	of	the	test	error.
– Trust	them	if	you	believe	they	didn’t	violate	the	golden	rule.

10

Should	you	trust	them?
• Scenario	3:
– “I	built	10	models based	on	half	of	the	data	you	gave	me.”
– “One	of	them	classified	the	other	half	of	the	data	with	98%	accuracy.”
– “It	should	get	98%	accuracy	on	the	rest	of	your	data.”

• Probably:
– They	computed	the	validation	error	a	small	number	of	times.
– Maximizing	over	these	errors	is	a	biased	approximation	of	test	error.
– But	they	only	maximized	it	over	10	models,	so	bias	is	probably	small.
– They	probably	know	about	the	golden	rule.

11

Should	you	trust	them?
• Scenario	4:
– “I	built	1	billion	models based	on	half	of	the	data	you	gave	me.”
– “One	of	them	classified	the	other	half	of	the	data	with	98%	accuracy.”
– “It	should	get	98%	accuracy	on	the	rest	of	your	data.”

• Probably	not:
– They	computed	the	validation	error	a	huge	number	of	times.
– Maximizing	over	these	errors	is	a	biased	approximation	of	test	error.
– They	tried	so	many	models,	one	of	them	is	likely	to	work	by	chance.

• Why	‘probably’?
– If	the	1	billion	models	were	all	extremely-simple,	98%	might	be	reliable.

12

Should	you	trust	them?
• Scenario	5:
– “I	built	1	billion	models based	on	the	first	third	of	the	data	you	gave	me.”
– “One	of	them	classified	the	second	third	of	the	data	with	98%	accuracy.”
– “It	also	classified	the	last	third	of	the	data	with	98%	accuracy.”
– “It	should	get	98%	accuracy	on	the	rest	of	your	data.”

• Probably:
– They	computed	the	first	validation	error	a	huge	number	of	times.
– But	they	had	a	second	validation	set	that	they	only	looked	at	once.
– The	second	validation	set	gives	unbiased	test	error	approximation.
– This	is	ideal,	as	long	as	they	didn’t	violate	golden	rule	on	the	last	third.
– And	assuming	you	are	using	IID	data	in	the	first	place.

13

Validation	Error	and	Optimization	Bias
• Optimization	bias	is	small	if	you	only	compare	a	few	models:
– Best	decision	tree	on	the	training	set	among	depths,	1,	2,	3,…,	10.
– Risk	of	overfitting	to	validation	set	is	low	if	we	try	10	things.

• Optimization	bias	is	large	if	you	compare	a	lot	of	models:
– All	possible	decision	trees	of	depth	10	or	less.
– Here	we’re	using	the	validation	set	to	pick	between	a	billion+	models:

• Risk	of	overfitting	to	validation	set	is	high:	could	have	low	validation	error	by	chance.

– If	you	did	this,	you	might	want	a	second	validation	set	to	detect	overfitting.

14

Cross-Validation	(CV)
• Isn’t	it	wasteful	to	only	use	part	of	your	data?
• 5-fold	cross-validation:
– Train	on	80%	of	the	data,	validate	on	the	other	20%.
– Repeat	this	5	more	times	with	different	splits,	and	average	the	score.

15

Cross-Validation	(CV)
• You	can	take	this	idea	further:
– 10-fold	cross-validation:	train	on	90%	of	data	and	validate	on	10%.

• Repeat	10	times	and	average.

– Leave-one-out	cross-validation:	train	on	all	but	one	training	example.
• Repeat	n	times	and	average.
• This	is	the	same	as	n-fold	cross	validation.

• Gets more	accurate but	more	expensive with	more	folds.
– To	choose	depth	we	compute	the	cross-validation	score	for	each	depth.

• As	before,	if	data	is	ordered	then	folds	should	be	random	splits.
– Randomize	first,	then	split	into	fixed	folds.

16

(pause)

17

The	“Best”	Machine	Learning	Model
• Decision	trees	are	not	always	most	accurate	on	test	error.
• What	is	the	“best”	machine	learning	model?
• First	we	need	to	define	generalization	error:
– Test	error	restricted	to	new	feature	combinations	(no	xi from	train	set).

• No	free	lunch	theorem:
– There	is	no “best”	model	achieving	the	best	generalization	error	for	every	
problem.

– If	model	A	generalizes	better	to	new	data	than	model	B	on	one	dataset,	
there	is	another	dataset	where	model	B	works	better.

• This	question is	like	asking	which	is	“best”	among	“rock”,	“paper”,	
and	“scissors”.

18

The	“Best”	Machine	Learning	Model
• Implications	of	the	lack	of	a	“best”	model:
– We	need	to	learn	about	and	try	out	multiple	models.

• So	which	ones	to	study	in	CPSC	340?
– We’ll	usually	motivate	each	method	by	a	specific	application.
– But	we’re	focusing	on	models	that	have	been	effective	in	many	applications.

• Caveat	of	no	free	lunch	(NFL)	theorem:
– The	world	is	very	structured.
– Some	datasets	are	more	likely	than	others.
– Model	A	really	could	be	better	than	model	B	on	every	real	dataset	in	practice.	

• Machine	learning	research:
– Large	focus	on	models	that	are	useful	across	many	applications.

19

K-Nearest	Neighbours (KNN)
• To	classify	an	object	𝑥"i:

1. Find	the	‘k’	training	examples	xi that	are	“nearest”	to	𝑥"i.
2. Classify	using	the	most	common	label of	“nearest”	examples.

F1 F2

1 3

2 3

3 2

2.5 1

3.5 1

… …

Label

O

+

+

O

+

…
20

K-Nearest	Neighbours (KNN)
• To	classify	an	object	𝑥"i:

1. Find	the	‘k’	training	examples	xi that	are	“nearest”	to	𝑥"i.
2. Classify	using	the	most	common	label of	“nearest”	examples.

F1 F2

1 3

2 3

3 2

2.5 1

3.5 1

… …

Label

O

+

+

O

+

…
21

K-Nearest	Neighbours (KNN)
• To	classify	an	object	𝑥"i:

1. Find	the	‘k’	training	examples	xi that	are	“nearest”	to	𝑥"i.
2. Classify	using	the	most	common	label of	“nearest”	examples.

F1 F2

1 3

2 3

3 2

2.5 1

3.5 1

… …

Label

O

+

+

O

+

…
22

K-Nearest	Neighbours (KNN)
• To	classify	an	object	𝑥"i:

1. Find	the	‘k’	training	examples	xi that	are	“nearest”	to	𝑥"i.
2. Classify	using	the	most	common	label of	“nearest”	examples.

F1 F2

1 3

2 3

3 2

2.5 1

3.5 1

… …

Label

O

+

+

O

+

…
23

K-Nearest	Neighbours (KNN)
• To	classify	an	object	𝑥"i:

1. Find	the	‘k’	training	examples	xi that	are	“nearest”	to	𝑥"i.
2. Classify	using	the	most	common	label of	“nearest”	examples.

Egg Milk Fish

0 0.7 0

0.4 0.6 0

0 0 0

0.3 0.5 1.2

0.4 0 1.2

Sick?

1

1

0

1

1

Egg Milk Fish

0.3 0.6 0.8

Sick?

?

24

K-Nearest	Neighbours (KNN)
• Most	common	distance	function	is	Euclidean	distance:

– Compute	this	distance	between	a	test	point	and	all training	points.

• Assumption:	
– Objects	with	similar	features	likely	have	similar	labels.

25

d(v, w) =

vuut
dX

j=1

(vj � wj)2

KNN	Implementation
• There	is	no	training	phase	in	KNN	(“lazy”	learning).
– You	just	store	the	training	data.

• But	predictions	are	expensive:	O(nd)	to	classify	1	test	object.
– Tons	of	work	on	reducing	this	cost.

• There	are	also	alternatives	to	Euclidean	distance.

26

Curse	of	Dimensionality
• “Curse	of	dimensionality”:	problems	with	high-dimensional	spaces.
– Volume	of	space	grows	exponentially with	dimension.

• Circle	has	area	O(r2),	sphere	has	area	O(r3),	4d	hyper-sphere	has	area	O(r4),…
– Need	exponentially	more	points	to	‘fill’	a	high-dimensional	volume.

• You	might	not	have	any	training	points	“near”	a	test	point.

• KNN	is	also	problematic	if	features	have	very	different	scales.
– A	feature	with	a	big	scale	can	dominate	all	the	distances
– A	feature	with	a	small	scale	can	be	neglected

• Nevertheless,	KNN	is	really	easy	to	use	and	often	hard	to	beat!	 27

Parametric	vs.	Non-Parametric
• Parametric models:
– Have	a	fixed number	of	parameters:	size	of	“model”	is	O(1)	in	terms	‘n’.

• E.g.,	fixed-depth	decision	tree	just	stores	rules.
– You	can	estimate	the	fixed	parameters	more	accurately	with	more	data.
– But	eventually	more	data	doesn’t	help:	model	is	too	simple.

• Non-parametric models:
– Number	of	parameters	grows	with	‘n’:	size	of	“model”	depends	on	‘n’.

• E.g.,	with	KNN	we	need	to	store	O(nd)	information.

– Model	gets	more	complicated	as	you	get	more	data.

• (IMO	decision	trees	are	an	ambiguous	case,	but	it’s	usually	clear.)
28

Non-parametric	models
• With	a	small	‘n’,	KNN	model	will	be	very	simple.
• Model	gets	more	complicated	as	‘n’	increases.
– Starts	to	detect	subtle	differences	between	examples.

• We	say	“the	complexity	grows	with	the	amount	of	data”.

29

Norms	(abridged)
• The	notation	||x||	refers	to	the	norm	(like	the	size)	of	a	vector x.

• The	2	in	the	subscript	is	the	type	of	norm:	“L2	norm”
– The	L1	norm	is	the	sum	of	the	absolute	valued.

• The	2	in	the	superscript	is	just	regular	squaring
• A	norm	operates	on	ONE	vector
• A	distance	function	operates	on	TWO	vectors,	e.g.	d(x,y)
• However,	we	can	represent	distances	as	norms,	as	in

• Later	in	the	course	we’ll	see	other	types	of	norms,	like	L1,	L0,	etc.
– Surprisingly,	some	of	the	key	ideas	in	this	course	pertain	to	changing	norm	types.30

||x||22 =
nX

i=1

x2
i

dEuclidean(x, y) = ||x� y||2 = ||x� y||

Summary
• Hyperparameters:	high-level	choices	that	control	model	complexity
– E.g.,	tree	depth	for	decision	trees,	‘k’	for	KNN

• Optimization	bias: unwittingly	overfitting	your	validation	set
• Cross-validation: many	train/validation	splits	from	one	data	set
– More	accurate	but	requires	training	more	models	(slower)

• K-Nearest	Neighbours:	simple	non-parametric	classifier.
• Appealing	“consistency”	properties.
• Suffers	from	high	prediction	cost	and	curse	of	dimensionality.

• Non-parametric	models	grow	with	number	of	training	examples.
• Norms measure	the	size	of	a	vector	(“distance	from	the	origin”).	

31

Back	to	Decision	Trees
• Instead	of	validation	set,	you	can	use	CV	to	select	tree	depth.

• But	you	can	also	use	these	to	decide	whether	to	split:
– Don’t	split	if	validation/CV	error	doesn’t	improve.
– Different	parts	of	the	tree	will	have	different	depths.

• Or	fit	deep	decision	tree	and	use	CV	to	prune:
– Remove	leaf	nodes	that	don’t	improve	CV	error.

• Popular	implementations	that	have	these	tricks	and	others.

Cross-Validation	Theory
• Does	CV	give	unbiased	estimate	of	test	error?
– Yes!

• Since	each	data	point	is	only	used	once	in	validation,	expected	validation	error	on	
each	data	point	is	test	error.

– But	again,	if	you	CV	to	select	among	models	then	it	is	no	longer	unbiased.

• What	about	variance	of	CV?
– Hard	to	characterize.
– CV	variance	on	‘n’	data	points	is	worse	than	with	a	validation	set	of	size	‘n’.

• But	we	believe	it	is	close.

KNN	Distance	Functions
• Most	common	KNN	distance	functions:	norm(xi – xj).
– L1-,	L2-,	and	Linf-norm.
– Weighted	norms	(if	some	features	are	more	important):
– “Mahalanobis”	distance	(takes	into	account	correlations).

• But	we	can	consider	other	distance/similarity	functions:
– Hamming	distance.
– Jaccard similarity	(if	xi are	sets).
– Edit	distance	(if	xi are	strings).
– Metric	learning	(learn the	best	distance	function).

34

Consistency	of	KNN
• KNN	has	appealing	consistency	properties:
– As	‘n’	goes	to	∞,	KNN	test	error	is	less	than	twice	best	possible	error.

• For	fixed	‘k’	and	binary	labels	(under	mild	assumptions).

• Stone’s	Theorem:	KNN	is	“universally	consistent”.
– If	k/n	goes	to	zero	and	‘k’	goes	to	∞,	converges	to	the	best	possible	error.

• First	algorithm	shown	to	have	this	property.

• Does	Stone’s	Theorem	violate	the	no	free	lunch	theorem?
– No:	it	requires	a	continuity	assumption	on	the	labels.
– Consistency	says	nothing	about	finite	‘n’	(see	"Dont Trust	Asymptotics”).

35

Parametric	vs.	Non-Parametric	Models

36

Parametric	vs.	Non-Parametric	Models

37

More	on	Weirdness	of	High	Dimensions
• In	high	dimensions:
– Distances	become	less	meaningful:

• All	vectors	may	have	similar	distances.

– Emergence	of	“hubs”	(even	with	random	data):
• Some	datapoints are	neighbours to	many	more	points	than	average.

– Visualizing	high	dimensions	and	sphere-packing

38

Vectorized Distance	Calculation
• To	classify	‘t’	test	examples	based	on	KNN,	cost	is	O(ndt).
– Need	to	compare	‘n’	training	examples	to	‘t’	test	examples,
and	computing	a	distance	between	two	examples	costs	O(d).

• You	can	do	this	slightly	faster	using	fast	matrix	multiplication:
– Let	D	be	a	matrix	such	that	Dij contains:

where	‘i’	is	a	training	example	and	‘j’	is	a	test	example.
– We	can	compute	D	in	Julia	using:

– And	you	get	an	extra	boost	because	Julia	uses	multiple	cores.
• Something	similar	exists	in	Python

39

Norms	in	1-Dimension
• We	can	view	absolute	value,	|r|,	as	‘size’	or	‘length’	of	a	number	‘r’:

• It	satisfies	three	intuitive	properties	of	‘length’:
1. Only	‘0’	has	a	‘length’	of	zero.
2. Multiplying	‘r’	by	constant	‘α’	multiplies	length	by	|α|:	|αr|	=	|α||r|.

• “If	be	will	twice	as	long	if	you	multiply	by	2”.

3. Length	of	‘r+s’	is	not	more	than	length	of	‘r’	plus	length	of	‘s’:
• “You	can’t	get	there	faster	by	a	detour”.
• “Triangle	inequality”:	|r	+	s|	<=	|r|	+	|s|.

40

Norms	in	2-Dimensions
• In	1-dimension,	only	scaled	absolute	values	satisfy	the	3	properties.
• In	2-dimensions,	there	is	no	unique	function	satisfying	them.
• We	call	any	function	satisfying	them	a	norm:
– Measures	of	“size”	or	“length”	in	2-dimensions.

• Three	most	common	examples:

41

Norms	as	Measures	of	Distance
• By	taking	norm	of	difference,	we	get	a	“distance”	between	vectors:

Infinite	Series	Video 42

Norms	in	d-Dimensions
• We	can	generalize	these	common	norms	to	d-dimensional	vectors:

• These	norms	place	different	“weights”	on	large	values:
– L1:	all	values	are	equal.
– L2:	bigger	values	are	more	important	(because	of	squaring).
– L∞:	only	biggest	value	is	important. 43

Squared/Euclidean-Norm	Notation

44

Lp-norms
• The	L1-,	L2-,	and	L∞-norms	are	special	cases	of	Lp-norms:

• This	gives	a	norm	for	any	(real-valued)	p	≥	1.
– The	L∞-norm	is	limit	as	‘p’	goes	to	∞.

• For	p	<	1,	not	a	norm	because	triangle	inequality	not	satisfied.

45

