
CPSC	340:
Machine	Learning	and	Data	Mining

Naïve	Bayes	classification

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.

Admin
• Assignment	0	solutions	posted
• Assignment	1	due	Wednesday
– You	should	have	started	by	now.

• Assignment	2	released	by	the	end	of	the	week
• Add/drop	deadline	is	Wednesday

Last	Time:	K-Nearest	Neighbours (KNN)
• K-nearest	neighbours algorithm	for	classifying	𝑥"i:
– Find	‘k’	values	of	xi that	are	most	similar	to	𝑥"i.
– Use	mode	of	corresponding	yi.

• Lazy	learning:
– To	“train”	you	just	store	X	and	y.

• Non-parametric:
– Size	of	model	grows	with	‘n’ (number	of	examples)
– Nearly-optimal	test	error	with	infinite	data.

• But	high	prediction	cost	and	may	need	large	‘n’	if	‘d’	is	large.

KNN	questions	from	Piazza
1. What	does	the	red	and	blue	transparent	shading	represent?
2. By	looking	at	these	plots,	can	you	visually	identify	the	training	

examples	that are	correctly	and	incorrectly	classified?
3. Why	is	KNN	"smoother"	for	larger k?
4. Why	does	KNN	(almost)	always	get	zero	training	error	when k=1?
5. From	the	plots	we	see	that	KNN	allows	"islands"	of	one	colour

surrounded	entirely	by	the	other	colour.	Could	such	a	thing	
happen	with	decision	trees?

6. Why	can’t	KNN	just	predict	by	checking	the	shading	colour for	a	
test	example	instead	of	computing	all	those	distances?

Application:	Optical	Character	Recognition
• To	scan	documents,	we	want	to	turn	images	into	characters:
– “Optical	character	recognition”	(OCR).

https://www.youtube.com/watch?v=IHZwWFHWa-w

Application:	Optical	Character	Recognition
• To	scan	documents,	we	want	to	turn	images	into	characters:
– “Optical	character	recognition”	(OCR).

– Turning	this	into	a	supervised	learning	problem	(with	28	by	28	images):

“3”

(1,1) (2,1) (3,1) … (28,1) (1,2) (2,2) … (14,14) … (28,28)

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

char

3

6

0

9

KNN	for	Optical	Character	Recognition

KNN	for	Optical	Character	Recognition

KNN	for	Optical	Character	Recognition

KNN	for	Optical	Character	Recognition

Human	vs.	Machine	Perception
• There	is	huge	difference	between	what	we	see	and	what	KNN	sees:

What	we	see: What	the	computer	“sees”: Actually,	it’s	worse:

• Are	these	two	images	“similar”?

What	the	Computer	Sees

• Are	these	two	images	“similar”?

• KNN	does	not	know	that	labels	should	be	translation	invariant.

What	the	Computer	Sees

Difference:

Encouraging	Invariance
• May	want	classifier	to	be	invariant	to	certain	feature	transforms.
– Images:	translations,	small	rotations,	changes	in	size,	mild	warping,…

• The	hard/slow	way	is	to	modify	your	distance	function:
– Find	neighbours that	require	the	‘smallest’	transformation	of	image.

• The	easy/fast	way	is	to	just	add	transformed	data during	training:
– Add	translated/rotate/resized/warped	versions	of	training	images.

– Crucial	part	of	many	successful	vision	systems.
– Bonus	slides	discuss	invariant	features	for	language	data.

Application:	E-mail	Spam	Filtering
• Want	a	build	a	system	that	detects	spam	e-mails.
– Context:	spam	used	to	be	a	big	problem.

• Can	we	formulate	as	supervised	learning?

Spam	Filtering	as	Supervised	Learning
• Collect	a	large	number	of	e-mails,	 gets	users	to	label	them.

• We	can	use	(yi =	1)	if	e-mail	‘i’	is	spam,	(yi =	0)	if	e-mail	is	not	spam.
• Extract	features	of	each	e-mail	(like	bag	of	words).
– (xij =	1)	if	word/phrase	‘j’	is	in	e-mail	‘i’,	(xij =	0)	if	it	is	not.

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…

Feature	Representation	for	Spam
• Are	there	better	features	than	bag	of	words?
– We	add	bigrams (sets	of	two	words):

• “CPSC	340”,	“wait	list”,	“special	deal”.
– Or	trigrams (sets	of	three	words):

• “Limited	time	offer”,	“course	registration	deadline”,	“you’re	a	winner”.

– We	might	include	the	sender	domain:
• <sender	domain	==	“mail.com”>.

– We	might	include	regular	expressions:
• <your	first	and	last	name>.

• Also,	note	that	we	only	need	list	of	non-zero	features	for	each	xi.

Review	of	Supervised	Learning	Notation
• We	have	been	using	the	notation	‘X’	and	‘y’	for	supervised	learning:

• X	is	matrix	of	all	features,	y	is	vector	of	all	labels.
– We	use	yi for	the	label	of	object	‘i’	(element	‘i’	of	‘y’).
– We	use	xij for	feature	‘j’	of	object	‘i‘.
– We	use	xi as	the	list	of	features	of	object	‘i’ (row	‘i’	of	‘X’).

• So	in	the	above	x3 =	[0	1 1 1 0	0	…].

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…

Probabilistic	Classifiers
• For	years,	best	spam	filtering	methods	used	naïve	Bayes.

– A probabilistic classifier based	on	Bayes	rule.
– It	tends	to	work	well	with	bag	of	words.
– Last	year	shown	to	improve	on	state	of	the	art	for	CRISPR	“gene	editing”	(link).

• Probabilistic	classifiers	model	the	conditional	probability,	p(yi |	xi).
– “If	a	message	has	words	xi,	what	is	probability	that	message	is	spam?”

• Classify	it	has	spam	if	probability	of	spam	is	higher	than	not	spam:
– If	p(yi =	“spam”	|	xi)	>	p(yi =	“not	spam”	|	xi)

• return	“spam”.
– Else	

• return	“not	spam”.

Spam	Filtering	with	Bayes	Rule
• To	model	conditional	probability,	naïve	Bayes	uses	Bayes	rule:

• So	we	need	to	figure	out	three	types	of	terms:
– Marginal	probabilities	p(yi)	that	an	e-mail	is	spam.
– Marginal	probability	p(xi) that	an	e-mail	has	the	set	of	words	xi.
– Conditional	probability	P(xi |	yi)	that	a	spam	e-mail	has	the	words	xi.

• And	the	same	for	non-spam	e-mails.

Spam	Filtering	with	Bayes	Rule

• What	do	these	terms	mean?

ALL	E-MAILS
(including	duplicates)

Spam	Filtering	with	Bayes	Rule

• p(yi =	“spam”)	is	probability	that	a	random	e-mail	is	spam.
– This	is	easy	to	approximate	from	data:	use	the	proportion	in	your	data.

ALL	E-MAILS
(including	duplicates)SPAM	NOT	

SPAM
This	is	a	“maximum	likelihood	estimate”,	a	
concept	we’ll	discuss	in	detail	later.	If	you’re	
interested	in	a	proof,	see	here.

Spam	Filtering	with	Bayes	Rule

• p(xi)	is	probability	that	a	random	e-mail	has	features	xi:
– This	is	hard	to	approximate (there	are	so	many	possible	e-mails).

ALL	E-MAILS
(including	duplicates)

Spam	Filtering	with	Bayes	Rule

• p(xi)	is	probability	that	a	random	e-mail	has	features	xi:
– This	is	hard	to	approximate (there	are	so	many	possible	e-mails),	
but	it	turns	out	we	can	ignore	it:

Spam	Filtering	with	Bayes	Rule

• p(xi |	yi =	“spam”)	is	probability	that	spam	has	features	xi.

ALL	E-MAILS
(including	duplicates)

NOT	
SPAM SPAM	

• Also	hard	to	estimate.
• And	we	need	it.

Naïve	Bayes
• Naïve	Bayes	makes	a	big	assumption	to	make	things	easier:

• We	assume	all features	xi are	conditionally	independent	give	label yi.
– Once	you	know	it’s	spam,	probability	of	“vicodin”	doesn’t	depend	on	“CPSC	340”.
– Definitely	not	true,	but	sometimes	a	good	approximation.
– Allows	a	training	email	with	“vicodin”	to	influence	all	test	emails	with	“vicodin”.

• And	now	we	only	need	easy	quantities	like	p(“vicodin” =	1|	yi =	“spam”).

Naïve	Bayes
• p(“vicodin”	=	1	|	“spam”	=	1)	is	probability	of	seeing	“vicodin”	in	spam.

ALL	POSSIBLE	E-MAILS
(including	duplicates)SPAM	NOT	

SPAM

• Easy	to	estimate:Vicodin

Naïve	Bayes
• Naïve	Bayes	more	formally:	

Laplace	Smoothing
• Our	estimate	of	p(‘lactase’	=	1|	‘spam’)	is:

– Problem	if	you	have	no	spam	messages	with	lactase:
• p(‘lactase’	|	‘spam’)	=	0,	and	message	automatically	gets	through	filter.

– Common	fix	is	Laplace	smoothing estimate:
• Add	1	to	numerator,	and	add	1	for	
each	possible	label	to	denominator.

• A	common	variation	is	to	use	a	different	number	β rather	than	1.

– This	is	like	pretending	you’ve	seen	1	of	everything	before	you	start.

Decision	Theory
• Are	we	equally	concerned	about	“spam”	vs.	“not	spam”?
• True	positives,	false	positives,	false	negatives,	false	negatives:

• The	costs	mistakes	might	be	different:
– Letting	a	spam	message	through	(false	negative)	is	not	a	big	deal.
– Filtering	a	not	spam	(false	positive)	message	will	make	users	mad.

Predict	/	True True ‘spam’ True	‘not	spam’

Predict	‘spam’ True	Positive False	Positive

Predict ‘not	spam’ False	Negative True	Negative

Decision	Theory
• We	can	give	a	cost to	each	scenario,	such	as:

• Instead	of	most	probable	label,	take	yhat minimizing	expected	cost:

• Even	if	“spam”	has	a	higher	probability,	
predicting	“spam”	might	have	a	higher	cost,	so	predict	“not	spam”.

Predict	/	True True ‘spam’ True	‘not	spam’

Predict	‘spam’ 0 100

Predict ‘not	spam’ 10 0

Decision	Theory	Example

• If	for	a	test	example	we	have	p(𝑦" i =	“spam”	|	𝑦" i)	=	0.6,	then:

• Even	though	“spam”	is	more	likely,	we	should	predict	“not	spam”.

Predict	/	True True ‘spam’ True	‘not	spam’

Predict	‘spam’ 0 100

Predict ‘not	spam’ 10 0

Other	Performance	Measures
• Often,	we	report	precision and	recall (want	both	to	be	high):
– Precision:	“if	I	classify	as	spam,	what	is	the	probability	it	actually	is	spam?”

• Precision	=	TP/(TP	+	FP).
• High	precision	means	the	filtered	messages	are	likely	to	really	be	spam.

– Recall:	“if	a	message	is	spam,	what	is	probability	it	is	classified	as	spam?”
• Recall	=	TP/(TP	+	FN)
• High	recall	means	that	most	spam	messages	are	filtered.

• Plotting	precision	vs.	recall	is	a	common	performance	visualization.
• See	post-lecture	bonus	slides	for	more	on	this.

33

Unbalanced	classes
• Some	machine	learning	models	don’t	work	well	with	unbalanced	
data.	
– If	99%	of	days	you	did	not	get	sick,	you	get	99%	accuracy	by	always	
predicting	“not	sick”

– Decision	theory	approach	can	avoid	this	with	high	cost	on	false	negatives

• See	post-lecture	bonus	slides	for	more	on	this.

Decision	Trees	vs.	Naïve	Bayes

• Decision	trees:

1. Sequence	of	rules	based	on	1	feature.
2. Training:	1	pass	over	data	per	depth.
3. Greedy	splitting	as	approximation.
4. Testing:	just	look	at	features	in	rules.
5. New	data:	might	need	to	change	tree.
6. Accuracy:	good	if	simple	rules	based	on	

individual	features	work	(“symptoms”).

• Naïve	Bayes:

1. Simultaneously	combine	all	features.
2. Training:	1	pass	over	data	to	count.
3. Conditional	independence	assumption.
4. Testing:	look	at	all	features.
5. New	data:	just	update	counts.
6. Accuracy:	good	if	features	almost	

independent	given	label	(text).

Hyperparameters

• Decision	trees:	max	depth	(larger	depth	=>	more	complex	model)
• KNN:	k	(smaller	k	=>	more	complex	model)
• Naïve	Bayes:	β (smaller	β =>	more	complex	model?)

Summary
• Probabilistic	classifiers:	try	to	estimate	p(yi |	xi).
• Naïve	Bayes:	simple	probabilistic	classifier	based	on	counting.
– Uses	conditional	independence	assumptions	to	make	training	practical.

• Decision	theory	allows	us	to	consider	costs	of	predictions.

• Post-lecture	slides:	how	to	train/test	by	hand	on	a	simple	example.

Naïve	Bayes	Training	Phase
• Training	a	naïve	Bayes	model:

Naïve	Bayes	Training	Phase
• Training	a	naïve	Bayes	model:

Naïve	Bayes	Training	Phase
• Training	a	naïve	Bayes	model:

Naïve	Bayes	Training	Phase
• Training	a	naïve	Bayes	model:

Naïve	Bayes	Training	Phase
• Training	a	naïve	Bayes	model:

Naïve	Bayes	Training	Phase
• Training	a	naïve	Bayes	model:

Naïve	Bayes	Prediction	Phase
• Prediction	in	a	naïve	Bayes	model:	

Naïve	Bayes	Prediction	Phase
• Prediction	in	a	naïve	Bayes	model:	

Naïve	Bayes	Prediction	Phase
• Prediction	in	a	naïve	Bayes	model:	

Naïve	Bayes	Prediction	Phase
• Prediction	in	a	naïve	Bayes	model:	

Naïve	Bayes	Prediction	Phase
• Prediction	in	a	naïve	Bayes	model:	

Naïve	Bayes	Prediction	Phase
• Prediction	in	a	naïve	Bayes	model:	

Text	Example	1:	Language	Identification
• Consider	data	that	doesn’t	look	like	this:

• But	instead	looks	like	this:

• How	should	we	represent	sentences	using	features?

A	(Bad)	Universal	Representation
• Treat	character	in	position	‘j’	of	the	sentence	as	a	categorical	feature.

• “fais	ce	que	tu	veux”	=>	xi =	[f	a	i s	‘’	c	e	‘’	q	u	e	‘’	t	u	‘’	v	e	u	x	.]

• “Pad”	end	of	the	sentence	up	to	maximum	#characters:
• “fais	ce	que	tu	veux”	=>	xi =	[f	a	i s	‘’	c	e	‘’	q	u	e	‘’	t	u	‘’	v	e	u	x	.	γ γ γ γ γ γ γ γ …]

• Advantage:	
– No	information	is	lost,	KNN	can	eventually	solve	the	problem.

• Disadvantage:	throws	out	everything	we	know	about	language.
– Needs	to	learn	that	“veux”	starting	from	any	position	indicates	“French”.

• Doesn’t	even	use	that	sentences	are	made	of	words (this	must	be	learned).
– High	overfitting	risk,	you	will	need	a	lot	of	examples	for	this	easy	task.

Bag	of	Words	Representation	
• Bag	of	words represents	sentences/documents	by	word	counts:

• Bag	of	words	loses	a	ton	of	information/meaning:
– But	it	easily	solves	language	identification	problem

The	International	Conference	on	Machine	Learning (ICML)	is	the	
leading	international	academic	conference in	machine	learning

ICML International Conference Machine Learning Leading Academic

1 2 2 2 2 1 1

Universal	Representation	vs.	Bag	of	Words

• Why	is	bag	of	words	better	than	“string	of	characters”	here?

– It	needs	less	data	because	it	captures	invariances for	the	task:
• Most	features	give	strong	indication	of	one	language	or	the	other.
• It	doesn’t	matter	where the	French	words	appear.

– It	overfits less	because	it	throws	away	irrelevant	information.
• Exact	sequence	of	words	isn’t	particularly	relevant	here.

Text	Example	2:	Word	Sense	Disambiguation
• Consider	the	following	two	sentences:
– “The	cat	ran	after	the	mouse.”
– “Move	the	mouse	cursor	to	the	File	menu.”

• Word	sense	disambiguation	(WSD):	classify	“meaning”	of	a	word:
– A	surprisingly	difficult	task.

• You	can	do	ok	with	bag	of	words,	but	it	will	have	problems:
– “Her	mouse clicked	on	one	cat video	after	another.”	
– “We	saw	the	mouse run	out	from	behind	the	computer.”
– “The	mouse was	gray.”	(ambiguous	without	more	context)

Bigrams	and	Trigrams
• A	bigram is	an	ordered	set	of	two	words:
– Like	“computer	mouse” or	“mouse	ran”.

• A	trigram is	an	ordered	set	of	three	words:
– Like	“cat	and	mouse”	or	“clicked	mouse	on”.

• These	give	more	context/meaning	than	bag	of	words:
– Includes	neighbouring	words	as	well	as	order	of	words.
– Trigrams	are	widely-used	for	various	language	tasks.

• General	case	is	called	n-gram.
– Unfortunately,	coupon	collecting	becomes	a	problem	with	larger	‘n’.

Avoiding	Underflow
• During	the	prediction,	the	probability	can	underflow:

• Standard	fix	is	to	(equivalently)	maximize	the	logarithm	of	the	probability:

Handling	Data	Sparsity
• Do	we	need	to	store	the	full	bag	of	words	0/1	variables?
– No:	only	need	list	of	non-zero	features for	each	e-mail.

– Math/model	doesn’t	change,	but	more	efficient	storage.

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

1 1 0 0 0 1 …

Non-Zeroes

{1,2,5,…}

{5,6,…}

{2,3,4,…}

{1,2,6,…}

Less-Naïve	Bayes
• Given	features	{x1,x2,x3,…,xd},	naïve	Bayes	approximates	p(y|x)	as:

• The	assumption	is	very	strong,	and	there	are	“less	naïve”	versions:
– Assume	independence	of	all	variables	except	up	to	‘k’	largest	‘j’	where	j	<	i.

• E.g.,	naïve	Bayes	has	k=0	and	with	k=2	we	would	have:

• Fewer	independence	assumptions	so	more	flexible,	but	hard	to	estimate	for	large	‘k’.	

– Another	practical	variation	is	“tree-augmented”	naïve	Bayes.

Gaussian	Discriminant	Analysis
• Classifiers	based	on	Bayes	rule	are	called	generative	classifier:
– They	often	work	well	when	you	have	tons	of	features.
– But	they	need	to	know	p(xi |	yi),	probability	of	features	given	the	class.

• How	to	“generate”	features,	based	on	the	class	label.

• To	fit	generative	models,	usually	make	BIG	assumptions:
– Naïve	Bayes (NB)	for	discrete	xi:

• Assume	that	each	variables	in	xi is	independent	of	the	others	in	xi given	yi.

– Gaussian	discriminant	analysis (GDA)	for	continuous	xi.
• Assume	that	p(xi |	yi)	follows	a	multivariate	normal	distribution.
• If	all	classes	have	same	covariance,	it’s	called	“linear	discriminant	analysis”.

Computing	p(xi)	under	naïve	Bayes
• Generative	models	don’t	need	p(xi)	to	make	decisions.
• However,	it’s	easy	to	calculate	under	the	naïve	Bayes	assumption:

Precision-Recall	Curve
• Consider	the	rule	p(yi =	‘spam’	|	xi)	>	t,	for	threshold	‘t’.
• Precision-recall	(PR)	curve	plots	precision	vs.	recall	as	‘t’	varies.

http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf 61

More	on	Unbalanced	Classes
• With	unbalanced	classes,	there	are	many	alternatives	to	accuracy	
as	a	measure	of	performance:
– Two	common	ones	are	the	Jaccard coefficient	and	the	F-score.
– Jaccard measure:	TP/(TP	+	FP	+	FN).

• Some	machine	learning	models	don’t	work	well	with	unbalanced	
data.	Some	common	heuristics	to	improve	performance	are:
– Under-sample	the	majority	class	(only	take	5%	of	the	spam	messages).

• https://www.jair.org/media/953/live-953-2037-jair.pdf
– Re-weight	the	examples	in	the	accuracy	measure	(multiply	training	error	of	
getting	non-spam	messages	wrong	by	10).

– Some	notes	on	this	issue	are	here.
62

ROC	Curve
• Receiver	operating	characteristic	(ROC)	curve:
– Plot	true	positive	rate	(recall)	vs.	false	positive	rate	FP/(FP+TN).

(negative	examples	classified	as	positive)

– Diagonal	is	random,	perfect	classifier	would	be	in	upper	left.
– Sometimes	papers	report	area	under	curve	(AUC).

• Reflects	performance	for	different	possible	thresholds	on	the	probability.
http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf

63

