CPSC 340:
Machine Learning and Data Mining

Ensemble Methods

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.

Admin

* Add/drop deadline is today.
— You should know by the end of today (tomorrow?) if you’re in the course.
— As of last night, 20 people left on the waitlist.
* Assignment 1:
— Due tonight.
— Late submissions not accepted (so commit/push often!).
* Assignment 2:
— Coming soon.

— Specify your partnerships in advance.

Last Time: E-mail Spam Filtering

. . ° ’ » Jannie Keenan ualberta You are owed $24,718.11
 Want a build a system that filters spam e-mails:
y p] » Abby valberta USB Drives with your Logo
Rosemarie Page Re: New request created with ID: ##62
Shawna Bulger RE: New request created with ID: ##63
Gaay ualberta Cooperation

* We formulated as supervised learning:
— (y, = 1) if e-mail i’ is spam, (y, = 0) if e-mail is not spam.
— (x; = 1) if word/phrase ‘j’ is in e-mail ‘¥, (x; = 0) if it is not.

| $ | Hi| CPSC | 340 | Vicodin | Offer | ..

1 1 0 0 1 0o .. =)

0 0 O 0 1 1 N
—)

0 1 1 1 0 0

Last Time: Naive Bayes

* We considered spam filtering methods based on naive Bayes:

P(y.l - 'IS')omn“ | xI~> s f)()(l , \/i - I’Sf“'“'\>/)(y,‘ - “S/)aw\“)
Plx;)

 Makes conditional independence assumption to make learning practical:

PC}V{/") \/i(&&jir\)CPSC BL{()IS}qu) //\\j ()(;\e”a lfloam)P(VicoJir\ Ig'/qm)'o(ffS(gL/D/fFQM)
N o e e
HARD sy €asy easy
* Predict “spam” if p(y, = “spam” | x) > p(y, = “not spam” | x).
— We don’t need p(x;) to test this.

Decision Trees vs. Naive Bayes vs. KNN

@(70.5’)

77 plmilk Isick) plegg Jsiclc) pUlactsc schlp sick)

(m.“\ "06 963 D\ 'mC]mee 0 P? is CIUbﬁ 1'0
(milk = 07 eqq - 2 larfase = 0 sicl) <o fre«lwf sick.

Application: Body-Part Recognition

* Microsoft Kinect:
— Real-time recognition of 31 body parts from laser depth data.

* How could we write a program to do this?

Supervised Learning Step

* ALL steps are important, but we’ll focus on the learning step.

Do we have any classifiers that are accurate and run in real time?

— Decision trees and naive Bayes are fast, but often not very accurate.
— KNN is often accurate, but not very fast.

* Deployed system uses an ensemble method called random forests.

Ensemble Methods

 Ensemble methods are classifiers that have classifiers as input.

— Also called “meta-learning”.

* They have the best names:
— Averaging.
— Boosting.
— Bootstrapping.
— Bagging.
— Cascading.
— Random Forests.
— Stacking.

 Ensemble methods often have higher accuracy than input classifiers.

Ensemble Methods

e Remember the fundamental trade-off:

1. E,.,,: How small you can make the training error.
VS.

2. E.porox: HOW well training error approximates the test error.

e Goal of ensemble methods is that meta-classifier:
— Does much better on one of these than individual classifiers.
— Doesn’t do too much worse on the other.

* This suggests two types of ensemble methods:
1. Boosting: improves training error of classifiers with high E

train®

2. Averaging: improves approximation error of classifiers with high E, ...

Averaging

* Consider a set of classifiers that make these predictions:

— Classifier 1: “spam”.

— Classifier 2: “spam”.

— Classifier 3: “spam”.

— Classifier 4: “not spam”.
— Classifier 5: “spam”.

— Classifier 6: “not spam”.
— Classifier 7: “spam”.

— Classifier 8: “spam”.

— Classifier 9: “spam”.

— Classifier 10: “spam”.

* If all of these are 80% accurate, what should we predict?

Averaging

* |Input to averaging is the predictions of a set of models:
— Decision trees make one prediction.
— Naive Bayes makes another prediction.
— KNN makes another prediction.

* Simple model averaging:

— Take the mode of the predictions (or average if probabilistic).

/ i

ﬁ AB(ASI.OY‘ ‘f-fef —_—) /y\o"/' gfmm \
)(l) Naive ng/d —) /! Sf)oqw\‘ — 5 ’/slaﬁml
\k’nearoﬁ Y\ﬂl'() Lbouwrs ——) //5100""\\ "/

Averaging

* Input to averaging is the predictions of a set of models:

. . del
— Decision trees make one prediction. h”;"y‘ / :;JI’J n;oJoIZ rjfw lat,/
N " am 5 pGon
— Naive Bayes makes another prediction. v Sprm Sprm ;'{’m\ o= 3/’:,,,,,
— KNN makes another prediction. noF spam "”’,’r”"’ pen /| >pre
* Stacking: ' o]

— Fit another classifier that uses the predictions as features. ‘
Train(«l wilh n/,oclf]_f

! " red(Tions 05 Fpa?lu/z-.
fecion ne ——3 b s e Al el
/‘7 / \ |

Naive @“/’5 —— "spam o decision Tree #2 —3 'spam

X
\k’nearf’ﬂt r\e'»()lpﬁowff — /'sfmm‘\ /

12

Averaging

Averaging often performs better than individual models:
— Averaging typically used by Kaggle winners.
— E.g., Netflix S1M user-rating competition winner was stacked classifier.

Why does this work?
Consider classifiers that tend to overfit (like deep decision trees):

— If they all overfit in exactly the same way, averaging does nothing.

But if they make independent errors:
— Probability of error of average can be lower than individual classifiers.
— Less attention to specific overfitting of each classifier.

Why does averaging work?

* Consider the models A, B, C applied to training examples 1,2,3.
* The models make different errors, so averaging improves accuracy.

A B C Averaged model

1 X @OxX-0
9 X

2 UXu--4
3 X XUu--9

14

Random Forests

 Random forests average a set of deep decision trees.

— Tend to be one of the best “out of the box” classifiers.
e Often close to the best performance of any method on the first run.

— And predictions are very fast.

* Do deep decision trees make independent errors?

— No: with the same training data you’ll get the same decision tree.

* Two key ingredients in random forests:

— Bootstrapping.
— Random trees.

15

Random Forest Ingredient 1: Boostrap

e Bootstrap sample of a list of ‘n” objects:
— A set of ‘n’ objects chosen independently with replacement.

-ror (N ['n

\’): ra/\c‘(l-"\) H’P‘C/‘/q ram‘om nwmé{r 'F/OW\ 2/)2)...)n§
Xl)oo-[,frqr[.)):’) = XLJ) j # Use '/h{’ ran doan Samf/f

— Gives new dataset of ‘n’ objects, with some duplicated and some missing.
* Approximately 63% of original objects will be included for large ‘n’.

— Very common in statistics to estimate sensitivity of statistic to data.
* Bagging: using bootstrap samples for ensemble learning.
— Generate several bootstrap samples of the objects (x,y.).

— Fit a classifier to each bootstrap sample.
— At test time, average the predictions.

Decibiw\ "}fe-c Wl” mq/fc

di Herent solits,

16

Random Forest Ingredient 2: Random Trees

* For each split in a random tree model:
— Randomly sample a small number of possible features.
— Only consider these random features when searching for the optimal rule.

ROIV\AOM "'er I ﬁam«/om Tre(2
- SO‘W‘W (”\[”/.) Gran j(sv @ ‘SGM/',;' (e?77 ,qc fnjf)

17

Random Forest Ingredient 2: Random Trees

* For each split in a random tree model:
— Randomly sample a small number of possible features.
— Only consider these random features when searching for the optimal rule.

ROIV\AOM "'er I: ﬂam«/om Tre(2
‘Saw\iﬂ’e (ml’/\’jorqnﬂfﬂ @ ‘S‘va’e (¢?77 lqcfnsc) @

/
Sa ,48 (lﬁcl\ﬁ('{)9)u}f’r\>
Sam‘alt ({ﬂ)“> m"”>

AN

Random Forest Ingredient 2: Random Trees

For each split in a random tree model:

— Randomly sample a small number of possible features.

— Only consider these random features when searching for the optimal rule.

Splits will tend to use different features in different trees.

— They will still overfit, but hopefully make *independent™* errors.
So the average tends to have a much lower test error.
Empirically, random forests are one of the “best” classifiers.
Fernandez-Delgado et al. [2014]:

— Compared 179 classifiers on 121 datasets.
— Random forests are most likely to be the best classifier.

19

Random Forests

e Random forests are one of the best ‘out of the box’ classifiers.

* Fit deep decision trees to random bootstrap samples of data, base
splits on random subsets of the features, and classify using mode.

g dom
JERIIE AP

ya JOM
’[ro\'mimy

=[] Dg
0

Random Forests

e Random forests are one of the best ‘out of the box’ classifiers.

* Fit deep decision trees to random bootstrap samples of data, base
splits on random subsets of the features, and classify using mode.

21

End of Part 1: Key Concepts

* Fundamental ideas:
— Training vs. test error (memorization vs. learning).
— |ID assumption (examples come independently from same distribution).
— Golden rule of ML (test set should not influence training).
— Fundamental trade-off (between training error vs. approximation error).
— Validation sets and cross-validation (can approximate test error)
— Optimization bias (we can overfit the training set and the validation set).
— Decision theory (we should consider costs of predictions).
— Parametric vs. non-parametric (whether model size depends on ‘n’).
— No free lunch theorem (there is no “best” model).

End of Part 1: Key Concepts

* We saw 3 ways of “learning”:

— Searching for rules.
* Decision trees (greedy recursive splitting using decision stumps).

— Counting frequencies.

* Naive Bayes (probabilistic classifier based on conditional independence).
— Measuring distances.
» K-nearest neigbbours (non-parametric classifier with universal consistency).
 We saw 2 generic ways of improving performance:
— Encouraging invariances with data augmentation.

— Ensemble methods (combine predictions of several models).
 Random forests (averaging plus randomization to reduce overfitting).

Summary

Ensemble methods take classifiers as inputs.

or E without increasing the other much.

* Try to reduce either E, ... approx

Averaging:
* Improves predictions of multiple classifiers if errors are independent.
Random forests:

* Averaging of deep randomized decision trees.
* One of the best “out of the box” classifiers.

Next time:

e We start unsupervised learning.

Some Ingredients of Kinect

1. Collect hundreds of thousands of labeled images (motion capture).
— Variety of pose, age, shape, clothing, and crop.
2. Build a simulator that fills space of images by making even more images.

"’ S NN R I AR b
’F A X "y PRTYY

Extract features of each location, that are cheap enough for real-time
calculation (depth differences between pixel and pixels nearby.)

4. Treat classifying body part of a pixel as a supervised learning problem.
5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

25

£ .

"-

real (test)

synthetic (train & test)

Why does Bootstrapping select approximately 63%?

* Probability of an arbitrary x. being selected in a bootstrap sample:

P(Selac’:{c‘ ‘ﬁ least once in 'V\‘ friwk}
- ‘“’ F(i’\6+ Se /acfel in A of n' ‘/r(nk)

= | = (pluat selected in one frial)’ (triah are indep endeat)
= - (I-') (pob = 75 for Chuosin

aV\)/ of ne n-l {ﬁ\—a/ 5...,4/7)
v - e

~ 063

((l~'/n)“-’rc~' s n’“’700>

Why can Averaging Work?

e Consider having ‘3’ binary classifiers, that are each independently
right with probability 0.80:
— P(all 3 right) =0.83=0.512.
— P(2 rights, 1 wrong) = 3*0.8%(1-0.8) = 0.384.
— P(1 right, 2 wrongs) = 3*(1-0.8)20.8 = 0.096.
— P(all 3 wrong) = (1-0.8)3 = 0.008.

* So ensemble is right with probability 0.896 (which is 0.512+0.384).

— Note that it’s important that classifiers are at least somewhat
independent, have probability of being right > 0.5, and that the
probabilities aren’t too different (otherwise, you may be better off just
picking the best one).

Bonus Slide: Why Random Forests Work

Consider ‘k” independent classifiers, whose errors have a variance of o2.
If the errors are IID, the variance of the average is o%/k.

— So the more classifiers you average, the more you decrease error variance.
(And the more the training error approximates the test error.)

Generalization to case where classifiers are not independent is:

co + (=c) 6
k

— Where ‘¢’ is the correlation.
So the less correlation you have the closer you get to independent case.

Randomization in random forests decreases correlation between trees.

— See also “Sensitivity of Independence Assumptions”.

Boosting: Key ldeas

* |Input to boosting is classifier that:
— |s simple enough that it doesn’t overfit much.
— Can obtain >50% weighted training accuracy.

* Example: decision stumps or low-depth decision trees.

Boosting: Key ldeas

* Basic steps:
1. Fit a classifier on the training data.
2. Give a higher weight to examples that the classifier got wrong.

3. Fit a classifier on the weighted training data.
4. Go back to 2.
* Final prediction: weighted vote of individual classifier predictions.

* Boosted decision trees are very fast/accurate classifiers.

— “AdaBoost”: classic boosting method.
— “XGBoost”: recent method that has been winning Kaggle competitions.

How these concepts often show up in practice

 Here is a recent e-mail related to many ideas we’ve recently covered:

— “However, the performance did not improve while the model goes deeper and with
augmentation. The best result | got on validation set was 80% with LeNet-5 and NO
augmentation (LeNet-5 with augmentation | got 79.15%), and later 16 and 50 layer
structures both got 70%~75% accuracy.

In addition, there was a software that can use mathematical equations to extract
numerical information for me, so | trained the same dataset with nearly 100 features on
random forest with 500 trees. The accuracy was 90% on validation set.

| really don't understand that how could deep learning perform worse as the number of
hidden layers increases, in addition to that | have changed from VGG to ResNet, which
are theoretically trained differently. Moreover, why deep learning algorithm cannot
surpass machine learning algorithm?”

* Above there is data augmentation, validation error, effect of the fundamental
trade-off, the no free lunch theorem, and the effectiveness of random forests.

Bonus Slide: Bayesian Model Averaging

* Recall the key observation regarding ensemble methods:

— If models overfit in “different” ways, averaging gives better performance.

* But should all models get equal weight?

— E.g., decision trees of different depths, when lower depths have low
training error.

— E.g., a random forest where one tree does very well (on validation error)
and others do horribly.

— In science, research may be fraudulent or not based on evidence.

* |n these cases, naive averaging may do worse.

Bonus Slide: Bayesian Model Averaging

* Suppose we have a set of ‘m’ probabilistic binary classifiers w;.
* |If each one gets equal weight, then we predict using:

f >” — F(V }\4/ J/> M/J(\/A,[(MZ))(J)—% 7 o @ 4(7/{\4)(0(//)\"/;/14))(/{)

/zs; e
* Bayesian model averaging treats model w;" as a random variable:" T
[v.) = = _
F Y % f dO(y)WJ[%> (a/ 1WJ)XJ> W [x))vj? IW/)y) /w>

* So we should weight by probability that w; is the correct model:
— Equal weights assume all models are equally probable.

Bonus Slide: Bayesian Model Averaging

* Can get better weights by conditioning on training set:

(F(mﬁ’x>y>c<d>(\/le))(> X)vr /w >(>V(

o

* The ‘likelihood’ p(y | w;, X) makes sense:
— We should give more weight to models that predict ‘v’ well.
— Note that hidden denominator penalizes complex models.

* The ‘prior’ p(w;) is our ‘belief’ that w; is the correct model.
* This is how rules of probability say we should weigh models.

— The ‘correct” way to predict given what we know.
— But it makes some people unhappy because it is subjective.

