CPSC 340:
Machine Learning and Data Mining

Clustering: k-means and DBSCAN

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.



Admin

* Assignment 2 is out
— Due Friday (a week from today)



Application: Classifying Cancer Types

* “l collected gene expression data for 1000 different types of cancer
cells, can you tell me the different classes of cancer?”

 We are not given the class labels y, but want meaningful labels.

* An example of unsupervised learning.



Unsupervised Learning

e Supervised learning:

— We have features x; and class labels y..
— Write a program that produces y; from x.

* Unsupervised learning:
— We only have x; values, but no explicit target labels.
— You want to do “something” with them.

 Some unsupervised learning tasks:
— Outlier detection: Is this a ‘normal’ x.?
— Similarity search: Which examples look like this x.?
— Association rules: Which x! occur together?
— Latent-factors: What ‘parts’ are the x, made from?
— Data visualization: What does the high-dimensional X look like?
— Ranking: Which are the most important x;?
— Clustering: What types of x; are there?



Clustering

* Clustering:
— Input: set of objects described by features x..
— Output: an assignment of objects to ‘groups’.

* Unlike classification, we are not given the ‘groups’.

— Algorithm must discover groups.

* Example of groups we might discover in e-mail spam:
— ‘Lucky winner’ group.
— ‘Weight loss’ group.
— ‘Nigerian prince’ group.
— ‘Russian bride’ group.
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Clustering Example

Input: data matrix ‘X’ \
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Data Clustering

* General goal of clustering algorithms:
— Objects in the same group should be ‘similar’.
— Objects in different groups should be ‘different’.

e But the ‘best’ clustering is hard to define:
— We don’t have a test error.

— Generally, there is no ‘best” method in unsupervised learning.
* So there are lots of methods: we’ll focus on important/representative ones.

 Why cluster?
— You could want to know what the groups are.
— You could want a ‘prototype’ example for each group.
— You could want to find the group for a new example x.
— You could want to find objects related to a new example x.



Other Clustering Applications

NASA: what types of stars are there?
Biology: are there sub-species?
Documents: what kinds of articles are there on Wikipedia?

| can sell 3 flavours of my pasta sauce — what are the 3 types that
customers would like?



K-Means

 Most popular clustering method is k-means.
* Input:

— The number of clusters ‘k” (hyperparameter).

— Initial guess of the center (the “mean”) of each cluster.
* Algorithm:

1. Assign each x; to its closest mean.

2. Update the means based on the cluster assignments.
3. Repeat steps 1-2 until convergence.



Jupyter notebok demo (part 1)



K-Means Issues

Guaranteed to converge when using Euclidean distance.
Given a new test object: assign it to the nearest mean to cluster it.

Assumes you know number of clusters ‘k’.
— Lots of heuristics to pick ‘k’, none satisfying:

* https://en.wikipedia.org/wiki/Determining_the number_of clusters_in_a data_set

Each object is assigned to one (and only one) cluster:
— No possibility for overlapping clusters or leaving objects unassigned.

It may converge to sub-optimal solution...
— Classic approach to dealing with sensitivity to initialization: random restarts.
* Try several different random starting points, choose the “best”.

— See bonus slides for a more clever approach called k-means++.
* This is what scikit-learn’s KMeans does by default.



What is K-Means Doing?

* We can interpret K-Means steps as trying to minimize an objective:

— Total sum of squared distances from object x; to their centers wy:
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— Minimize ‘f’ in terms of the J, (update cluster assignments).
— Minimize ‘f’ in terms of the w_ (update means).
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Cost of K-means

* Bottleneck is calculating distance from each x; to each mean w.:
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Cost of K-means

Bottleneck is calculating dlstance from each x; to each mean w._:
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— Each time we do this costs O(d).
We need to compute distance from ‘n’ objects to ‘k’ clusters.

Total cost of assigning objects to clusters is O(ndk).

— Fast if k is not too large.
Updating means is cheaper: O(nd). Oect in chster
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Vector Quantization

K-means originally comes from signal processing.
Designed for vector quantization:

— Replace objects with the mean of their cluster (“prototype”).

Example:
— Facebook places: 1 location summarizes many.
— What sizes of clothing should | make?

This is on assignment 2, see also bonus slides.



Shape of K-Means Clusters

 K-means partitions the space based on the “closest mean”:
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* Observe that the clusters are convex regions.
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Convex Sets

* Asetis convex if line between two points in the set stays in the set.

Not Convex
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Shape of K-Means Clusters
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Motivation for Density-Based Clustering

* Density-based clustering:
— Clusters are defined by “dense” regions.
— Objects in non-dense regions don’t get clustered.

* Not trying to “partition” the space.

e Clusters can be non-convex

* |t's a non-parametric clustering method:
— No fixed number of clusters ‘k’.
— Clusters can become more complicated with more data.



Jupyter notebook demo (part 2)



Density-Based Clustering

* Density-based clustering algorithm (DBSCAN) has two hyperparameters:

— Epsilon (€): distance we use to decide if another point is a “neighbour”.
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Density-Based Clustering

* Density-based clustering algorithm (DBSCAN) has two hyperparameters:
— Epsilon (€): distance we use to decide if another point is a “neighbour”.
— MinNeighbours: number of neighbours needed to say a region is “dense”.

* If you have at least minNeighbours “neighbours”, you are called a “core” point.
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Density-Based Clustering
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Density-Based Clustering
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Density-Based Clustering
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Density-Based Clustering
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Density-Based Clustering Pseudo-Code

* For each example x::
— If x; is already assigned to a cluster, do nothing.
— Test whether x is a ‘core’ point (> minNeighbours examples within ‘€’).

* If x, is not core point, do nothing (this could be an outlier).
* If x, is a core point, “expand” cluster.

 “Expand” cluster function:
— Assign all x; within distance ‘€’ of core point x; to cluster.
— For each newly-assigned neighbour x; that is a core point, “expand” cluster.



Density-Based Clustering Issues

Some points are not assigned to a cluster.

— Good or bad, depending on the application. fyinls ol ,,AMO/V/.\

Ambiguity of “non-core” (boundary) points: u/ befwetn Clustess

Sensitive to the choice of € and minNeighbours.

— Otherwise, not sensitive to initialization (except for boundary points).

If you get a new example, finding cluster is expensive.

— Need to compute distances to training points.

In high-dimensions, need a lot of points to ‘fill’ the space.



Ensemble Clustering

g question stop following 2 RVTSUIS

Multiple random runs of K means

| was wondering how running K Means (original version, not K means ++ ) several times with random initializations can help us make an accurate model. K Means
outputs the class labels of all the samples. We definitely cant use mode of all the labels it got in different runs because class labels from different runs dont make
any sense when compared. We somehow have to see what points are coming in the same cluster in a lot of runs..| am not sure, how do we do it?

* We can consider ensemble methods for clustering.

— “Consensus clustering”

* |t's a good/important idea:
— Bootstrapping is widely-used.
— “Do clusters change if the data was slightly different?”

e But we need to be careful about how we combine models.



Ensemble Clustering

* E.g., run k-means 20 times and then cluster using the mode of each y..
 Normally, averaging across models doing different things is good.
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e But this is a bad ensemble method: worse than k-means on its own.



Label Switching Problem

* This doesn’t work because of “label switching” problem:
— The cluster labels y. are meaningless.
— We could get same clustering with permuted labels:
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— All y. become equally likely as number of initializations increases.



Addressing Label Switching Problem

* Ensembles can’t depend on labe

I(l

meaning”:

— Don’t ask “is point x; in red square cluster?”, which is meaningless.
|

— Ask “is point x; in the same cluster as x;?”, which is meaningful.
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— Bonus slides give an example method (“UBClustering”).



Summary

Unsupervised learning: fitting data without explicit labels.
Clustering: finding ‘groups’ of related objects.

K-means: simple iterative clustering strategy.

— Fast but sensitive to initialization.

— Partitions space into convex sets.

Density-based clustering:

— “Expand” and “merge” dense regions of points to find clusters.
— Not sensitive to initialization or outliers.

— Useful for finding non-convex connected clusters.

Ensemble clustering: combines multiple clusterings.

— Can work well but need to account for label switching.



Vector Quantization
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Vector Quantization: Image Colors

* Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 1350] = N.
— Can apply k-means to find set of prototype colours.

Original: Run k-means with K-means predictions:
(24-bits/pixel) 26 clusters: (6-bits/pixel)
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Vector Quantization: Image Colors

* Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 1350] = N.
— Can apply k-means to find set of prototype colours.

Original: Run k-means with ~ K-means predictions:
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Vector Quantization: Image Colors

* Usual RGB representation of a pixel’s color: three 8-bit numbers.
— For example, [241 1350] = N.
— Can apply k-means to find set of prototype colours.

Original: Run k-means with K-means predictions:
(24-bits/pixel) 26 clusters: (1-bit/pixel)
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Clustering of Epstein-Barr Virus

Expression
Profile
GROUP B-P-L  # Genes Genes of Interest

1 / 48  CCND2,CDC25C, CDKS,
E2F7, OAS3, XRCC4

AURKA/B, BRCA2, BUB1,
CCNA2, CCNB1/2, CCNET,
CD38, CDC2, CDC25A,
2 / 232 cDC45L, CENPA, DNMTT,
FEN1, HIST1H3A, IFI44L,
IFIT1, IFITM1, MKI67, NEIL3,
PLK1, RFC3, TOP2A

ASPM, BLMH, BRCAT1,
CCNEZ2, CDC8, CENP (F/K),
CLSPN, E2F2, EXO1,
11 FANCA, KIF2C, MCM
(2,3,4,7,10), MYB, ORCIL,
POLE2, POLQ, SMC (2/4)

35 FOS, EGR1

ACTN1, AICDA, ATF3,
BCL2L10, EBI3, ICAM1,
144  IL10, MSC(ABF1), OPTN,
PLA1A, PLD1, RHOC,
TRAF1, VCAM1

BACH1, BCL6, BCOR,
146 CASP8, CXCR4, EBF1,
ELK3, IL6, JUND, SPIB

BCL11A, CIITA, FCRL1/2,
106 FOXP1, FYN, JAK1,
SWAP70

~
)

25 BACH2, BANK1, FCRL3,
NFATC2, NOTCH2, TGFBR2

33 BCL2, CCR7, CD80, CFLAR,
NFKB2, STAT3, TNIP1

~
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What is K-Means Doing?

* How are are k-means step decreasing this objective?

N 2
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* If we just write as function of a particular ¥, we get:
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— The “constant” includes all other terms, and doesn’t affect location of min.
— We can minimize in terms of J, by setting it to the ‘c” with w_ closest to x..



What is K-Means Doing?

How are are k-means step decreasing this objective?
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K-Medians Clustering

With other distances k-means may not converge.

— But we can make it converge by changing the updates so that they are
minimizing an objective function.

n
E.g., we can use the L1-norm objective: 7 HWF— y,-/f,

Minimizing the L1-norm objective gives the ‘k-medians’ algorithm:

— Assign points to clusters by finding “mean” with smallest L1-norm
distance.
— Update ‘means’ as median value (dimension-wise) of each cluster.
* This minimizes the L1-norm distance to all the points in the cluster.

This approach is more robust to outliers. 5

/L K-mews wil ,oﬁ o uster here



What is the “L1-norm and median” connection?

* Point that minimizes the sum of squared L2-norms to all points:

— Is given by the mean (just take derivative and set to 0):

( 4
W= h ,i Xi

[
* Point that minimizes the sum of L1-norms to all all points:

— Is given by the median (derivative of absolute value is +1 if positive and -1 if
negative, so any point with half of points larger and half of points smaller is a
solution).



K-Medoids Clustering

A disadvantage of k-means in some applications:

— The means might not be valid data points.

— May be important for vector quantiziation.

E.g., consider bag of words features like [0,0,1,1,0].
— We have words 3 and 4 in the document.

A mean from k-means might look like [0.1 0.3 0.8 0.2 0.3].

— What does it mean to have 0.3 of word 2 in a document?

Alternative to k-means is k-medoids:
— Same algorithm as k-means, except the means must be data points.

— Update the means by finding example in cluster minimizing squared L2-
norm distance to all points in the cluster.



K-Means Initialization

e K-means is fast but sensitive to initialization.

* Classic approach to initialization: random restarts.
— Run to convergence using different random initializations.
— Choose the one that minimizes average squared distance of data to means.

* Newer approach: k-means++
— Random initialization that prefers means that are far apart.
— Yields provable bounds on expected approximation ratio.



K-Means++

e Steps of k-means++:
1. Select initial mean w, as a random x.
2. Compute distance d.. of each object x, to each mean w..

A:L m — “X.‘Wc ”.2

3. For each object ‘i’ set d, to the distance to the cIosest mean.
Al = V‘Wolh %Aicz

4. Choose next mean by sampling an example ‘i’ proportional to (d.)2.
2

Pi X d,-o‘ —y fi:pAi Con be
5. Keep returning to step 2 until we have k-means. z 2 olf done in

i -

o 0(n)
"f/o[:a/o[/i /}/ IL;,?‘ we

Choose X as next mpan

* Expected approximation ratio is O(log(k)).
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K-Means++
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K-Means++
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K-Means++

Sample mean proportional
to distances squared.
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K-Means++
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K-Means++

Sample mean proportional
to minimum distances squared

% o ° ;
@ se @ o0
L * % ® o g00 %%g.°
o TR ALY = R
e ®
‘. é‘.\‘ 3.‘91.. o
o 9g%e .‘,
.
®* o
L .,. L
. o
ALY
.C.‘.e‘s)...\‘.s [
° * 2%
- o oo’ o X oA
oo'.%?%*‘ * o | o
g%&.’.‘.ﬁ-,‘. %
RA T AT
%/Ok'.-"b..) - (]
o L otBute%y
- o 9 gs\(@ ).
® * % o
1 1 1 1 1 | |
-20 -15 -10 -5 0 10 15 20



25

20

15

10

-10

-15

K-Means++

Weight examples by squared

distance to mean.
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K-Means++

) Sample mean proportional
to distances squared.
(Now hit chosen target k=4.)
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K-Means++

Start k-means: assign objects
to the closest mean.
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K-Means++

Update the mean
of each cluster.
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K-Means++

Update the mean
of each cluster.
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In this case: just 2 iterations!



Discussion of K-Means++

Recall the objective function k-means tries to minimize:

‘F(V\/ (-3 = é )\X,""W | }/32

O(l)

(7\' M LYY a”
afSH)M /\‘3

The initialization of ‘W’ and ‘c’ given by k-means++ satisfies:

EL¥ ‘—3\3 = 0( loy(r)

F(w?, L#) " .
petfle wer A Nt e ol clusteliny acc ordivy
r G B0 S“MK’ fo dojoctive.

Get good clustering with high probability by re-running.
However, there is no guarantee that c” is a good clustering.



Uniform Sampling

e Standard approach to generating a random number from {1,2,...,n}:
1. Generate a uniform random number ‘U’ in the interval [0,1].
2. Return the largest index ‘i’ such that u <i/n.

* Conceptually, this o!ivlides ipte/rval [0,1] into ‘n” equal-size pieces:
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* This assumes p;=1/n for all ‘i". L
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Non-Uniform Sampling

Standard approach to generating a random number for general p..
1. Generate a uniform random number ‘U’ in the interval [0,1].
2. Return the largest index ‘i’ such thatu< 2 Pi
J:l

Conceptually, this divides interval [0,1] into non-equal-size pieces:

WL -
T } 2 0
F\(" ‘ PL f\d( r
TR

Can sample from a generic discrete probability distribution in O(n).
If you need to generate ‘m’ samples:

— Cost is O(n + m log (n)) with binary search and storing cumulative sums.



How many iterations does k-means take?

Each update of the ‘)" or ‘w_” does not increase the objective f’.
And there are k" possible assignments of the y. to ‘k’ clusters.

So within k" iterations you cannot improve the objective by
changing y,, and the algorithm stops.

Tighter-but-more-complicated “smoothed” analysis:
— https://arxiv.org/pdf/0904.1113.pdf
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John Snow and Cholera Epidemic

* John Snow’s 1854 spatial histogram of deaths from cholera:
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* Found cluster of cholera deaths around a particular water pump.
— Went against airborne theory, but pump later found to be contaminated.
— “Father” of epidemiology.
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Other Potential Applications

here are high crime regions of a city?

here should taxis patrol?
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Why are k-means clusters convex?

* K-means clusters are formed by the intersection of haIf—spaces
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Why are k-means clusters convex?

* K-means clusters are formed by the intersection of haIf—spaces
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Why are k-means clusters convex?

Which regiond are pwl in geer (lustecl
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Why are k-means clusters convex?

Which regiond are pwl in geer (lustecl
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Why are k-means clusters convex?

W)\ic‘\ P{c)iw‘j arg Pvd 4 \3@'\ dm5+€?
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Why are k-means clusters convex?

W)\ic‘\ P{c)iw‘j arg Pvd 4 9@'\ dm5+€?

Blar vs _gre<n decispn
4
dedines A)H%/M"
h a/{'cf«ces.

Green over blue half-space
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Why are k-means clusters convex?

W)\ic‘\ P{c)iw‘j arg Pvd 4 \3@'\ dv‘y}e?
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Why are k-means clusters convex?
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Why are k-means clusters convex?

e Half-spaces are convex sets.
* |ntersection of convex sets is a convex set.
* So intersection of half-spaces is convex.

Half-space

Intersectiol




Why are k-means clusters convex?

* Formal proof that “cluster 1” is convex (so all cluster are convex):
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Voronoi Diagrams

 The k-means partition can be visualized as a Voronoi diagram:

* Can be a useful visualization of “nearest available” problems.
— E.g., nearest tube station in London.

http://datagenetics.com/blog/may12017/index.html



UBClustering Algorithm

* Let’s define a new ensemble clustering method: UBClustering.
1. Run k-means with ‘m’ different random initializations.
2. For each objectiand j:

— Count the number of times x; and x; are in the same cluster.
— Define p(i,j) = count(x; in same cluster as x;)/m.

3. Putx;and x; in the same cluster if p(i,j) > 0.5.

* Like DBSCAN merge clusters in step 3 if i or j are already assignhed.
— You can implement this with a DBSCAN code (just changes “distance”).
— Each x; has an x; in its cluster with p(i,j) > 0.5.
— Some points are not assigned to any cluster.



UBClustering Algorithm
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Density-Based Clustering (Example)

e Each “core” point defines a cluster:
— Consisting of “core” point and all its “neighbours”.

* Merge clusters if “core” points are “neighbours” of each other.



Density-Based Clustering (Example)

e Each “core” point defines a cluster:
— Consisting of “core” point and all its “neighbours”.

* Merge clusters if “core” points are “neighbours” of each other.
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Density-Based Clustering (Example)

e Each “core” point defines a cluster:
— Consisting of “core” point and all its “neighbours”.

* Merge clusters if “core” points are “neighbours” of each other.
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Density-Based Clustering (Example)

e Each “core” point defines a cluster:
— Consisting of “core” point and all its “neighbours”.

* Merge clusters if “core” points are “neighbours” of each other.

.g'. \_%Néw Jest if a Y\Cw{/ aJJta' Fom‘ '

\

o) (0/\c fo/V\



Density-Based Clustering (Example)

e Each “core” point defines a cluster:
— Consisting of “core” point and all its “neighbours”.

* Merge clusters if “core” points are “neighbours” of each other.
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Density-Based Clustering (Example)

e Each “core” point defines a cluster:
— Consisting of “core” point and all its “neighbours”.

* Merge clusters if “core” points are “neighbours” of each other.
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Density-Based Clustering (Example)

e Each “core” point defines a cluster:
— Consisting of “core” point and all its “neighbours”.

* Merge clusters if “core” points are “neighbours” of each other.
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Density-Based Clustering (Example)

e Each “core” point defines a cluster:
— Consisting of “core” point and all its “neighbours”.

* Merge clusters if “core” points are “neighbours” of each other.
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Density-Based Clustering (Example)

e Each “core” point defines a cluster:
— Consisting of “core” point and all its “neighbours”.

* Merge clusters if “core” points are “neighbours” of each other.
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Density-Based Clustering (Example)

e Each “core” point defines a cluster:
— Consisting of “core” point and all its “neighbours”.

* Merge clusters if “core” points are “neighbours” of each other.
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Density-Based Clustering (Example)

e Each “core” point defines a cluster:
— Consisting of “core” point and all its “neighbours”.

* Merge clusters if “core” points are “neighbours” of each other.
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Density-Based Clustering (Example)

e Each “core” point defines a cluster:
— Consisting of “core” point and all its “neighbours”.

* Merge clusters if “core” points are “neighbours” of each other.



Density-Based Clustering in Action

Interactive demo




