
CPSC	340:
Machine	Learning	and	Data	Mining

Clustering:	k-means	and	DBSCAN

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart.



Admin
• Assignment	2 is	out
– Due	Friday	(a	week	from	today)



Application:	Classifying	Cancer	Types
• “I	collected	gene	expression	data	for	1000	different	types	of	cancer	
cells,	can	you	tell	me	the	different	classes	of	cancer?”

• We	are	not	given	the	class	labels	y,	but	want	meaningful	labels.
• An	example	of	unsupervised	learning.



Unsupervised	Learning
• Supervised	learning:	
– We	have	features	xi and	class	labels	yi.
– Write	a	program	that	produces	yi from	xi.

• Unsupervised	learning:
– We	only	have	xi values,	but	no	explicit	target	labels.
– You	want	to	do	“something”	with	them.

• Some	unsupervised	learning	tasks:
– Outlier	detection:	Is	this	a	‘normal’	xi?
– Similarity	search:	Which	examples	look	like	this	xi?
– Association	rules:	Which	xj occur	together?
– Latent-factors:	What	‘parts’	are	the	xi made	from?
– Data	visualization:	What	does	the	high-dimensional	X	look	like?
– Ranking:	Which	are	the	most	important	xi?
– Clustering:	What	types	of	xi are	there?



Clustering
• Clustering:
– Input:	set	of	objects	described	by	features	xi.
– Output:	an	assignment	of	objects	to	‘groups’.

• Unlike	classification,	we	are	not	given	the	‘groups’.
– Algorithm	must	discover	groups.

• Example	of	groups	we	might	discover	in	e-mail	spam:
– ‘Lucky	winner’	group.
– ‘Weight	loss’	group.
– ‘Nigerian	prince’	group.
– ‘Russian	bride’	group.



Clustering	Example

Input:	data	matrix	‘X’.



Clustering	Example

Input:	data	matrix	‘X’.
Output:	clusters	𝑦".



Data	Clustering
• General	goal	of	clustering	algorithms:
– Objects	in	the	same	group	should	be	‘similar’.
– Objects	in	different	groups	should	be	‘different’.

• But	the	‘best’	clustering	is	hard	to	define:
– We	don’t	have	a	test	error.
– Generally,	there	is	no	‘best’	method	in	unsupervised	learning.

• So	there	are	lots	of	methods:	we’ll	focus	on	important/representative	ones.

• Why	cluster?
– You	could	want	to	know	what	the	groups	are.
– You	could	want	a ‘prototype’	example	for	each	group.
– You	could	want	to	find	the	group	for	a	new	example	xi.
– You	could	want	to	find	objects	related	to	a	new	example	xi.



Other	Clustering	Applications
• NASA:	what	types	of	stars	are	there?
• Biology:	are	there	sub-species?
• Documents:	what	kinds	of	articles	are	there	on	Wikipedia?
• I	can	sell	3	flavours of	my	pasta	sauce	– what	are	the	3	types	that	
customers	would	like?



K-Means
• Most	popular	clustering	method	is	k-means.
• Input:
– The	number	of	clusters	‘k’	(hyperparameter).
– Initial	guess	of	the	center	(the	“mean”)	of	each	cluster.

• Algorithm:
1. Assign	each	xi to	its	closest	mean.
2. Update	the	means based	on	the	cluster	assignments.
3. Repeat	steps	1-2	until	convergence.



Jupyter notebok demo	(part	1)



K-Means	Issues
• Guaranteed	to	converge	when	using	Euclidean	distance.
• Given	a	new	test	object:	assign	it	to	the	nearest	mean	to	cluster	it.
• Assumes	you	know	number	of	clusters	‘k’.
– Lots	of	heuristics	to	pick	‘k’,	none	satisfying:

• https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set

• Each	object	is	assigned	to	one	(and	only	one)	cluster:
– No	possibility	for	overlapping	clusters	or	leaving	objects	unassigned.

• It	may	converge	to	sub-optimal	solution…
– Classic	approach	to	dealing	with	sensitivity	to	initialization:	random	restarts.

• Try	several	different	random	starting	points,	choose	the	“best”.
– See	bonus	slides	for	a	more	clever	approach	called	k-means++.

• This	is	what	scikit-learn’s KMeans does	by	default.



What	is	K-Means	Doing?
• We	can	interpret	K-Means	steps	as	trying	to	minimize	an	objective:
– Total	sum	of squared	distances	from	object	xi to	their	centers	𝑤$"%:

• The	k-means	steps:
– Minimize	‘f’	in	terms	of	the	𝑦"i (update	cluster	assignments).
– Minimize	‘f’	in	terms	of	the	wc (update	means).

• Convergence	follows	because:
– Each	step	does	not	increase	the	objective.
– There	are	a	finite	number	of	assignments	to	k	clusters.



Cost	of	K-means
• Bottleneck	is	calculating	distance	from	each	xi to	each	mean	wc:



Cost	of	K-means
• Bottleneck	is	calculating	distance	from	each	xi to	each	mean	wc:

– Each	time	we	do	this	costs	O(d).

• We	need	to	compute	distance	from	‘n’	objects	to	‘k’	clusters.
• Total	cost	of	assigning	objects	to	clusters	is	O(ndk).
– Fast	if	k	is	not	too	large.

• Updating	means	is	cheaper:	O(nd).



Vector	Quantization
• K-means	originally	comes	from	signal	processing.
• Designed	for	vector	quantization:
– Replace	objects	with	the	mean	of	their	cluster (“prototype”).

• Example:	
– Facebook	places:	1	location	summarizes	many.
– What	sizes	of	clothing	should	I	make?

• This	is	on	assignment	2,	see	also	bonus	slides.



Shape	of	K-Means	Clusters
• K-means	partitions	the	space	based	on	the	“closest	mean”:

• Observe	that	the	clusters	are	convex	regions.
Animation



Convex	Sets
• A	set	is	convex if	line	between	two	points	in	the	set	stays	in	the	set.

Convex Convex
Not	Convex



Shape	of	K-Means	Clusters



Motivation	for	Density-Based	Clustering
• Density-based	clustering:
– Clusters	are	defined	by	“dense”	regions.
– Objects	in	non-dense	regions	don’t	get	clustered.

• Not	trying	to	“partition”	the	space.

• Clusters	can	be	non-convex

• It’s	a	non-parametric	clustering	method:
– No	fixed	number	of	clusters	‘k’.
– Clusters	can	become	more	complicated	with	more	data.



Jupyter notebook	demo	(part	2)



Density-Based	Clustering
• Density-based	clustering algorithm	(DBSCAN)	has	two	hyperparameters:
– Epsilon	(ε):	distance	we	use	to	decide	if	another	point	is	a	“neighbour”.



Density-Based	Clustering
• Density-based	clustering algorithm	(DBSCAN)	has	two	hyperparameters:
– Epsilon	(ε):	distance	we	use	to	decide	if	another	point	is	a	“neighbour”.



Density-Based	Clustering
• Density-based	clustering algorithm	(DBSCAN)	has	two	hyperparameters:
– Epsilon	(ε):	distance	we	use	to	decide	if	another	point	is	a	“neighbour”.
– MinNeighbours:	number	of	neighbours	needed	to	say	a	region	is	“dense”.

• If	you	have	at	least	minNeighbours “neighbours”,	you	are	called	a	“core”	point.



Density-Based	Clustering



Density-Based	Clustering



Density-Based	Clustering



Density-Based	Clustering



• For	each	example	xi:
– If	xi is	already	assigned	to	a	cluster,	do	nothing.
– Test	whether	xi is	a	‘core’	point	(≥	minNeighbours examples	within	‘ε’).

• If	xi is	not	core	point,	do	nothing	(this	could	be	an	outlier).
• If	xi is	a	core	point,	“expand”	cluster.

• “Expand”	cluster	function:
– Assign	all	xj within	distance	‘ε’ of	core	point	xi to	cluster.
– For	each	newly-assigned	neighbour	xj that	is	a	core	point,	“expand”	cluster.

Density-Based	Clustering	Pseudo-Code



Density-Based	Clustering	Issues
• Some	points	are	not	assigned	to	a	cluster.
– Good	or	bad,	depending	on	the	application.

• Ambiguity	of	“non-core”	(boundary)	points:						

• Sensitive to	the	choice	of	ε	and	minNeighbours.
– Otherwise,	not	sensitive	to	initialization (except	for	boundary	points).

• If	you	get	a	new	example,	finding	cluster	is	expensive.
– Need	to	compute	distances	to	training	points.

• In	high-dimensions,	need	a	lot	of	points	to	‘fill’	the	space.



Ensemble	Clustering

• We	can	consider	ensemble	methods	for	clustering.
– “Consensus	clustering”

• It’s	a	good/important	idea:
– Bootstrapping is	widely-used.
– “Do	clusters	change	if	the	data	was	slightly	different?”

• But	we	need	to	be	careful	about	how	we	combine	models.



Ensemble	Clustering
• E.g.,	run	k-means	20	times	and	then	cluster	using	the	mode	of	each	𝑦"i.
• Normally,	averaging	across	models	doing	different	things	is	good.

• But	this	is	a	bad	ensemble	method:	worse	than	k-means	on	its	own.



Label	Switching	Problem
• This	doesn’t	work	because	of	“label	switching”	problem:
– The	cluster	labels	𝑦"i are	meaningless.
– We	could	get	same	clustering	with	permuted	labels:

– All	𝑦"i become	equally	likely	as	number	of	initializations	increases.



Addressing	Label	Switching	Problem
• Ensembles	can’t	depend	on	label	“meaning”:
– Don’t	ask	“is	point	xi in	red	square	cluster?”,	which	is	meaningless.
– Ask	“is	point	xi in	the	same	cluster	as	xj?”,	which	is	meaningful.

– Bonus	slides	give	an	example	method	(“UBClustering”).



Summary
• Unsupervised	learning:	fitting	data	without	explicit	labels.
• Clustering:	finding	‘groups’	of	related	objects.
• K-means:	simple	iterative	clustering	strategy.
– Fast	but	sensitive	to	initialization.
– Partitions	space	into	convex	sets.

• Density-based	clustering:	
– “Expand”	and	“merge”	dense	regions	of	points	to	find	clusters.
– Not	sensitive	to	initialization	or	outliers.
– Useful	for	finding	non-convex	connected	clusters.

• Ensemble	clustering:	combines	multiple	clusterings.
– Can	work	well	but	need	to	account	for	label	switching.



Vector	Quantization



Vector	Quantization:	Image	Colors
• Usual	RGB	representation	of	a	pixel’s	color:	three	8-bit	numbers.
– For	example,	[241 13 50]	=					.
– Can	apply	k-means	to	find	set	of	prototype	colours.

Original:	
(24-bits/pixel)

K-means	predictions:
(6-bits/pixel)

Run	k-means	with
26 clusters:



Vector	Quantization:	Image	Colors
• Usual	RGB	representation	of	a	pixel’s	color:	three	8-bit	numbers.
– For	example,	[241 13 50]	=					.
– Can	apply	k-means	to	find	set	of	prototype	colours.

Original:	
(24-bits/pixel)

K-means	predictions:	
(3-bits/pixel)

Run	k-means	with
26 clusters:



Vector	Quantization:	Image	Colors
• Usual	RGB	representation	of	a	pixel’s	color:	three	8-bit	numbers.
– For	example,	[241 13 50]	=					.
– Can	apply	k-means	to	find	set	of	prototype	colours.

Original:	
(24-bits/pixel)

K-means	predictions:	
(2-bits/pixel)

Run	k-means	with
26 clusters:



Vector	Quantization:	Image	Colors
• Usual	RGB	representation	of	a	pixel’s	color:	three	8-bit	numbers.
– For	example,	[241 13 50]	=					.
– Can	apply	k-means	to	find	set	of	prototype	colours.

Original:	
(24-bits/pixel)

K-means	predictions:	
(1-bit/pixel)

Run	k-means	with
26 clusters:



Clustering	of	Epstein-Barr	Virus

http://jvi.asm.org/content/86/20/11096.abstract



What	is	K-Means	Doing?
• How	are	are k-means	step	decreasing	this	objective?

• If	we	just	write	as	function	of	a	particular	𝑦"i,	we	get:

– The	“constant”	includes	all	other	terms,	and	doesn’t	affect	location	of	min.
– We	can	minimize	in	terms	of	𝑦"i by	setting	it	to	the	‘c’	with	wc closest	to	xi.



What	is	K-Means	Doing?
• How	are	are k-means	step	decreasing	this	objective?

• If	we	just	write	as	function	of	a	particular	wcj we	get:

• Derivative	is	given	by:
• Setting	equal	to	0	and	solving	for	wcj gives:



K-Medians	Clustering
• With	other	distances	k-means	may	not	converge.
– But	we	can	make	it	converge	by	changing	the	updates	so	that	they	are	
minimizing	an	objective	function.

• E.g.,	we	can	use	the	L1-norm	objective:

• Minimizing	the	L1-norm	objective	gives	the	‘k-medians’	algorithm:
– Assign	points	to	clusters	by	finding	“mean”	with	smallest	L1-norm	
distance.

– Update	‘means’	as	median	value	(dimension-wise)	of	each	cluster.
• This	minimizes	the	L1-norm	distance	to	all	the	points	in	the	cluster.

• This	approach	is	more	robust	to	outliers.



What	is	the	“L1-norm	and	median”	connection?
• Point	that	minimizes	the	sum	of	squared	L2-norms	to	all	points:

– Is	given	by	the	mean (just	take	derivative	and	set	to	0):

• Point	that	minimizes	the	sum	of	L1-norms	to	all	all points:

– Is	given	by	the	median (derivative	of	absolute	value	is	+1	if	positive	and	-1	if	
negative,	so	any	point	with	half	of	points	larger	and	half	of	points	smaller	is	a	
solution).



K-Medoids Clustering
• A disadvantage	of	k-means	in	some	applications:
– The	means	might	not	be	valid	data	points.
– May	be	important	for	vector	quantiziation.

• E.g.,	consider	bag	of	words	features	like	[0,0,1,1,0].
– We	have	words	3	and	4	in	the	document.

• A	mean	from	k-means	might	look	like	[0.1	0.3	0.8	0.2	0.3].
– What	does	it	mean	to	have	0.3	of	word	2	in	a	document?

• Alternative	to	k-means	is	k-medoids:
– Same	algorithm	as	k-means,	except	the	means	must	be	data	points.
– Update	the	means	by	finding	example	in	cluster	minimizing	squared	L2-
norm	distance	to	all	points	in	the	cluster.



K-Means	Initialization
• K-means	is	fast	but	sensitive	to	initialization.

• Classic	approach	to	initialization:	random	restarts.
– Run	to	convergence	using	different	random	initializations.
– Choose	the	one	that	minimizes	average	squared	distance	of	data	to	means.

• Newer	approach:	k-means++
– Random	initialization	that	prefers	means	that	are	far	apart.
– Yields	provable	bounds on	expected	approximation	ratio.



K-Means++
• Steps	of	k-means++:

1. Select	initial	mean	w1 as	a	random	xi.
2. Compute	distance	dic of	each	object	xi to	each	mean	wc.

3. For	each	object	‘i’	set	di to	the	distance	to	the	closest	mean.

4. Choose	next	mean	by	sampling	an	example	‘i’	proportional	to	(di)2.

5. Keep	returning	to	step	2	until	we	have	k-means.

• Expected	approximation	ratio	is	O(log(k)).



K-Means++



K-Means++

First	mean	is	a	
random	example.



K-Means++

Weight	examples	by	
distance	to	mean	squared.



K-Means++

Sample	mean	proportional
to	distances	squared.



K-Means++

Weight	examples	by	squared
distance	to	nearest	mean.



K-Means++

Sample	mean	proportional
to	minimum	distances	squared.



K-Means++

Weight	examples	by	squared
distance	to	mean.



K-Means++

Sample	mean	proportional
to	distances	squared.

(Now	hit	chosen	target	k=4.)



K-Means++

Start	k-means:	assign	objects	
to	the	closest	mean.



K-Means++

Update	the	mean	
of	each	cluster.



K-Means++

In	this	case:	just	2	iterations!

Update	the	mean	
of	each	cluster.



Discussion	of	K-Means++
• Recall	the	objective	function	k-means	tries	to	minimize:

• The	initialization	of	‘W’	and	‘c’	given	by	k-means++	satisfies:

• Get	good	clustering	with	high	probability	by	re-running.
• However,	there	is	no	guarantee	that	c* is	a	good	clustering.



Uniform	Sampling
• Standard	approach	to	generating	a	random	number	from	{1,2,…,n}:

1. Generate	a	uniform	random	number	‘u’	in	the	interval	[0,1].
2. Return	the	largest	index	‘i’	such	that	u	≤	i/n.

• Conceptually,	this	divides	interval	[0,1]	into	‘n’	equal-size	pieces:

• This	assumes	pi =	1/n	for	all	‘i’.



Non-Uniform	Sampling
• Standard	approach	to	generating	a	random	number	for	general	pi.	

1. Generate	a	uniform	random	number	‘u’	in	the	interval	[0,1].
2. Return	the	largest	index	‘i’	such	that	u	≤	

• Conceptually,	this	divides	interval	[0,1]	into	non-equal-size	pieces:

• Can	sample	from	a	generic	discrete	probability	distribution	in	O(n).
• If	you	need	to	generate	‘m’	samples:
– Cost	is	O(n	+	m	log	(n))	with	binary	search	and	storing	cumulative	sums.



How	many	iterations	does	k-means	take?
• Each	update	of	the	‘𝑦"i’	or	‘wc’	does	not	increase	the	objective	‘f’.
• And	there	are	kn possible	assignments	of	the	𝑦"i to	‘k’	clusters.
• So	within	kn iterations	you	cannot	improve	the	objective	by	
changing	𝑦"i,	and	the	algorithm	stops.

• Tighter-but-more-complicated	“smoothed”	analysis:
– https://arxiv.org/pdf/0904.1113.pdf





John	Snow	and	Cholera	Epidemic
• John	Snow’s	1854	spatial	histogram	of	deaths	from	cholera:

• Found	cluster	of	cholera	deaths	around	a	particular	water	pump.
– Went	against	airborne	theory,	but	pump	later	found	to	be	contaminated.
– “Father”	of	epidemiology.

https://en.wikipedia.org/wiki/John_Snow



Other	Potential	Applications
• Where	are	high	crime	regions	of	a	city?
• Where	should	taxis	patrol?
• Where	does	Iguodala make/miss	shots?
• Which	products	are	similar	to	this	one?
• Which	pictures	are	in	the	same	place?
• Where	can	protein	‘dock’?
• Where	are	people	tweeting?

https://en.wikipedia.org/wiki/Cluster_analysis
https://www.flickr.com/photos/dbarefoot/420194128/
http://letsgowarriors.com/replacing-jarrett-jack/2013/10/04/
http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/



Why	are	k-means	clusters	convex?
• K-means	clusters	are	formed	by	the	intersection of	half-spaces.

Half-space



Why	are	k-means	clusters	convex?
• K-means	clusters	are	formed	by	the	intersection of	half-spaces.

Half-space

Intersection

Half-space



Why	are	k-means	clusters	convex?



Why	are	k-means	clusters	convex?

“Closer	to	red”	half-space

“Closer	to	green”	half-space



Why	are	k-means	clusters	convex?

“Closer	to	red”	half-space

“Closer	to	green”	half-space



Why	are	k-means	clusters	convex?

Blue	over	green half-space

Green	over	blue	half-space



Why	are	k-means	clusters	convex?

Magenta	over	green half-space

Green	over	magenta	half-space



Why	are	k-means	clusters	convex?



Why	are	k-means	clusters	convex?
• Half-spaces	are	convex	sets.
• Intersection	of	convex	sets	is	a	convex	set.
• So	intersection	of	half-spaces	is	convex.

Half-space

Intersection

Half-space



Why	are	k-means	clusters	convex?
• Formal	proof that	“cluster	1”	is	convex	(so	all	cluster	are	convex):



Voronoi Diagrams
• The	k-means	partition	can	be	visualized	as	a	Voronoi diagram:

• Can	be	a	useful	visualization	of	“nearest	available”	problems.
– E.g.,	nearest	tube	station	in	London.

http://datagenetics.com/blog/may12017/index.html



UBClustering Algorithm
• Let’s	define	a	new	ensemble	clustering	method:	UBClustering.
1. Run	k-means	with	‘m’	different	random	initializations.
2. For	each	object	i and	j:
– Count	the	number	of	times	xi and	xj are	in	the	same	cluster.
– Define	p(i,j)	=	count(xi in	same	cluster	as	xj)/m.

3. Put	xi and	xj in	the	same	cluster	if	p(i,j)	>	0.5.
• Like	DBSCAN	merge	clusters	in	step	3	if	i or	j	are	already	assigned.
– You	can	implement	this	with	a	DBSCAN	code (just	changes	“distance”).
– Each	xi has	an	xj in	its	cluster	with	p(i,j)	>	0.5.
– Some	points	are	not	assigned	to	any	cluster.



UBClustering Algorithm



Density-Based	Clustering	(Example)

• Each	“core”	point	defines	a	cluster:
– Consisting	of	“core”	point	and	all	its	“neighbours”.

• Merge	clusters	if	“core”	points	are	“neighbours”	of	each	other.



Density-Based	Clustering	(Example)

• Each	“core”	point	defines	a	cluster:
– Consisting	of	“core”	point	and	all	its	“neighbours”.

• Merge	clusters	if	“core”	points	are	“neighbours”	of	each	other.



Density-Based	Clustering	(Example)

• Each	“core”	point	defines	a	cluster:
– Consisting	of	“core”	point	and	all	its	“neighbours”.

• Merge	clusters	if	“core”	points	are	“neighbours”	of	each	other.



Density-Based	Clustering	(Example)

• Each	“core”	point	defines	a	cluster:
– Consisting	of	“core”	point	and	all	its	“neighbours”.

• Merge	clusters	if	“core”	points	are	“neighbours”	of	each	other.



Density-Based	Clustering	(Example)

• Each	“core”	point	defines	a	cluster:
– Consisting	of	“core”	point	and	all	its	“neighbours”.

• Merge	clusters	if	“core”	points	are	“neighbours”	of	each	other.



Density-Based	Clustering	(Example)

• Each	“core”	point	defines	a	cluster:
– Consisting	of	“core”	point	and	all	its	“neighbours”.

• Merge	clusters	if	“core”	points	are	“neighbours”	of	each	other.



Density-Based	Clustering	(Example)

• Each	“core”	point	defines	a	cluster:
– Consisting	of	“core”	point	and	all	its	“neighbours”.

• Merge	clusters	if	“core”	points	are	“neighbours”	of	each	other.



Density-Based	Clustering	(Example)

• Each	“core”	point	defines	a	cluster:
– Consisting	of	“core”	point	and	all	its	“neighbours”.

• Merge	clusters	if	“core”	points	are	“neighbours”	of	each	other.



Density-Based	Clustering	(Example)

• Each	“core”	point	defines	a	cluster:
– Consisting	of	“core”	point	and	all	its	“neighbours”.

• Merge	clusters	if	“core”	points	are	“neighbours”	of	each	other.



Density-Based	Clustering	(Example)

• Each	“core”	point	defines	a	cluster:
– Consisting	of	“core”	point	and	all	its	“neighbours”.

• Merge	clusters	if	“core”	points	are	“neighbours”	of	each	other.



Density-Based	Clustering	(Example)

• Each	“core”	point	defines	a	cluster:
– Consisting	of	“core”	point	and	all	its	“neighbours”.

• Merge	clusters	if	“core”	points	are	“neighbours”	of	each	other.



Density-Based	Clustering	(Example)

• Each	“core”	point	defines	a	cluster:
– Consisting	of	“core”	point	and	all	its	“neighbours”.

• Merge	clusters	if	“core”	points	are	“neighbours”	of	each	other.



Density-Based	Clustering	in	Action

Interactive	demo


