-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.R
258 lines (224 loc) · 10.8 KB
/
app.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
library(shiny)
library(readr)
library(magrittr)
library(leaflet)
library(dplyr)
library(ggplot2)
library(plotly)
library(lubridate)
library(tigris)
library(DT)
library(readxl)
library(tidyr)
# some new datasets, might be helpful
# when I show the .xlsx dataset, there are something wrong with the date, so I change the xlsx file into .csv file
# zipcode_daily_income <- read_excel("data/zipcode_daily_cases&social-distance&population&income.xlsx")
zipcode_daily_income <- read_csv("data/zipcode_daily_cases&social-distance&population&income.csv")
risk_scores_table <- read_csv("risk_score/daily_predict_4_day_avg_risk_new.csv")
#data cleaning
#get combined table for the three trend plot variables
infect_rate_by_zip <- zipcode_daily_income %>% transmute(value = confirmed_cases/population * 10000, date, ZIP, type = "Infection Rate")
risk_scores <- risk_scores_table %>% separate(`date_start - date_end`, c("date","discard"), sep = ' - ') %>% transmute(value = `cases/population * 10000`, date, ZIP, type = "Risk Score")
mobility_indices <- zipcode_daily_income %>% transmute(ZIP, date, type = "Mobility Index", value = (median_home_dwell_time - median_non_home_dwell_time) * distance_traveled_from_home / 600000)
joined_df <- rbind(infect_rate_by_zip, risk_scores)
trend <- rbind(joined_df, mobility_indices)
#trend <- rbind(trend, risk_scores_0_100)
#convert the date column to date object and arrange by date order
trend$date <- ymd(trend$date)
arrange(trend, date)
#round all values to 3 decimal digits
trend$value <- round(trend$value, digits = 3)
#create result data table
infect_result <- infect_rate_by_zip %>% select(-type) %>% rename(Infection_Rate = value)
risk_result <- risk_scores %>% select(-type) %>% rename(Risk_Score = value)
mobility_result <- mobility_indices %>% select(-type) %>% rename(Mobility_Index = value)
temp <- merge(infect_result, mobility_result, all=TRUE)
result_data_table <- merge(temp, risk_result, all=TRUE)
# char_zips <- zctas(cb = TRUE, starts_with = c("90","91","92"))
# saveRDS(char_zips, "char_zips.rds")
# Our reference
# 1. London map:https://www.doorda.com/covid-19-data-free-download/#1589463968147-d5954274-124c
# 2. SuperZip map:https://shiny.rstudio.com/gallery/superzip-example.html
ui <- fluidPage(
includeCSS("styles.css"),
titlePanel(
h1("COVID-19 Risk Scoring in Los Angeles County")
),
tabsetPanel(
tabPanel("Map by Statistics",
HTML("<button type='button' class='btn-danger' data-toggle='collapse' data-target='#demo'>Selector</button>"),
leafletOutput("map_stat",width = "100%", height = 700),
div(id = "demo", class = "collapse",
absolutePanel(id = "controls", class = "panel panel-default", fixed = TRUE,
draggable = TRUE, top = "170", left = "100",
right = "auto", bottom = "auto",
width = "330", height = "400",
sliderInput(inputId = "dateInput",
label = "Select Date: ",
min = as.Date("2020-03-16","%Y-%m-%d"),
max = as.Date("2020-05-27","%Y-%m-%d"),
value = as.Date("2020-04-29"), timeFormat="%Y-%m-%d",
step = 1,
animate = animationOptions(interval =500)),
selectInput("stat_mode",
"Select Statistics",
c( "Infection Rate","Mobility Index", "Risk Score"),
selected = "Infection Rate"),
selectInput("zip_search",
"Select Zip Location",
unique(risk_scores_table$ZIP),
multiple = F),
h5("Search Result: "),
textOutput("stat_output")
)
)
),
tabPanel("Trend Plot",
sidebarPanel(
h3("Zip Code Selector"),
selectInput("zipID",
"locate at ...",
unique(risk_scores_table$ZIP),
multiple = F),
),
mainPanel(
plotly::plotlyOutput("trend_plot_by_county", height = 800)
)
),
# a new kind of tab to show
tabPanel("Raw Data Table",
# controls to select a data set and spcify the number of observations to view
sidebarPanel(
selectInput("dataset","Choose a dataset:",
choices = c("Data Table Statistics", "Risk Score Prediction")
),
numericInput("obs", "Number of observations to view:", 10)
),
mainPanel(
tableOutput("view")
)
),
tabPanel("Result Data Table",
sidebarPanel(
numericInput("num", "Number of observations to view:", 10),
HTML("<button type='button' class='btn btn-danger' data-toggle='collapse' data-target='#explain'>Statistics Details</button>"),
div(id = "explain", class = "collapse",
h5("Infection Rate: "),
"total confirmed cases /population * 10,000 (number of total confirmed cases per 10,000 population at the zip code level updated daily)",
h5("Risk Score: "),
" LSTM model outcome: prediction of average number of new confirmed cases per 10,000 population in a four days window (starting at the specified date) based on data of new confirmed cases in a six days window preceding the specified date",
h5("Mobility Index: "),
"(median_home_dwell_time - median_non_home_dwell_time) * distance_traveled_from_home / 600,000"
)
),
mainPanel(
tableOutput("result_data")
)
)
)
)
server <- function(input, output) {
options(tigris_use_cache = TRUE)
# new raw_data table
#places_totals2 <- places_totals %>% select(date:new_confirmed_cases)
# Return the requested dataset
datasetInput <- reactive({
switch(input$dataset,
"Data Table Statistics" = zipcode_daily_income,
"Risk Score Prediction" = risk_scores_table
)
})
# Generate a summary of the dataset
output$summary <- renderPrint({
dataset <- datasetInput()
})
# Show the first "n" observations
output$view <- renderTable({
head(datasetInput(), n = input$obs)
})
output$result_data <- renderTable({
head(result_data_table, n = input$num)
})
#trend plot: return trend plot by zipcode entered
output$trend_plot_by_county = renderPlotly({
trend_input <- trend %>% filter(ZIP == input$zipID)
ggplotly(
ggplot2::ggplot(data = trend_input, aes(x=date, y=value, color=type)) +
geom_line() +
geom_smooth(se = FALSE, linetype = "dashed") +
theme_classic()
)
})
#stat map: render map based on date and statstic selected
output$map_stat = renderLeaflet({
char_zips <- readRDS("char_zips.rds")
#specify date and type of stat(i.e. Infection Rate, Mobility Index, Risk Score)
#round the values to integer to faciliate coloring
stat_type <- input$stat_mode
trend_date <- trend %>% filter(date == input$dateInput) %>% select(-date) %>% filter(type == stat_type)
#get domain and palette, and process data based on stat choice
if (stat_type == "Infection Rate"){
trend_date <- trend_date %>% mutate(value_integer = trunc(log1p(value)))
domain_in = c(0:7)
palette_in = "Reds"
} else if (stat_type == "Mobility Index"){
trend_date <- trend_date %>% mutate(value_integer = trunc(value))
domain_in = c(-110:100)
rc1 <- colorRampPalette(colors = c("green", "white"), space = "Lab", bias = 1)(110)
rc2 <- colorRampPalette(colors = c("white", "red"), space = "Lab", bias = 1)(100)
palette_in = c(rc1, rc2)
} else { #Risk Score
trend_date <- trend_date %>% mutate(value_integer = trunc(value))
domain_in = c(-20:7)
rc1 <- colorRampPalette(colors = c("green", "white"), space = "Lab", bias = 1)(20)
rc2 <- colorRampPalette(colors = c("white", "red"), space = "Lab", bias = 1)(7)
palette_in = c(rc1, rc2)
}
char_zips <- geo_join(char_zips,
trend_date,
by_sp = "GEOID10",
by_df = "ZIP",
how = "inner")
pal <- colorNumeric(
palette = palette_in,
domain = domain_in
)
labels <- paste0(
"Zip Code: ",
char_zips$GEOID10, "<br/>",
stat_type,
": ",
char_zips$value) %>%
lapply(htmltools::HTML)
char_zips %>%
leaflet %>%
addProviderTiles("CartoDB.Voyager") %>%
setView(lng = -118.24, lat=34.05, zoom = 10) %>%
addPolygons(fillColor = ~pal(value_integer),
weight = 2,
opacity =0.15,
color = "white",
dashArray = "3",
fillOpacity = 0.5,
highlight = highlightOptions(weight = 2,
color = "#667",
dashArray = "",
fillOpacity = 0.7,
bringToFront = TRUE),label = labels) %>%
addLegend(pal = pal,
#values = ~(min(value_integer):max(value_integer)),
values = ~(value_integer),
opacity = 0.7,
labFormat = labelFormat(
transform = function(x) {if (stat_type == "Infection Rate"){exp(x) + 1} else {x}}
),
title = htmltools::HTML(paste0(stat_type, "<br> \n by Zip Code")),
position = "bottomleft")
})
#stat map: display stat info based on date, stat type and county selection
output$stat_output = renderText({
trend_filtered <- trend %>% filter(date == input$dateInput, type == input$stat_mode, ZIP == input$zip_search) %>% select(value)
paste("On date ", input$dateInput," the ", input$stat_mode, " at ZIP ", input$zip_search, " is ", trend_filtered)
})
}
shinyApp(ui = ui, server = server)