forked from GuoxiaWang/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
validation_util.py
274 lines (236 loc) · 9.37 KB
/
validation_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import math
import numpy as np
import sklearn
from sklearn.model_selection import KFold
from sklearn.decomposition import PCA
from scipy import interpolate
class LFold:
def __init__(self, n_splits=2, shuffle=False):
self.n_splits = n_splits
if self.n_splits > 1:
self.k_fold = KFold(n_splits=n_splits, shuffle=shuffle)
def split(self, indices):
if self.n_splits > 1:
return self.k_fold.split(indices)
else:
return [(indices, indices)]
def distance(embeddings1, embeddings2, distance_metric=0):
if distance_metric == 0:
# Euclidian distance
diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff), 1)
elif distance_metric == 1:
# Distance based on cosine similarity
dot = np.sum(np.multiply(embeddings1, embeddings2), axis=1)
norm = np.linalg.norm(embeddings1, axis=1) * np.linalg.norm(
embeddings2, axis=1
)
similarity = dot / norm
dist = np.arccos(similarity) / math.pi
else:
raise "Undefined distance metric %d" % distance_metric
return dist
def calculate_roc(
thresholds, embeddings1, embeddings2, actual_issame, nrof_folds=10, pca=0
):
assert embeddings1.shape[0] == embeddings2.shape[0]
assert embeddings1.shape[1] == embeddings2.shape[1]
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
nrof_thresholds = len(thresholds)
k_fold = LFold(n_splits=nrof_folds, shuffle=False)
tprs = np.zeros((nrof_folds, nrof_thresholds))
fprs = np.zeros((nrof_folds, nrof_thresholds))
accuracy = np.zeros((nrof_folds))
indices = np.arange(nrof_pairs)
# print('pca', pca)
if pca == 0:
diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff), 1)
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
# print('train_set', train_set)
# print('test_set', test_set)
if pca > 0:
print("doing pca on", fold_idx)
embed1_train = embeddings1[train_set]
embed2_train = embeddings2[train_set]
_embed_train = np.concatenate((embed1_train, embed2_train), axis=0)
# print(_embed_train.shape)
pca_model = PCA(n_components=pca)
pca_model.fit(_embed_train)
embed1 = pca_model.transform(embeddings1)
embed2 = pca_model.transform(embeddings2)
embed1 = sklearn.preprocessing.normalize(embed1)
embed2 = sklearn.preprocessing.normalize(embed2)
# print(embed1.shape, embed2.shape)
diff = np.subtract(embed1, embed2)
dist = np.sum(np.square(diff), 1)
# Find the best threshold for the fold
acc_train = np.zeros((nrof_thresholds))
for threshold_idx, threshold in enumerate(thresholds):
_, _, acc_train[threshold_idx] = calculate_accuracy(
threshold, dist[train_set], actual_issame[train_set]
)
best_threshold_index = np.argmax(acc_train)
# print('threshold', thresholds[best_threshold_index])
for threshold_idx, threshold in enumerate(thresholds):
(
tprs[fold_idx, threshold_idx],
fprs[fold_idx, threshold_idx],
_,
) = calculate_accuracy(
threshold, dist[test_set], actual_issame[test_set]
)
_, _, accuracy[fold_idx] = calculate_accuracy(
thresholds[best_threshold_index],
dist[test_set],
actual_issame[test_set],
)
tpr = np.mean(tprs, 0)
fpr = np.mean(fprs, 0)
return tpr, fpr, accuracy
def calculate_accuracy(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
tp = np.sum(np.logical_and(predict_issame, actual_issame))
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
tn = np.sum(
np.logical_and(
np.logical_not(predict_issame), np.logical_not(actual_issame)
)
)
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))
tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn)
fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn)
acc = float(tp + tn) / dist.size
return tpr, fpr, acc
def calculate_val(
thresholds,
embeddings1,
embeddings2,
actual_issame,
far_target,
nrof_folds=10,
):
assert embeddings1.shape[0] == embeddings2.shape[0]
assert embeddings1.shape[1] == embeddings2.shape[1]
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
nrof_thresholds = len(thresholds)
k_fold = LFold(n_splits=nrof_folds, shuffle=False)
val = np.zeros(nrof_folds)
far = np.zeros(nrof_folds)
diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff), 1)
indices = np.arange(nrof_pairs)
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
# Find the threshold that gives FAR = far_target
far_train = np.zeros(nrof_thresholds)
for threshold_idx, threshold in enumerate(thresholds):
_, far_train[threshold_idx] = calculate_val_far(
threshold, dist[train_set], actual_issame[train_set]
)
if np.max(far_train) >= far_target:
f = interpolate.interp1d(far_train, thresholds, kind="slinear")
threshold = f(far_target)
else:
threshold = 0.0
val[fold_idx], far[fold_idx] = calculate_val_far(
threshold, dist[test_set], actual_issame[test_set]
)
val_mean = np.mean(val)
far_mean = np.mean(far)
val_std = np.std(val)
return val_mean, val_std, far_mean
def calculate_val_far(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
false_accept = np.sum(
np.logical_and(predict_issame, np.logical_not(actual_issame))
)
n_same = np.sum(actual_issame)
n_diff = np.sum(np.logical_not(actual_issame))
# print(true_accept, false_accept)
# print("n_same, n_diff:",n_same, n_diff)
val = float(true_accept) / float(n_same)
far = float(false_accept) / float(n_diff)
return val, far
def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0):
# Calculate metrics
thresholds = np.arange(0, 4, 0.01)
embeddings1 = embeddings[0::2]
embeddings2 = embeddings[1::2]
tpr, fpr, accuracy = calculate_roc(
thresholds,
embeddings1,
embeddings2,
np.asarray(actual_issame),
nrof_folds=nrof_folds,
pca=pca,
)
thresholds = np.arange(0, 4, 0.001)
val, val_std, far = calculate_val(
thresholds,
embeddings1,
embeddings2,
np.asarray(actual_issame),
1e-3,
nrof_folds=nrof_folds,
)
return tpr, fpr, accuracy, val, val_std, far
def cal_validation_metrics(
embeddings_list, issame_list, nrof_folds=10, no_flip=False
):
print("Embedding shape: {}".format(embeddings_list[0].shape))
if no_flip:
embeddings = embeddings_list[0]
print("Reading {} embeddings.".format(len(embeddings)))
embeddings = sklearn.preprocessing.normalize(embeddings)
acc1 = 0.0
std1 = 0.0
_, _, accuracy, val, val_std, far = evaluate(
embeddings, issame_list, nrof_folds=10
)
acc1, std1 = np.mean(accuracy), np.std(accuracy)
print(
"Validation rate: %2.5f+-%2.5f @ FAR=%2.5f" % (val, val_std, far)
)
else:
# xnorm
_xnorm = 0.0
_xnorm_cnt = 0
for embed in embeddings_list:
for i in range(embed.shape[0]):
_em = embed[i]
_norm = np.linalg.norm(_em)
# print(_em.shape, _norm)
_xnorm += _norm
_xnorm_cnt += 1
_xnorm /= _xnorm_cnt
# Evaluate on embeddings
embeddings = embeddings_list[0] + embeddings_list[1]
embeddings = sklearn.preprocessing.normalize(embeddings)
_, _, accuracy, val, val_std, far = evaluate(
embeddings, issame_list, nrof_folds=nrof_folds
)
acc2, std2 = np.mean(accuracy), np.std(accuracy)
print("XNorm: %f" % (_xnorm))
print("Accuracy-Flip: %1.5f+-%1.5f" % (acc2, std2))