-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataset.py
393 lines (311 loc) · 12.4 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
from io import BytesIO
import lmdb
from PIL import Image
from torch.utils.data import Dataset
import random
import os
import matplotlib.pyplot as plt
import numpy as np
from op.utils_train import listdir
import cv2
class MultiResolutionDataset(Dataset):
def __init__(self, path, transform, resolution=256):
self.env = lmdb.open(
path,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False,
)
if not self.env:
raise IOError('Cannot open lmdb dataset', path)
with self.env.begin(write=False) as txn:
self.length = int(txn.get('length'.encode('utf-8')).decode('utf-8'))
self.resolution = resolution
self.transform = transform
def __len__(self):
return self.length
def __getitem__(self, index):
with self.env.begin(write=False) as txn:
key = f'{self.resolution}-{str(index).zfill(5)}'.encode('utf-8')
img_bytes = txn.get(key)
buffer = BytesIO(img_bytes)
img = Image.open(buffer)
img = self.transform(img)
return img
class MultiResolution_mask_Dataset(Dataset):
def __init__(self, path, transform, resolution=256):
self.env = lmdb.open(
path,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False,
)
if not self.env:
raise IOError('Cannot open lmdb dataset', path)
with self.env.begin(write=False) as txn:
self.length = int(txn.get('length'.encode('utf-8')).decode('utf-8'))
self.resolution = resolution
self.transform = transform
def __len__(self):
return self.length
def __getitem__(self, index):
with self.env.begin(write=False) as txn:
key = f'{self.resolution}-{str(index).zfill(5)}'.encode('utf-8')
img_bytes = txn.get(key)
key = f'{self.resolution}-{str(index).zfill(5)}_mask'.encode('utf-8')
mask_img_bytes = txn.get(key)
buffer = BytesIO(img_bytes)
img = Image.open(buffer)
buffer = BytesIO(mask_img_bytes)
mask_img = Image.open(buffer)
flip = random.randint(0, 1)
if flip == 1:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
mask_img = mask_img.transpose(Image.FLIP_LEFT_RIGHT)
mask_img = self.transform(mask_img)
img = self.transform(img)
return img,mask_img
class ImageFolder(Dataset):
"""docstring for ArtDataset"""
def __init__(self, root, transform=None, exe_root=None, im_size=(256,256)):
"""
:param root: img root
:param transform: img transform
:param exe_root: exemplar path, could be None
:param im_size: (h,w)
"""
super( ImageFolder, self).__init__()
self.root = root
self.frame = self._parse_frame(self.root)
self.transform = transform
self.im_size = im_size
self.exe_root = exe_root
self.exe_frame = []
if self.exe_root is not None:
self.exe_frame = self._parse_frame(self.exe_root)
def _parse_frame(self,root):
frame = []
img_names = os.listdir(root)
img_names.sort()
for i in range(len(img_names)):
image_path = os.path.join(root, img_names[i])
if image_path[-4:] == '.JPG' or image_path[-4:] == '.jpg' or image_path[-4:] == '.png' or image_path[-5:] == '.jpeg':
frame.append(image_path)
return frame
def resize_fun(self, img):
w, h = img.size
if h != self.im_size[0] or w != self.im_size[1]:
ratio = max(1.0 * self.im_size[0] / h, 1.0 * self.im_size[1] / w)
new_w = int(ratio * w)
new_h = int(ratio * h)
img_scaled = img.resize((new_w, new_h), Image.Resampling.LANCZOS)
h_rang = new_h - self.im_size[0]
w_rang = new_w - self.im_size[1]
h_idx = 0
w_idx = 0
if h_rang > 0: h_idx = random.randint(0, h_rang)
if w_rang > 0: w_idx = random.randint(0, w_rang)
img = img_scaled.crop((w_idx, h_idx, int(w_idx + self.im_size[1]), int(h_idx + self.im_size[0])))
return img
def __len__(self):
return len(self.frame)
def __getitem__(self, idx):
file = self.frame[idx]
img = Image.open(file).convert('RGB')
img = self.resize_fun(img)
if self.transform:
img = self.transform(img)
### exe image
exe_img = img
if len(self.exe_frame) != 0:
exe_file = self.exe_frame[idx]
exe_img = Image.open(exe_file).convert('RGB')
exe_img = self.resize_fun(exe_img)
if self.transform:
exe_img = self.transform(exe_img)
return img,exe_img
def dilate_demo(d_image):
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) # 定义结构元素的形状和大小
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (10, 10)) # 椭圆形
# kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (6, 6)) # 十字形
image = cv2.dilate(d_image, kernel) # 膨胀操作
# plt_show_Image_image(image)
return image
def erode_demo(e_image):
kernel_size = random.randint(3,7)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size,kernel_size)) # 定义结构元素的形状和大小 矩形
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (10, 10)) # 椭圆形
# kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (6, 6)) # 十字形
image = cv2.erode(e_image, kernel) # 腐蚀操作
# plt_show_Image_image(image)
return image
# 腐蚀主要就是调用cv2.erode(img,kernel,iterations),这个函数的参数是
# 第一个参数:img指需要腐蚀的图
# 第二个参数:kernel指腐蚀操作的内核,默认是一个简单的3X3矩阵,我们也可以利用getStructuringElement()函数指明它的形状
# 第三个参数:iterations指的是腐蚀次数,省略是默认为1
class ImageFolder_with_edges(Dataset):
"""
load images and edge maps
"""
def __init__(self, image_root, edge_root,transform=None,im_size=(256,256)):
"""
:param image_root: root for the images
:param edge_root: root for the masks
:param transform:
:param im_size: (h,w)
"""
super(ImageFolder_with_edges, self).__init__()
self.image_root = image_root
self.edge_root = edge_root
self.edge_frame = self._parse_frame(self.edge_root)
self.frame = self._parse_frame(self.image_root)
self.transform = transform
self.im_size = im_size
def _parse_frame(self,root):
img_names = []
listdir(root,img_names)
img_names.sort()
frame = []
for i in range(len(img_names)):
image_path = os.path.join(root, img_names[i])
if image_path[-4:] == '.JPG' or image_path[-4:] == '.jpg' or image_path[-4:] == '.png' or image_path[-5:] == '.jpeg':
frame.append(image_path)
return frame
def __len__(self):
return len(self.frame)
def __getitem__(self, idx):
file = self.frame[idx]
edge_file = self.edge_frame[idx]
img = Image.open(file).convert('RGB')
edge_img = Image.open(edge_file).convert('L')
w,h = img.size
edge_img = edge_img.resize((w,h),Image.NEAREST)
if h != self.im_size[0] or w != self.im_size[1]:
ratio = max(1.0 * self.im_size[0] / h, 1.0 * self.im_size[1] / w)
new_w = int(ratio * w)
new_h = int(ratio * h)
img_scaled = img.resize((new_w,new_h),Image.Resampling.LANCZOS)
edge_img_scaled = edge_img.resize((new_w,new_h),Image.Resampling.LANCZOS)
h_rang = new_h - self.im_size[0]
w_rang = new_w - self.im_size[1]
h_idx = 0
w_idx = 0
if h_rang>0: h_idx = random.randint(0,h_rang)
if w_rang > 0: w_idx = random.randint(0, w_rang)
img = img_scaled.crop((w_idx,h_idx,int(w_idx+self.im_size[1]),int(h_idx+self.im_size[0])))
edge_img = edge_img_scaled.crop((w_idx,h_idx,int(w_idx+self.im_size[1]),int(h_idx+self.im_size[0])))
# RandomHorizontalFlip
flip = random.randint(0, 1)
if flip == 1:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
edge_img = edge_img.transpose(Image.FLIP_LEFT_RIGHT)
edge_img = np.array(edge_img)
if edge_img.ndim == 2:
mask = np.expand_dims(edge_img, axis=0)
else:
mask = edge_img[0:1, :, :]
mask[mask < 128] = 1.0
mask[mask >= 128] = 0
rand_ = random.randint(1,2)
# mask = erode_demo(mask)
if rand_ == 1:
mask = erode_demo(mask)
# elif rand_ == 2:
# pass
# # mask = dilate_demo(mask)
# else:
# pass
# print(np.max(mask))
if self.transform:
img = self.transform(img)
return img,mask
class ImageFolder_with_mask(Dataset):
"""docstring for ArtDataset"""
def __init__(self, root, mask_root,mask_file,transform=None,exe_root=None,im_size=(256,256)):
"""
:param root: root for the images
:param mask_root: root for the masks
:param transform:
:param exe_root: exemplar path, could be None
:param im_size: (h,w)
"""
super(ImageFolder_with_mask, self).__init__()
self.root = root
self.mask_root = mask_root
self.mask_file = mask_file
self._get_mask_list()
self.frame = self._parse_frame(self.root)
self.transform = transform
self.im_size = im_size
self.exe_root = exe_root
self.exe_frame = []
if self.exe_root is not None:
self.exe_frame = self._parse_frame(self.exe_root)
def _get_mask_list(self):
mask_list = []
file = open(self.mask_file)
lines = file.readlines()
for line in lines:
mask_path = os.path.join(self.mask_root,line.strip())
mask_list.append(mask_path)
file.close()
mask_list.sort()
self.mask_list = mask_list
def _parse_frame(self,root):
frame = []
img_names = os.listdir(root)
img_names.sort()
for i in range(len(img_names)):
image_path = os.path.join(root, img_names[i])
if image_path[-4:] == '.JPG' or image_path[-4:] == '.jpg' or image_path[-4:] == '.png' or image_path[-5:] == '.jpeg':
frame.append(image_path)
return frame
def __len__(self):
return len(self.frame)
def resize_fun(self,img):
w,h = img.size
if h != self.im_size[0] or w != self.im_size[1]:
ratio = max(1.0 * self.im_size[0] / h, 1.0 * self.im_size[1] / w)
new_w = int(ratio * w)
new_h = int(ratio * h)
img_scaled = img.resize((new_w,new_h),Image.Resampling.LANCZOS)
h_rang = new_h - self.im_size[0]
w_rang = new_w - self.im_size[1]
h_idx = 0
w_idx = 0
if h_rang>0: h_idx = random.randint(0,h_rang)
if w_rang > 0: w_idx = random.randint(0, w_rang)
img = img_scaled.crop((w_idx,h_idx,int(w_idx+self.im_size[1]),int(h_idx+self.im_size[0])))
return img
def __getitem__(self, idx):
file = self.frame[idx]
img = Image.open(file).convert('RGB')
w,h = img.size
mask_idx = idx% len(self.mask_list)
mask_path = self.mask_list[mask_idx]
mask_img = Image.open(mask_path).convert('P')
mask_img = mask_img.resize((w,h),Image.NEAREST)
# plt.imshow(mask_img)
# plt.show()
mask_img = np.array(mask_img)
if mask_img.ndim == 2:
mask = np.expand_dims(mask_img, axis=0)
else:
mask = mask_img[0:1, :, :]
mask[mask > 0] = 1.0
img = self.resize_fun(img)
if self.transform:
img = self.transform(img)
### exe image
exe_img = img
if len(self.exe_frame) != 0:
exe_file = self.exe_frame[idx]
exe_img = Image.open(exe_file).convert('RGB')
exe_img = self.resize_fun(exe_img)
if self.transform:
exe_img = self.transform(exe_img)
return img,mask,exe_img