-
Notifications
You must be signed in to change notification settings - Fork 0
/
crop_image.py
187 lines (139 loc) · 6.19 KB
/
crop_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import sys
import cv2
import matplotlib.pyplot as plt
import torch
from pathlib import Path
from tqdm import tqdm
import shutil
def load_image(path):
img = cv2.imread(path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def save_image(path, img):
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite(path, img)
def crop_image(model, image, verbose=False):
try:
img = load_image(image)
except:
return None, None
if img is None:
return None, None
pred = model(img)
if len(pred.xyxy) > 0:
xyxy = pred.xyxy[0].cpu().numpy()
body = xyxy[xyxy[:, 5] == 1, :4].astype(int)
if len(body) > 0:
body = [body[:, 0].min(), body[:, 1].min(), body[:, 2].max(), body[:, 3].max()]
body_crop = img[body[1]: body[3], body[0]:body[2], :]
else:
body_crop = img
head = xyxy[xyxy[:, 5] == 0, :4].astype(int)
if len(head) > 0:
head = [head[:, 0].min(), head[:, 1].min(), head[:, 2].max(), head[:, 3].max()]
head_crop = img[head[1]: head[3], head[0]:head[2], :]
else:
head_crop = img
if verbose:
f, axes = plt.subplots(1, 3, figsize=(18, 6))
axes[0].imshow(img)
axes[1].imshow(body_crop)
axes[2].imshow(head_crop)
else:
return body_crop, head_crop
else:
if verbose:
f, axes = plt.subplots(1, 3, figsize=(18, 6))
axes[0].imshow(img)
axes[1].imshow(img)
axes[2].imshow(img)
else:
return img, img
if __name__ == "__main__":
sys.path.append("./yolov5/")
model = torch.hub.load('./yolov5/', 'custom', path='download/yolov5s.pt', source='local')
source_path = Path("./download/data_25")
body_path = Path("./download/data_25_body")
head_path = Path("./download/data_25_head")
for img in tqdm(source_path.glob("*/*.*g")):
body, head = crop_image(model, str(img), False)
if body is None:
continue
body_save_folder = body_path / img.parent.name
body_save_folder.mkdir(exist_ok=True, parents=True)
save_image(body_save_folder / img.name, body)
head_save_folder = head_path / img.parent.name
head_save_folder.mkdir(exist_ok=True, parents=True)
save_image(head_save_folder / img.name, head)
source_path = Path("./download/dev/found/found/")
body_path = Path("./download/dev_body/found/found")
head_path = Path("./download/dev_head/found/found")
for img in tqdm(source_path.glob("*/*.*g")):
body, head = crop_image(model, str(img), False)
if body is None:
continue
body_save_folder = body_path / img.parent.name
body_save_folder.mkdir(exist_ok=True, parents=True)
save_image(body_save_folder / img.name, body)
head_save_folder = head_path / img.parent.name
head_save_folder.mkdir(exist_ok=True, parents=True)
save_image(head_save_folder / img.name, head)
for source_file in tqdm(source_path.glob("*/*.json")):
target_file = body_path / source_file.parent.name / source_file.name
shutil.copy(source_file, target_file)
target_file = head_path / source_file.parent.name / source_file.name
shutil.copy(source_file, target_file)
source_path = Path("./download/dev/found/synthetic_lost")
body_path = Path("./download/dev_body/found/synthetic_lost")
head_path = Path("./download/dev_head/found/synthetic_lost")
for img in tqdm(source_path.glob("*/*.*g")):
body, head = crop_image(model, str(img), False)
if body is None:
continue
body_save_folder = body_path / img.parent.name
body_save_folder.mkdir(exist_ok=True, parents=True)
save_image(body_save_folder / img.name, body)
head_save_folder = head_path / img.parent.name
head_save_folder.mkdir(exist_ok=True, parents=True)
save_image(head_save_folder / img.name, head)
for source_file in tqdm(source_path.glob("*/*.json")):
target_file = body_path / source_file.parent.name / source_file.name
shutil.copy(source_file, target_file)
target_file = head_path / source_file.parent.name / source_file.name
shutil.copy(source_file, target_file)
source_path = Path("./download/dev/lost/lost")
body_path = Path("./download/dev_body/lost/lost")
head_path = Path("./download/dev_head/lost/lost")
for img in tqdm(source_path.glob("*/*.*g")):
body, head = crop_image(model, str(img), False)
if body is None:
continue
body_save_folder = body_path / img.parent.name
body_save_folder.mkdir(exist_ok=True, parents=True)
save_image(body_save_folder / img.name, body)
head_save_folder = head_path / img.parent.name
head_save_folder.mkdir(exist_ok=True, parents=True)
save_image(head_save_folder / img.name, head)
for source_file in tqdm(source_path.glob("*/*.json")):
target_file = body_path / source_file.parent.name / source_file.name
shutil.copy(source_file, target_file)
target_file = head_path / source_file.parent.name / source_file.name
shutil.copy(source_file, target_file)
source_path = Path("./download/dev/lost/synthetic_found")
body_path = Path("./download/dev_body/lost/synthetic_found")
head_path = Path("./download/dev_head/lost/synthetic_found")
for img in tqdm(source_path.glob("*/*.*g")):
body, head = crop_image(model, str(img), False)
if body is None:
continue
body_save_folder = body_path / img.parent.name
body_save_folder.mkdir(exist_ok=True, parents=True)
save_image(body_save_folder / img.name, body)
head_save_folder = head_path / img.parent.name
head_save_folder.mkdir(exist_ok=True, parents=True)
save_image(head_save_folder / img.name, head)
for source_file in tqdm(source_path.glob("*/*.json")):
target_file = body_path / source_file.parent.name / source_file.name
shutil.copy(source_file, target_file)
target_file = head_path / source_file.parent.name / source_file.name
shutil.copy(source_file, target_file)