forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 364
/
model_adapter.cpp
559 lines (512 loc) · 18 KB
/
model_adapter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
#include <cassert>
#include <cstring>
#include <fstream>
#include <regex>
#include <iostream>
#include <iterator>
#include <queue>
#include <string>
#include <math.h>
#include <vector>
#include "model_adapter.h"
#include "ggml.h"
#include "ggml-cpu.h"
#include <chrono>
static auto bench_timer = std::chrono::high_resolution_clock().now();
void timer_start()
{
bench_timer = std::chrono::high_resolution_clock().now();
}
double timer_check()
{
auto endtime = std::chrono::high_resolution_clock().now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(endtime - bench_timer);
double time_taken = duration.count()/1000.0;
return time_taken;
}
void print_vec(std::vector<std::string> &embd)
{
std::cout << "[";
bool first = true;
for (auto i : embd)
{
if (!first)
{
std::cout << ',';
}
first = false;
std::cout << i;
}
std::cout << "]\n";
}
void print_tok_vec(std::vector<int> &embd)
{
std::cout << "[";
bool first = true;
for (auto i : embd)
{
if (!first)
{
std::cout << ',';
}
first = false;
std::cout << i;
}
std::cout << "]\n";
}
void print_tok_vec(std::vector<float> &embd)
{
std::cout << "[";
bool first = true;
int n = 0;
for (auto i : embd)
{
if (!first)
{
std::cout << ',';
}
first = false;
std::cout << i;
if(++n>20)
{
break;
}
}
std::cout << "]\n";
}
//return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt)
FileFormat check_file_format(const std::string & fname, FileFormatExtraMeta * fileformatmeta)
{
std::vector<char> f_buf(1024*1024);
auto fin = std::ifstream(fname, std::ios::binary);
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return FileFormat::BADFORMAT;
}
FileFormat fileformat = FileFormat::BADFORMAT;
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic == 0x67676d6c) { //v1 format ggml, alpaca, old gptj and gpt2 models
fileformat = FileFormat::GGML;
//we need to read more to determine
int32_t vocabsiz = 0;
fin.read((char *) &vocabsiz, sizeof(int32_t));
if(vocabsiz==4096 || vocabsiz==7168) //actually the d_model for mpt
{
fileformat = FileFormat::MPT_1;
}
else if(vocabsiz==50400) //know GPT-J vocab size
{
fileformat = FileFormat::GPTJ_1;
uint32_t temp;
fin.read((char *)&temp, sizeof(temp)); //ctx
fin.read((char *)&temp, sizeof(temp)); //n_embd
fin.read((char *)&temp, sizeof(temp)); //n_head
fin.read((char *)&temp, sizeof(temp)); //n_layer
fin.read((char *)&temp, sizeof(temp)); //n_rot
fin.read((char *)&temp, sizeof(temp)); //f16
const int32_t qntvr = temp / 1000;
temp %= 1000;
if (qntvr != 0)
{
if (qntvr == 1)
{
fileformat = FileFormat::GPTJ_4;
}
else
{
fileformat = FileFormat::GPTJ_5;
}
}
else if (temp != 0 && temp != 1)
{
fileformat = FileFormat::GPTJ_3; //quantized format cannot be legacy type
}
}
else if(vocabsiz==50257 || (vocabsiz>=49152&&vocabsiz<=49157)) //49152-6 is starcoder
{
fileformat = FileFormat::GPT2_1;
uint32_t temp, v1,v2,v3;
fin.read((char *)&v1, sizeof(temp)); //ctx
fin.read((char *)&v2, sizeof(temp)); //n_embd
fin.read((char *)&v3, sizeof(temp)); //n_head
fin.read((char *)&temp, sizeof(temp)); //n_layer
if(vocabsiz==49152 && v1==4096 && v2==2560 && v3==32 && temp==32)
{
//special case, Stablecode Completion Alpha 3B
fileformat = FileFormat::NEOX_6;
}
else
{
fin.read((char *)&temp, sizeof(temp)); //f16
const int32_t qntvr = temp / 1000;
temp %= 1000;
if (qntvr != 0)
{
if (qntvr == 1)
{
fileformat = FileFormat::GPT2_3;
}
else
{
fileformat = FileFormat::GPT2_4;
}
}
else if (temp != 0 && temp != 1)
{
fileformat = FileFormat::GPT2_2; //quantized format cannot be legacy type
}
}
}
else if(vocabsiz < 31998 || vocabsiz > 33000)
{
//anything outside the llama v1 range is assumed to be NeoX
fileformat = FileFormat::NEOX_6;
uint32_t temp,temp2;
fin.read((char *)&temp, sizeof(temp)); //ctx
fin.read((char *)&temp, sizeof(temp)); //n_embd
fin.read((char *)&temp, sizeof(temp)); //n_head
fin.read((char *)&temp, sizeof(temp)); //n_layer
fin.read((char *)&temp, sizeof(temp)); //n_rot
fin.read((char *)&temp, sizeof(temp)); //either par_res or ftype (for older ver)
if(temp!=0 && temp!=1){
//must be ftype, means its an older model. par_res will be undefined
fileformat = FileFormat::NEOX_2;
}
else
{
//it could be a newer model, or an old f16/f32 model
fin.read((char *)&temp2, sizeof(temp2)); //if previous was par_res, this is ftype. else unknown
//if it is new ftype, then it must have these properties: > 1000, low multiple of 1k and small remaineder
bool isNewFtype = (temp2>=1000 && temp2<=9000 && temp2%1000<20);
if(!isNewFtype)
{
fileformat = FileFormat::NEOX_2;
if((temp==0||temp==1)&&(temp2==0||temp2==1))//special case: par_res and ftype are both 1 or 0
{
//its a f16/f32 model in the new format
fileformat = temp==0?FileFormat::NEOX_7:FileFormat::NEOX_6;
}
}
else
{
const int32_t qntvr = temp2 / 1000; //for future use
//then temp was par_res, use_parallel_residual is false in RedPajama
if(qntvr==1)
{
fileformat = (temp==0?FileFormat::NEOX_5:FileFormat::NEOX_4);
}
else
{
fileformat = (temp==0?FileFormat::NEOX_7:FileFormat::NEOX_6);
}
}
}
}
}
else if(magic == 0x67676d66) //v2 format ggmf
{
fileformat = FileFormat::GGHF;
uint32_t temp;
fin.read((char *)&temp, sizeof(temp)); //file version
if(temp==100)
{
fileformat = FileFormat::RWKV_1;
}
else if(temp==101)
{
fileformat = FileFormat::RWKV_2;
}
}
else if(magic == 0x67676a74) //v3 format ggjt
{
fileformat = FileFormat::GGJT_3; //ggjt by default
uint32_t ver, temp, ftype;
fin.read((char *)&ver, sizeof(ver)); //file version
fin.read((char *)&temp, sizeof(temp));//vocab
fin.read((char *)&temp, sizeof(temp)); //embd
fin.read((char *)&temp, sizeof(temp)); //mult
fin.read((char *)&temp, sizeof(temp));//head
fin.read((char *)&temp, sizeof(temp));//layer
fin.read((char *)&temp, sizeof(temp));//rot
fin.read((char *)&ftype, sizeof(ftype));//filetype
if(ver==1)
{
fileformat = FileFormat::GGJT;
}
else if(ver==2)
{
fileformat = FileFormat::GGJT_2;
}
}
else if(magic == 0x46554747)
{
fin.close();
fileformat = FileFormat::GGUF_GENERIC;
struct gguf_init_params ggufparams;
ggufparams.no_alloc = true;
ggufparams.ctx = NULL;
auto ctx = gguf_init_from_file(fname.c_str(), ggufparams);
auto keyidx = gguf_find_key(ctx, "general.architecture");
std::string modelarch = "";
if (keyidx != -1) { modelarch = gguf_get_val_str(ctx, keyidx); }
printf("\nThe reported GGUF Arch is: %s\n",(modelarch==""?"unknown":modelarch.c_str()));
if(modelarch!="" && fileformatmeta!=nullptr)
{
int n_tensors = gguf_get_n_tensors(ctx);
float freq_base_train = 0;
std::string fkey = modelarch+".context_length";
int keyidx = gguf_find_key(ctx, fkey.c_str());
if (keyidx != -1) {
fileformatmeta->n_ctx_train = gguf_get_val_u32(ctx, keyidx);
}
fkey = modelarch+".expert_count";
keyidx = gguf_find_key(ctx, fkey.c_str());
if (keyidx != -1) {
fileformatmeta->n_expert_count = gguf_get_val_u32(ctx, keyidx);
}
fkey = modelarch+".rope.freq_base";
keyidx = gguf_find_key(ctx, fkey.c_str());
if (keyidx != -1) {
freq_base_train = gguf_get_val_f32(ctx, keyidx);
}
int filever = gguf_get_version(ctx);
fileformatmeta->fileversion = filever;
fileformatmeta->model_architecture = GGUFArch::ARCH_DEFAULT;
if(modelarch=="phi2")
{
fileformatmeta->model_architecture = GGUFArch::ARCH_PHI;
}
else if(modelarch=="falcon")
{
fileformatmeta->model_architecture = GGUFArch::ARCH_FALCON;
}
else if(modelarch=="mamba")
{
fileformatmeta->model_architecture = GGUFArch::ARCH_MAMBA;
}
else if(modelarch=="llama" && freq_base_train==10000.0f && (n_tensors==435 || n_tensors==611))
{
fileformatmeta->model_architecture = GGUFArch::ARCH_SOLAR;
}
else if(modelarch=="qwen2")
{
fileformatmeta->model_architecture = GGUFArch::ARCH_QWEN2;
}
else if(modelarch=="rwkv6")
{
fileformatmeta->model_architecture = GGUFArch::ARCH_RWKV;
}
printf("Arch Category: %d\n",fileformatmeta->model_architecture);
}
gguf_free(ctx);
}
if(fin.is_open())
{
fin.close();
}
return fileformat;
}
bool ArrStartWith(const std::vector<int> targetArray, const std::vector<int> searchSeq)
{
int ss = searchSeq.size();
if(targetArray.size()<ss)
{
return false;
}
for(int i=0;i<ss;++i)
{
if(targetArray[i]!=searchSeq[i])
{
return false;
}
}
return true;
}
int ArrFindIndexOf(const std::vector<int> targetArray, const std::vector<int> searchSeq)
{
int ss = searchSeq.size();
int tas = targetArray.size();
if(tas<ss)
{
return -1;
}
for(int i=0;i<tas;++i)
{
int srch = 0;
bool fail = false;
for(int srch=0;srch<ss;++srch)
{
if ((i + srch) >= tas || targetArray[i + srch] != searchSeq[srch])
{
fail = true;
break;
}
}
if(!fail)
{
return i;
}
}
return -1;
}
std::vector<int> LongestCommonSubseq(const std::vector<int> x, const std::vector<int> y)
{
int m = x.size(), n = y.size();
//int LCSuff[m+1][n+1];
std::vector<std::vector<int>> LCSuff(m+1, std::vector<int>(n+1));
for (int j = 0; j <= n; j++)
LCSuff[0][j] = 0;
for (int i = 0; i <= m; i++)
LCSuff[i][0] = 0;
for (int i = 1; i <= m; i++)
{
for (int j = 1; j <= n; j++)
{
if (x[i - 1] == y[j - 1])
LCSuff[i][j] = LCSuff[i - 1][j - 1] + 1;
else
LCSuff[i][j] = 0;
}
}
std::vector<int> longest;
for (int i = 1; i <= m; i++)
{
for (int j = 1; j <= n; j++)
{
if (LCSuff[i][j] > longest.size())
{
auto off1 = ((i - LCSuff[i][j] + 1) - 1);
auto off2 = off1 + LCSuff[i][j];
longest.clear();
// std::vector<int>().swap(longest);
longest = std::vector<int>(x.begin() + off1, x.begin() + off2);
// x.substr((i - LCSuff[i][j] + 1) - 1, LCSuff[i][j]);
}
}
}
return longest;
}
void ContextFastForward(std::vector<int> ¤t_context_tokens, std::vector<int> &embd_inp,
int &n_past, std::vector<int> &last_n_tokens, const int nctx, std::vector<int> &smartcontext,
bool useSmartContext, const bool requireFullSubset)
{
const int SCCtxLenThreshold = nctx * 0.8; //how much context length must be reach to trigger smartcontext
const int SCInpLenThreshold = nctx * 0.6; //how big must the input array be to trigger smartcontext
const int SCPastLenThreshold = nctx * 0.5; //how wide of a gap between the fast forwarded past and the present to trigger smart context
const float SCTruncationRatio = 0.5; //ratio for how many tokens to fast forward
const int SCTokThreshold = 32 + (nctx*0.05); //how many tokens of similarity triggers smartcontext
//fast forward the past based on identical tokens, stop once a divergence is noted
int embd_inp_len = embd_inp.size();
bool fastforwardok = true;
for (int i = 0; i < current_context_tokens.size(); ++i)
{
if (current_context_tokens[i] == embd_inp[i])
{
n_past += 1;
last_n_tokens.push_back(current_context_tokens[i]);
}
else
{
if(requireFullSubset) //RWKV can only do this if embd_inp contains everything in current context
{
last_n_tokens.erase(last_n_tokens.end() - n_past, last_n_tokens.end());
n_past = 0;
fastforwardok = false;
}
break;
}
if (requireFullSubset) //RWKV can only do this if embd_inp contains everything in current context
{
if (i >= embd_inp_len)
{
last_n_tokens.erase(last_n_tokens.end() - n_past, last_n_tokens.end());
n_past = 0;
fastforwardok = false;
break;
}
}
else
{
if ((i + 2) >= embd_inp_len)
{
break;
}
}
}
if(fastforwardok)
{
last_n_tokens.erase(last_n_tokens.begin(), last_n_tokens.begin() + n_past);
embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_past);
embd_inp_len = embd_inp.size();
}
//smart context mode, detect if we have a shifted context at max length
//requirement: previous context was at least nctx/2 longer than current,
//mode is on, and current context already maxed.
if (fastforwardok && useSmartContext && smartcontext.size() > 0 && embd_inp_len >= SCInpLenThreshold)
{
//see if smartcontext is still usable
auto shared = LongestCommonSubseq(smartcontext, embd_inp);
if (shared.size() > SCTokThreshold && ArrStartWith(smartcontext, shared)) //at least 32 tokens in common
{
int found = ArrFindIndexOf(embd_inp,shared);
if(found>=0)
{
auto trimmed = std::vector<int>(embd_inp.begin() + found, embd_inp.end());
embd_inp = trimmed;
embd_inp_len = embd_inp.size();
printf("\n[Reusing Smart Context: %d allowance remaining]", found);
int old_n_past = n_past;
int offset_fix = old_n_past;
if (current_context_tokens[n_past] != embd_inp[0])
{
offset_fix = 0;
}
for (int i = n_past; i < current_context_tokens.size(); ++i)
{
if (current_context_tokens[i] == embd_inp[i-offset_fix])
{
n_past += 1;
last_n_tokens.push_back(current_context_tokens[i]);
}
else
{
break;
}
if ((i + 2 - offset_fix) >= embd_inp_len)
{
break;
}
}
last_n_tokens.erase(last_n_tokens.begin(), last_n_tokens.begin() + (n_past-old_n_past));
embd_inp.erase(embd_inp.begin(), embd_inp.begin() + (n_past-old_n_past));
}else{
smartcontext.clear();
}
}
else
{
smartcontext.clear();
}
}
else
{
smartcontext.clear();
}
if(fastforwardok && useSmartContext
&& smartcontext.size()==0 && current_context_tokens.size() >= SCCtxLenThreshold
&& embd_inp_len >= SCInpLenThreshold
&& current_context_tokens.size() - n_past > SCPastLenThreshold)
{
//determine longest common substring after removing start part
int shiftamt = embd_inp.size() * SCTruncationRatio;
smartcontext = std::vector<int>(embd_inp.begin() + shiftamt, embd_inp.end());
printf("\n[New Smart Context Triggered! Buffered Token Allowance: %d]",shiftamt);
embd_inp = smartcontext;
//if max ctx length is exceeded, chop the prompt in half after the start part, and memorize it. The memorized part becomes LCS marker.
//when a future prompt comes in, find the LCS again. If LCS > a length and LCS starts with memorized LCS
//remove all tokens between start part and start of LCS in new prompt, thus avoiding shift
//if LCS not found or mismatched, regenerate. chop new prompt and repeat from step B
}
}