-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_app.py
87 lines (70 loc) · 3.09 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import pickle
import requests
import pandas as pd
import gdown
import streamlit as st
movies_file_id = "1ZiyIPOnAsCnCbwi3ltvBorsXgg8MpYZF"
similarity_file_id = "1ICnGsc5mx6ArS09O9sxJrLEhEaIf5jtk"
movies_download_url = f"https://drive.google.com/uc?export=download&id={movies_file_id}"
similarity_download_url = f"https://drive.google.com/uc?export=download&id={similarity_file_id}"
def download_file(url, output_path):
gdown.download(url, output_path, quiet=False)
@st.cache_data
def load_pickle_files(url, filename):
download_file(url, filename)
data = pd.read_pickle(filename)
return data
movies = load_pickle_files(movies_download_url, "movies.pkl")
similarity = load_pickle_files(similarity_download_url, "similarity.pkl")
st.title("Movies recommendation")
st.write("""
This app finds similar movies using **cosine similarity** and the model, for now is trained on movie data from **TMDB** till 2016!
* **Python libraries:** numpy, pandas, sklearn, nltk, requests, streamlit and gdown.
* **Source code:** [Github repository](https://github.com/LoyumM/Movie-recommendation).
""")
def fetch_poster(movie_id):
url = "https://api.themoviedb.org/3/movie/{}/images".format(movie_id)
headers = {
"accept": "application/json",
"Authorization": "Bearer eyJhbGciOiJIUzI1NiJ9.eyJhdWQiOiIxNTZjNDUxMTI1MGRhY2MzOTRjYjNhODQ5ZGJkMDY0ZSIsInN1YiI6IjY0NzQ0YTNiZGQ3MzFiMmQ3YjY2MjYxNyIsInNjb3BlcyI6WyJhcGlfcmVhZCJdLCJ2ZXJzaW9uIjoxfQ.NnBTCHh77ikr4QlraGKnfTXqnuX_IIt3sAPd_85i1lM"
}
response = requests.get(url, headers=headers)
data = response.json()
poster_path = data['backdrops'][0]['file_path']
full_path = "https://image.tmdb.org/t/p/w500/" + poster_path
return full_path
def recommend(movie):
index = movies[movies['title'] == movie].index[0]
distances = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda x: x[1])
recommended_movie_names = []
recommended_movie_posters = []
for i in distances[1:6]:
# fetch the movie poster
movie_id = movies.iloc[i[0]].movie_id
recommended_movie_posters.append(fetch_poster(movie_id))
recommended_movie_names.append(movies.iloc[i[0]].title)
return recommended_movie_names,recommended_movie_posters
movie_list = movies['title'].values
selected_movie = st.selectbox(
"Type or select a movie from the dropdown",
movie_list
)
if st.button('Show Recommendation'):
recommended_movie_names,recommended_movie_posters = recommend(selected_movie)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.text(recommended_movie_names[0])
st.image(recommended_movie_posters[0])
with col2:
st.text(recommended_movie_names[1])
st.image(recommended_movie_posters[1])
with col3:
st.text(recommended_movie_names[2])
st.image(recommended_movie_posters[2])
with col4:
st.text(recommended_movie_names[3])
st.image(recommended_movie_posters[3])
with col5:
st.text(recommended_movie_names[4])
st.image(recommended_movie_posters[4])
st.write("Work in progress. More features to be added. ")