-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSVM.py
65 lines (50 loc) · 1.82 KB
/
SVM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
import cv2
#bad model, let using SVM_sklearn.py
class SVM():
'''wrapper for OpenCV SimpleVectorMachine algorithm'''
def __init__(self):
# Set up SVM for OpenCV 3
self.model = cv2.ml.SVM_create()
# Set SVM type
self.model.setType(cv2.ml.SVM_C_SVC)
# Set SVM Kernel to Radial Basis Function (RBF)
self.model.setKernel(cv2.ml.SVM_LINEAR)
# svm.setKernel(cv2.ml.SVM_RBF)
self.model.setTermCriteria((cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-6))
# Set parameter C
self.model.setC(1)
# Set parameter Gamma
self.model.setGamma(0.50625)
def load(self, model_name):
self.model = cv2.ml.SVM_load(model_name)
def train(self, samples, responses):
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
def predict(self, samples):
# value of predict like that
# (0.0, array([[0.],
# [0.],
# [0.],
# [1.]], dtype=float32))
return self.model.predict(samples)[1].reshape(len(samples))
def score(self, samples, responses):
total_test = len(samples)
true_case = 0
for (sample, label) in zip(samples, responses):
sample = sample.reshape(1, len(sample))
pre = self.model.predict(sample)
if label == int(pre[0]):
true_case += 1
return (true_case/total_test)
def save(self, model_name):
self.model.save(model_name)
if __name__ == "__main__":
samples = np.array(np.random.random((4,2)), dtype = np.float32)
labels = np.array([1.,0.,0.,1.], dtype = np.int)
# print(samples)
print(labels)
clf = SVM()
clf.train(samples, labels)
# samples = np.reshape(4,2)
y_val = clf.predict(samples)
print(y_val)