-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
79 lines (67 loc) · 2.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from audio_utils import AudioUtils
from speech_processor import SpeechProcessor
from llm_inference import LLMInference
from speech_generator import SpeechGenerator
import argparse
import torch
import sys
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--url",
type=str,
help="Any OpenAI Compatible Chat Endpoint. For example: Ollama - http://localhost:8000/v1, vllm endpoints",
default='http://localhost:11434/v1'
)
parser.add_argument(
"--model-id",
type=str,
help="Any LLM model to power the Text Generator. Use this option when workig with Ollama",
default='mistral:instruct'
)
parser.add_argument(
"--api-key",
type=str,
help="Provide the API Key for the relevant Chat Endpoint URL",
default='ollama'
)
parser.add_argument(
"--stt-model",
type=str,
help="Provide the Speech2Text model. For example openai/whisper-base.en",
default="openai/whisper-base.en"
)
args = parser.parse_args()
# print(args)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
audio_utils = AudioUtils()
speech_processor = SpeechProcessor(
device = device,
stt_model = args.stt_model
)
model = LLMInference(
model_id = args.model_id,
url = args.url,
api_key = args.api_key
)
audio_model = SpeechGenerator(device)
transcriber = speech_processor.transcriber
chunk_length_s = 2.0
stream_chunk_s = 0.25
while True:
mic = audio_utils.record_audio(transcriber, chunk_length_s, stream_chunk_s)
# print("Start speaking...")
print("User:")
for item in speech_processor.transcribe_audio(mic, generate_kwargs={"max_new_tokens": 128}):
sys.stdout.write("\033[K")
print(item["text"], end="\r")
if not item["partial"][0]:
break
print(item['text'].strip(),end='\n\n')
response = model.query_model(item['text'])
print("LIVA:")
print(response.strip(),end='\n\n')
speech = audio_model.synthesize_audio(response)
audio_utils.play_audio(speech['audio'],speech['sampling_rate'])
if __name__ == "__main__":
main()