forked from SpectralPOD/spod_matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_2.m
78 lines (73 loc) · 3.36 KB
/
example_2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
%% EXAMPLE 2: Plot SPOD spectrum and inspect SPOD modes.
% The large-eddy simulation data provided along with this example is a
% subset of the database of a Mach 0.9 turbulent jet described in [1] and
% was calculated using the unstructured flow solver Charles developed at
% Cascade Technologies. If you are using the database in your research or
% teaching, please include explicit mention of Br�s et al. [1]. The test
% database consists of 5000 snapshots of the symmetric component (m=0) of
% a round turbulent jet. A physical interpretaion of the SPOD results is
% given in [2], and a comprehensive discussion and derivation of SPOD and
% many of its properties can be found in [3].
%
% References:
% [1] G. A. Brès, P. Jordan, M. Le Rallic, V. Jaunet, A. V. G.
% Cavalieri, A. Towne, S. K. Lele, T. Colonius, O. T. Schmidt,
% Importance of the nozzle-exit boundary-layer state in subsonic
% turbulent jets, J. of Fluid Mech. 851, 83-124, 2018
% [2] Schmidt, O. T. and Towne, A. and Rigas, G. and Colonius, T. and
% Bres, G. A., Spectral analysis of jet turbulence, J. of Fluid Mech. 855, 953–982, 2018
% [3] Towne, A. and Schmidt, O. T. and Colonius, T., Spectral proper
% orthogonal decomposition and its relationship to dynamic mode
% decomposition and resolvent analysis, J. of Fluid Mech. 847, 821–867, 2018
%
% O. T. Schmidt ([email protected]), A. Towne, T. Colonius
% Last revision: 20-May-2020
clc, clear variables
addpath('utils')
load(fullfile('jet_data','jetLES.mat'),'p','x','r','dt');
%% SPOD of the test database.
% Calculate the SPOD of the data matrix 'p' and use the timestep 'dt'
% between snapshots to obtain the physical frequency 'f'. 'L' is the
% matrix of modal energies, as before, and 'P' the data matrix of SPOD
% modes. We leave all other options empty for now.
[L,P,f] = spod(p,[],[],[],dt);
% First, we plot the SPOD spectrum.
figure
loglog(f,L)
xlabel('frequency'), ylabel('SPOD mode energy')
% Second, we visualize the 1st and 2nd SPOD modes at three frequencies.
figure
count = 1;
for fi = [10 15 20]
for mi = [1 2]
subplot(3,2,count)
contourf(x,r,real(squeeze(P(fi,:,:,mi))),11,'edgecolor','none'), axis equal tight, caxis(max(abs(caxis))*[-1 1])
xlabel('x'), ylabel('r'), title(['$f=' num2str(f(fi),'%.2f$') ', mode ' num2str(mi) ', $\lambda=' num2str(L(fi,mi),'%.2g$')])
xlim([0 10]); ylim([0 2])
count = count + 1;
end
end
%% Animate the same modes.
% Note how all wavepackets travel at approximately the same phase
% speed c_ph. The reason is that their streamwise wavenumber k_x changes
% with frequency such that c_ph = omega/k_x is approximately constant.
figure
nt = 30;
T = 1/f(10); % period of the 10th frequency
time = linspace(0,T,nt); % animate over one period
count = 1;
for ti = 1:nt
for fi = [10 15 20]
for mi = [1 2]
subplot(3,2,count)
pcolor(x,r,real(squeeze(P(fi,:,:,mi)*exp(2i*pi*f(fi)*time(ti))))), shading interp, axis equal tight, caxis(max(abs(caxis))*[-1 1])
xlabel('x'), ylabel('r'), title(['$f=' num2str(f(fi),'%.2f$') ', mode ' num2str(mi) ', $\lambda=' num2str(L(fi,mi),'%.2g$')])
xlim([0 10]); ylim([0 2])
count = count + 1;
hold on
end
end
drawnow
hold off
count = 1;
end