-
Notifications
You must be signed in to change notification settings - Fork 242
/
pretraining.py
executable file
·611 lines (526 loc) · 23.9 KB
/
pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
""" Main training script """
import argparse
import glob
import os
import random
import sys
import time
import numpy as np
import torch
import torch.nn
from accelerate import Accelerator
from tqdm import tqdm
from transformers import (
CLIPImageProcessor,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_linear_schedule_with_warmup,
)
import wandb
from otter_ai import FlamingoForConditionalGeneration, OtterForConditionalGeneration
sys.path.append("../..")
from pipeline.mimicit_utils.data import get_data
from pipeline.train.distributed import world_info_from_env
from pipeline.train.train_utils import AverageMeter, get_checkpoint
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--external_save_dir",
type=str,
default=None,
help="set to save model to external path",
)
parser.add_argument(
"--resume_from_checkpoint",
action="store_true",
help="Whether to resume from checkpoint, if set True, will load models from --external_save_dir",
)
parser.add_argument(
"--delete_previous_checkpoint",
action="store_true",
help="delete previous checkpoint when saving new checkpoint",
)
parser.add_argument(
"--run_name",
type=str,
default="otter_9b",
help="used to name saving directory and wandb run",
)
parser.add_argument(
"--mmc4_shards",
type=str,
help="path to c4 shards, this should be a glob pattern such as /path/to/shards/shard-{0000..0999}.tar",
)
parser.add_argument(
"--laion_shards",
type=str,
help="path to laion shards, this should be a glob pattern such as /path/to/shards/shard-{0000..0999}.tar",
)
parser.add_argument("--train_num_samples_mmc4", type=int, default=100)
parser.add_argument("--train_num_samples_laion", type=int, default=100)
parser.add_argument("--batch_size_mmc4", type=int, default=8)
parser.add_argument("--batch_size_laion", type=int, default=8)
parser.add_argument("--workers", type=int, default=8)
parser.add_argument("--dataset_resampled", action="store_true")
parser.add_argument(
"--mmc4_textsim_threshold",
default=0.32,
type=float,
help="threshold for filtering images in mmc4 based on image-text similarity",
)
# parser.add_argument("--use_media_placement_augmentation", action="store_true")
parser.add_argument("--offline", action="store_true")
parser.add_argument("--num_epochs", type=int, default=1)
parser.add_argument("--logging_steps", type=int, default=100, help="log loss every n steps")
parser.add_argument(
"--checkpointing_steps",
type=int,
default=10000,
help="checkpointing every n steps",
)
# Sum of gradient optimization batch size
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
help="path to huggingface model or model identifier from local path or huggingface.co",
default=None,
)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--learning_rate", default=1e-4, type=float)
parser.add_argument(
"--lr_scheduler",
default="constant",
type=str,
help="constant, linear, or cosine",
)
parser.add_argument("--loss_multiplier_mmc4", type=float, default=1.0)
parser.add_argument("--loss_multiplier_laion", type=float, default=0.2)
parser.add_argument("--warmup_steps", default=1000, type=int)
parser.add_argument("--warmup_steps_ratio", default=None, type=float)
parser.add_argument("--weight_decay", default=0.1, type=float)
parser.add_argument(
"--precision",
choices=["amp_bf16", "amp_bfloat16", "bf16", "amp", "fp16", "fp32"],
default="amp",
help="Floating point precision.",
)
# distributed training args
parser.add_argument(
"--dist-url",
default="env://",
type=str,
help="url used to set up distributed training",
)
parser.add_argument("--dist-backend", default="nccl", type=str, help="distributed backend")
parser.add_argument(
"--no-set-device-rank",
default=False,
action="store_true",
help="Don't set device index from local rank (when CUDA_VISIBLE_DEVICES restricted to one per proc).",
)
# YH: Training detail
parser.add_argument("--mask_lm_head", action="store_true")
parser.add_argument(
"--max-src-length",
type=int,
default=1024,
help="the maximum src sequence length",
)
parser.add_argument(
"--max-tgt-length",
type=int,
default=1024,
help="the maximum target sequence length",
)
parser.add_argument("--patch-image-size", type=int, default=224)
# this could potentially save 33GB of all model parameters for otter-9b, including the language and vision model.
parser.add_argument("--save_hf_model", default=False, action="store_true")
# wandb args
parser.add_argument("--report_to_wandb", default=False, action="store_true")
parser.add_argument(
"--wandb_project",
type=str,
)
parser.add_argument(
"--wandb_entity",
type=str,
)
parser.add_argument(
"--save_checkpoints_to_wandb",
default=False,
action="store_true",
help="save checkpoints to wandb",
)
return parser
def random_seed(seed=42, rank=0):
torch.manual_seed(seed + rank)
np.random.seed(seed + rank)
random.seed(seed + rank)
def train_one_epoch(
args,
model,
epoch,
mmc4_loader,
laion_loader,
tokenizer,
optimizer,
lr_scheduler,
device_id,
accelerator,
wandb,
):
num_batches_per_epoch_laion = laion_loader.num_batches
num_batches_per_epoch_mmc4 = mmc4_loader.num_batches
assert num_batches_per_epoch_laion == num_batches_per_epoch_mmc4, "Number of batches in laion and mmc4 datasets must be the same"
num_batches_per_epoch = num_batches_per_epoch_mmc4
total_training_steps = num_batches_per_epoch * args.num_epochs
media_token_id = tokenizer("<image>", add_special_tokens=False)["input_ids"][-1]
endofchunk_token_id = tokenizer("<|endofchunk|>", add_special_tokens=False)["input_ids"][-1]
answer_token_id = tokenizer("<answer>", add_special_tokens=False)["input_ids"][-1]
model.train()
# setup logging
step_time_m = AverageMeter() # time for one optimizer step (> 1 batch if using gradient accum)
data_time_m = AverageMeter() # avg time to load one batch of both C4 AND laion (= 1 batch regardless of gradient accum)
end = time.time()
# loop through dataloader
for num_steps, (batch_laion, batch_mmc4) in tqdm(
enumerate(zip(laion_loader, mmc4_loader)),
disable=args.rank != 0,
total=total_training_steps,
initial=(epoch * num_batches_per_epoch),
):
data_time_m.update(time.time() - end)
global_step = num_steps + epoch * num_batches_per_epoch
total_losses = []
#### LAION FORWARD PASS ####
images = batch_laion[0].to(device_id, non_blocking=True).unsqueeze(1).unsqueeze(1)
input_ids = batch_laion[1][0].to(device_id, non_blocking=True)
attention_mask = batch_laion[1][1].to(device_id, non_blocking=True)
labels = input_ids.clone()
labels[labels == tokenizer.pad_token_id] = -100
labels[:, 0] = -100
labels[labels == media_token_id] = -100
labels.to(device_id)
with accelerator.autocast():
loss_laion = model(
vision_x=images,
lang_x=input_ids,
attention_mask=attention_mask,
labels=labels,
)[0]
# model.eval()
# model.text_tokenizer.padding_side = "left"
# text_prompt_lang_x = model.text_tokenizer(
# [
# "<image>",
# ],
# return_tensors="pt",
# )['input_ids']
# outputs_debug = model.generate(
# vision_x=images.to(device_id),
# lang_x=text_prompt_lang_x.to(device_id),
# attention_mask=attention_mask.to(device_id),
# max_length=256,
# )
# print(model.text_tokenizer.batch_decode(outputs_debug))
# print(model.text_tokenizer.batch_decode(input_ids))
# model.train()
#### LAION BACKWARD ####
accelerator.backward(args.loss_multiplier_laion * loss_laion)
total_losses.append(args.loss_multiplier_laion * loss_laion)
#### MMC4 FORWARD PASS ####
images = batch_mmc4[0].to(device_id, non_blocking=True).unsqueeze(2)
input_ids = torch.stack([x[0] for x in batch_mmc4[1]]).squeeze(1)
attention_mask = torch.stack([x[1] for x in batch_mmc4[1]]).squeeze(1)
# NOTE: irena: expected shape of clip_text_input_ids / attention_mask is (N, I, max_seq_len)
labels = input_ids.clone()
labels[labels == tokenizer.pad_token_id] = -100
labels[:, 0] = -100
for i in range(labels.shape[0]):
# remove loss for any token before the first <image> token
label_idx = 0
while label_idx < labels.shape[1] and labels[i][label_idx] != media_token_id:
labels[i][label_idx] = -100
label_idx += 1
# get index of all endofchunk tokens in the sequence
endofchunk_idxs = torch.where(labels[i] == endofchunk_token_id)[0]
for endofchunk_idx in endofchunk_idxs:
token_idx = endofchunk_idx + 1
while token_idx < labels.shape[1] and labels[i][token_idx] != media_token_id:
labels[i][token_idx] = -100
token_idx += 1
labels[labels == media_token_id] = -100
labels.to(device_id)
# with accelerator.accumulate(model):
with accelerator.autocast():
loss_mmc4 = model(
vision_x=images,
lang_x=input_ids,
attention_mask=attention_mask,
labels=labels,
)[0]
# model.text_tokenizer.padding_side = "left"
# outputs_debug = model.generate(
# vision_x=images.to(device_id),
# lang_x=input_ids.to(device_id),
# attention_mask=attention_mask.to(device_id),
# max_length=256,
# )
# print(model.text_tokenizer.batch_decode(outputs_debug))
# print(model.text_tokenizer.batch_decode(input_ids))
#### MMC4 BACKWARD ####
accelerator.backward(args.loss_multiplier_mmc4 * loss_mmc4)
total_losses.append(args.loss_multiplier_mmc4 * loss_mmc4)
#### Collect MMC4/LAION Loss Info ####
total_loss_sum = sum(total_losses)
mean_loss = total_loss_sum / len(total_losses)
# accelerator.backward(total_loss_sum.to(device_id))
def mask_embedding(m):
if m.weight.requires_grad:
zero_mask = torch.zeros_like(m.weight.grad)
# zero_mask[answer_token_id] = torch.ones_like(zero_mask[answer_token_id])
zero_mask[media_token_id] = torch.ones_like(zero_mask[media_token_id])
zero_mask[endofchunk_token_id] = torch.ones_like(zero_mask[endofchunk_token_id])
m.weight.grad = m.weight.grad * zero_mask
if args.mask_lm_head:
unwrapped_model = accelerator.unwrap_model(model)
if unwrapped_model.lang_encoder.__class__.__name__ == "MPTForCausalLM":
unwrapped_model.lang_encoder.transformer.wte.apply(mask_embedding)
elif unwrapped_model.lang_encoder.__class__.__name__ == "LlamaForCausalLM":
unwrapped_model.lang_encoder.model.embed_tokens.apply(mask_embedding)
unwrapped_model.lang_encoder.lm_head.apply(mask_embedding)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# step time and reset end outside of rank 0
step_time_m.update(time.time() - end)
end = time.time()
if accelerator.sync_gradients:
if args.rank == 0 and args.report_to_wandb:
# compute within rank 0
mmc4_samples_per_second = args.gradient_accumulation_steps * args.batch_size_mmc4 * args.world_size / step_time_m.val
mmc4_samples_per_second_per_gpu = args.gradient_accumulation_steps * args.batch_size_mmc4 / step_time_m.val
laion_samples_per_second = args.gradient_accumulation_steps * args.batch_size_laion * args.world_size / step_time_m.val
laion_samples_per_second_per_gpu = args.gradient_accumulation_steps * args.batch_size_laion / step_time_m.val
wandb.log(
{
"data_time": data_time_m.avg,
"step_time": step_time_m.avg,
"mmc4_samples_per_second": mmc4_samples_per_second,
"mmc4_samples_per_second_per_gpu": mmc4_samples_per_second_per_gpu,
"laion_samples_per_second": laion_samples_per_second,
"laion_samples_per_second_per_gpu": laion_samples_per_second_per_gpu,
"lr": optimizer.param_groups[0]["lr"],
},
commit=False,
)
step_time_m.reset()
data_time_m.reset()
wandb.log(
{
"mmc4_loss": loss_mmc4.item(),
"laion_loss": loss_laion.item(),
"mean_loss": mean_loss.item(),
"global_step": global_step // args.gradient_accumulation_steps,
},
commit=True,
)
# Log loss to console
if ((num_steps + 1) % args.logging_steps == 0) and args.rank == 0:
print(f"Step {num_steps+1}/{num_batches_per_epoch} of epoch {epoch+1}/{args.num_epochs} complete. Mean Loss: {mean_loss.item():.3f}")
# Add a process on saving checkpoints during pretraining
if ((num_steps + 1) % args.checkpointing_steps == 0) and args.rank == 0:
if not os.path.exists(args.external_save_dir):
os.makedirs(args.external_save_dir)
unwrapped_model = accelerator.unwrap_model(model)
checkpoint_dict = {
"epoch": epoch,
"model_state_dict": get_checkpoint(unwrapped_model),
"optimizer_state_dict": optimizer.state_dict(),
"lr_scheduler_state_dict": lr_scheduler.state_dict(),
}
print(f"Saving checkpoint to {args.external_save_dir}/checkpoint_steps{num_steps + 1}.pt")
accelerator.save(
checkpoint_dict,
f"{args.external_save_dir}/checkpoint_steps{num_steps + 1}.pt",
)
# save the config
print(f"Saving config to {args.external_save_dir}/config.json")
unwrapped_model.config.save_pretrained(args.external_save_dir)
if args.delete_previous_checkpoint:
if (num_steps + 1) // args.checkpointing_steps >= 2:
previous_checkpoint_path = f"{args.external_save_dir}/checkpoint_steps{num_steps + 1 - args.checkpointing_steps}.pt"
if os.path.exists(previous_checkpoint_path):
os.remove(previous_checkpoint_path)
def main():
parser = parse_args()
# TODO: remove additional data args, all args would be processed in above parser
# parser = add_data_args(parser)
args = parser.parse_args()
if args.save_checkpoints_to_wandb and not args.report_to_wandb:
raise ValueError("save_checkpoints_to_wandb requires report_to_wandb")
if args.offline:
os.environ["WANDB_MODE"] = "offline"
os.environ["TRANSFORMERS_OFFLINE"] = "1"
args.local_rank, args.rank, args.world_size = world_info_from_env()
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
device_id = accelerator.device
random_seed(args.seed)
if args.pretrained_model_name_or_path is not None:
accelerator.print(f"Loading pretrained model from {args.pretrained_model_name_or_path}")
if "otter" in args.run_name.lower():
model = OtterForConditionalGeneration.from_pretrained(
args.pretrained_model_name_or_path,
device_map="auto",
local_files_only=args.offline,
)
elif "flamingo" in args.run_name.lower():
if accelerator.num_processes > 1:
model = FlamingoForConditionalGeneration.from_pretrained(
args.pretrained_model_name_or_path,
device_map={"": device_id},
local_files_only=args.offline,
)
else:
model = FlamingoForConditionalGeneration.from_pretrained(
args.pretrained_model_name_or_path,
device_map="auto",
local_files_only=args.offline,
)
model.text_tokenizer.add_special_tokens({"additional_special_tokens": ["<|endofchunk|>", "<image>", "<answer>"]})
else:
model = None
accelerator.wait_for_everyone()
if model.lang_encoder.__class__.__name__ != "MPTForCausalLM":
model.lang_encoder.resize_token_embeddings(len(model.text_tokenizer))
args.tokenizer = model.text_tokenizer
tokenizer = model.text_tokenizer
random_seed(args.seed, args.rank)
image_processor = CLIPImageProcessor()
mmc4_dataset = get_data(args, image_processor, tokenizer, "mmc4")
laion_dataset = get_data(args, image_processor, tokenizer, "laion")
def get_grouped_params(model):
params_with_wd, params_without_wd = [], []
def apply_decay(x):
return "gated_cross_attn_layer" in x and "ff_gate" not in x and "attn_gate" not in x and "norm" not in x and "bias" not in x
for n, p in model.named_parameters():
# if p.requires_grad:
if apply_decay(n):
params_with_wd.append(p)
else:
params_without_wd.append(p)
return [
{"params": params_with_wd, "weight_decay": args.weight_decay},
{"params": params_without_wd, "weight_decay": 0.0},
]
# total_training_steps = ((args.train_num_samples_mmc4) // (args.batch_size_mmc4 * args.world_size)) * args.num_epochs
total_training_steps = mmc4_dataset.dataloader.num_batches * args.num_epochs
resume_from_epoch = 0
# check if a checkpoint exists for this run
args.external_save_dir = os.path.join(args.external_save_dir, args.run_name) if args.external_save_dir else args.run_name
if os.path.exists(f"{args.external_save_dir}") and args.resume_from_checkpoint is True:
checkpoint_list = glob.glob(f"{args.external_save_dir}/checkpoint_*.pt")
if len(checkpoint_list) == 0:
print(f"Found no checkpoints for run {args.external_save_dir}.")
else:
resume_from_checkpoint_path = sorted(checkpoint_list, key=lambda x: int(x.split("_")[-1].split(".")[0]))[-1]
print(f"Found checkpoint {resume_from_checkpoint_path} for run {args.external_save_dir}.")
if args.rank == 0:
print(f"Loading checkpoint from {resume_from_checkpoint_path}")
checkpoint = torch.load(resume_from_checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint["model_state_dict"], False)
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler_state_dict"])
resume_from_epoch = checkpoint["epoch"] + 1
optimizer = torch.optim.AdamW(get_grouped_params(model), lr=args.learning_rate)
if args.rank == 0:
print(f"Total training steps: {total_training_steps}")
args.warmup_steps = total_training_steps * args.warmup_steps_ratio if args.warmup_steps_ratio is not None else args.warmup_steps
if args.lr_scheduler == "linear":
lr_scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=args.warmup_steps // args.gradient_accumulation_steps,
num_training_steps=total_training_steps // args.gradient_accumulation_steps,
)
elif args.lr_scheduler == "cosine":
lr_scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=args.warmup_steps // args.gradient_accumulation_steps,
num_training_steps=total_training_steps // args.gradient_accumulation_steps,
)
else:
lr_scheduler = get_constant_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps)
if args.rank == 0 and args.report_to_wandb:
wandb.init(
project=args.wandb_project,
entity=args.wandb_entity,
name=args.run_name,
config=vars(args),
)
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
# YH: hardcode for ddp, reason is related to "split_batch" in accelerator. Currently just fix this bug, need to dig further.
if accelerator.num_processes > 1:
lr_scheduler.split_batches = True
model.train()
for epoch in range(resume_from_epoch, args.num_epochs):
laion_dataset.set_epoch(epoch)
laion_loader = laion_dataset.dataloader
mmc4_dataset.set_epoch(epoch)
mmc4_loader = mmc4_dataset.dataloader
train_one_epoch(
args=args,
model=model,
epoch=epoch,
tokenizer=tokenizer,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
mmc4_loader=mmc4_loader,
laion_loader=laion_loader,
accelerator=accelerator,
device_id=device_id,
wandb=wandb,
)
if args.rank == 0:
if not os.path.exists(args.external_save_dir):
os.makedirs(args.external_save_dir)
unwrapped_model = accelerator.unwrap_model(model)
checkpoint_dict = {
"epoch": epoch,
"model_state_dict": get_checkpoint(unwrapped_model),
"optimizer_state_dict": optimizer.state_dict(),
"lr_scheduler_state_dict": lr_scheduler.state_dict(),
}
print(f"Saving checkpoint to {args.external_save_dir}/checkpoint_epoch{epoch}.pt")
accelerator.save(checkpoint_dict, f"{args.external_save_dir}/checkpoint_epoch{epoch}.pt")
# save the config
unwrapped_model.config.save_pretrained(args.external_save_dir)
if args.delete_previous_checkpoint:
if epoch > 0:
os.remove(f"{args.external_save_dir}/checkpoint_epoch{epoch-1}.pt")
accelerator.wait_for_everyone()
accelerator.wait_for_everyone()
if args.rank == 0:
if not os.path.exists(args.external_save_dir):
os.makedirs(args.external_save_dir)
unwrapped_model = accelerator.unwrap_model(model)
accelerator.save(
get_checkpoint(model=unwrapped_model),
f"{args.external_save_dir}/final_weights.pt",
)
# save the config
unwrapped_model.config.save_pretrained(args.external_save_dir)
if args.report_to_wandb and args.save_checkpoints_to_wandb:
wandb.save(f"{args.external_save_dir}/final_weights.pt")
if args.save_hf_model:
unwrapped_model.save_pretrained(f"{args.external_save_dir}")
if __name__ == "__main__":
main()