forked from XPixelGroup/BasicSR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase_model.py
392 lines (338 loc) · 15.5 KB
/
base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import os
import time
import torch
from collections import OrderedDict
from copy import deepcopy
from torch.nn.parallel import DataParallel, DistributedDataParallel
from basicsr.models import lr_scheduler as lr_scheduler
from basicsr.utils import get_root_logger
from basicsr.utils.dist_util import master_only
class BaseModel():
"""Base model."""
def __init__(self, opt):
self.opt = opt
self.device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu')
self.is_train = opt['is_train']
self.schedulers = []
self.optimizers = []
def feed_data(self, data):
pass
def optimize_parameters(self):
pass
def get_current_visuals(self):
pass
def save(self, epoch, current_iter):
"""Save networks and training state."""
pass
def validation(self, dataloader, current_iter, tb_logger, save_img=False):
"""Validation function.
Args:
dataloader (torch.utils.data.DataLoader): Validation dataloader.
current_iter (int): Current iteration.
tb_logger (tensorboard logger): Tensorboard logger.
save_img (bool): Whether to save images. Default: False.
"""
if self.opt['dist']:
self.dist_validation(dataloader, current_iter, tb_logger, save_img)
else:
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
def _initialize_best_metric_results(self, dataset_name):
"""Initialize the best metric results dict for recording the best metric value and iteration."""
if hasattr(self, 'best_metric_results') and dataset_name in self.best_metric_results:
return
elif not hasattr(self, 'best_metric_results'):
self.best_metric_results = dict()
# add a dataset record
record = dict()
for metric, content in self.opt['val']['metrics'].items():
better = content.get('better', 'higher')
init_val = float('-inf') if better == 'higher' else float('inf')
record[metric] = dict(better=better, val=init_val, iter=-1)
self.best_metric_results[dataset_name] = record
def _update_best_metric_result(self, dataset_name, metric, val, current_iter):
if self.best_metric_results[dataset_name][metric]['better'] == 'higher':
if val >= self.best_metric_results[dataset_name][metric]['val']:
self.best_metric_results[dataset_name][metric]['val'] = val
self.best_metric_results[dataset_name][metric]['iter'] = current_iter
else:
if val <= self.best_metric_results[dataset_name][metric]['val']:
self.best_metric_results[dataset_name][metric]['val'] = val
self.best_metric_results[dataset_name][metric]['iter'] = current_iter
def model_ema(self, decay=0.999):
net_g = self.get_bare_model(self.net_g)
net_g_params = dict(net_g.named_parameters())
net_g_ema_params = dict(self.net_g_ema.named_parameters())
for k in net_g_ema_params.keys():
net_g_ema_params[k].data.mul_(decay).add_(net_g_params[k].data, alpha=1 - decay)
def get_current_log(self):
return self.log_dict
def model_to_device(self, net):
"""Model to device. It also warps models with DistributedDataParallel
or DataParallel.
Args:
net (nn.Module)
"""
net = net.to(self.device)
if self.opt['dist']:
find_unused_parameters = self.opt.get('find_unused_parameters', False)
net = DistributedDataParallel(
net, device_ids=[torch.cuda.current_device()], find_unused_parameters=find_unused_parameters)
elif self.opt['num_gpu'] > 1:
net = DataParallel(net)
return net
def get_optimizer(self, optim_type, params, lr, **kwargs):
if optim_type == 'Adam':
optimizer = torch.optim.Adam(params, lr, **kwargs)
elif optim_type == 'AdamW':
optimizer = torch.optim.AdamW(params, lr, **kwargs)
elif optim_type == 'Adamax':
optimizer = torch.optim.Adamax(params, lr, **kwargs)
elif optim_type == 'SGD':
optimizer = torch.optim.SGD(params, lr, **kwargs)
elif optim_type == 'ASGD':
optimizer = torch.optim.ASGD(params, lr, **kwargs)
elif optim_type == 'RMSprop':
optimizer = torch.optim.RMSprop(params, lr, **kwargs)
elif optim_type == 'Rprop':
optimizer = torch.optim.Rprop(params, lr, **kwargs)
else:
raise NotImplementedError(f'optimizer {optim_type} is not supported yet.')
return optimizer
def setup_schedulers(self):
"""Set up schedulers."""
train_opt = self.opt['train']
scheduler_type = train_opt['scheduler'].pop('type')
if scheduler_type in ['MultiStepLR', 'MultiStepRestartLR']:
for optimizer in self.optimizers:
self.schedulers.append(lr_scheduler.MultiStepRestartLR(optimizer, **train_opt['scheduler']))
elif scheduler_type == 'CosineAnnealingRestartLR':
for optimizer in self.optimizers:
self.schedulers.append(lr_scheduler.CosineAnnealingRestartLR(optimizer, **train_opt['scheduler']))
else:
raise NotImplementedError(f'Scheduler {scheduler_type} is not implemented yet.')
def get_bare_model(self, net):
"""Get bare model, especially under wrapping with
DistributedDataParallel or DataParallel.
"""
if isinstance(net, (DataParallel, DistributedDataParallel)):
net = net.module
return net
@master_only
def print_network(self, net):
"""Print the str and parameter number of a network.
Args:
net (nn.Module)
"""
if isinstance(net, (DataParallel, DistributedDataParallel)):
net_cls_str = f'{net.__class__.__name__} - {net.module.__class__.__name__}'
else:
net_cls_str = f'{net.__class__.__name__}'
net = self.get_bare_model(net)
net_str = str(net)
net_params = sum(map(lambda x: x.numel(), net.parameters()))
logger = get_root_logger()
logger.info(f'Network: {net_cls_str}, with parameters: {net_params:,d}')
logger.info(net_str)
def _set_lr(self, lr_groups_l):
"""Set learning rate for warm-up.
Args:
lr_groups_l (list): List for lr_groups, each for an optimizer.
"""
for optimizer, lr_groups in zip(self.optimizers, lr_groups_l):
for param_group, lr in zip(optimizer.param_groups, lr_groups):
param_group['lr'] = lr
def _get_init_lr(self):
"""Get the initial lr, which is set by the scheduler.
"""
init_lr_groups_l = []
for optimizer in self.optimizers:
init_lr_groups_l.append([v['initial_lr'] for v in optimizer.param_groups])
return init_lr_groups_l
def update_learning_rate(self, current_iter, warmup_iter=-1):
"""Update learning rate.
Args:
current_iter (int): Current iteration.
warmup_iter (int): Warm-up iter numbers. -1 for no warm-up.
Default: -1.
"""
if current_iter > 1:
for scheduler in self.schedulers:
scheduler.step()
# set up warm-up learning rate
if current_iter < warmup_iter:
# get initial lr for each group
init_lr_g_l = self._get_init_lr()
# modify warming-up learning rates
# currently only support linearly warm up
warm_up_lr_l = []
for init_lr_g in init_lr_g_l:
warm_up_lr_l.append([v / warmup_iter * current_iter for v in init_lr_g])
# set learning rate
self._set_lr(warm_up_lr_l)
def get_current_learning_rate(self):
return [param_group['lr'] for param_group in self.optimizers[0].param_groups]
@master_only
def save_network(self, net, net_label, current_iter, param_key='params'):
"""Save networks.
Args:
net (nn.Module | list[nn.Module]): Network(s) to be saved.
net_label (str): Network label.
current_iter (int): Current iter number.
param_key (str | list[str]): The parameter key(s) to save network.
Default: 'params'.
"""
if current_iter == -1:
current_iter = 'latest'
save_filename = f'{net_label}_{current_iter}.pth'
save_path = os.path.join(self.opt['path']['models'], save_filename)
net = net if isinstance(net, list) else [net]
param_key = param_key if isinstance(param_key, list) else [param_key]
assert len(net) == len(param_key), 'The lengths of net and param_key should be the same.'
save_dict = {}
for net_, param_key_ in zip(net, param_key):
net_ = self.get_bare_model(net_)
state_dict = net_.state_dict()
for key, param in state_dict.items():
if key.startswith('module.'): # remove unnecessary 'module.'
key = key[7:]
state_dict[key] = param.cpu()
save_dict[param_key_] = state_dict
# avoid occasional writing errors
retry = 3
while retry > 0:
try:
torch.save(save_dict, save_path)
except Exception as e:
logger = get_root_logger()
logger.warning(f'Save model error: {e}, remaining retry times: {retry - 1}')
time.sleep(1)
else:
break
finally:
retry -= 1
if retry == 0:
logger.warning(f'Still cannot save {save_path}. Just ignore it.')
# raise IOError(f'Cannot save {save_path}.')
def _print_different_keys_loading(self, crt_net, load_net, strict=True):
"""Print keys with different name or different size when loading models.
1. Print keys with different names.
2. If strict=False, print the same key but with different tensor size.
It also ignore these keys with different sizes (not load).
Args:
crt_net (torch model): Current network.
load_net (dict): Loaded network.
strict (bool): Whether strictly loaded. Default: True.
"""
crt_net = self.get_bare_model(crt_net)
crt_net = crt_net.state_dict()
crt_net_keys = set(crt_net.keys())
load_net_keys = set(load_net.keys())
logger = get_root_logger()
if crt_net_keys != load_net_keys:
logger.warning('Current net - loaded net:')
for v in sorted(list(crt_net_keys - load_net_keys)):
logger.warning(f' {v}')
logger.warning('Loaded net - current net:')
for v in sorted(list(load_net_keys - crt_net_keys)):
logger.warning(f' {v}')
# check the size for the same keys
if not strict:
common_keys = crt_net_keys & load_net_keys
for k in common_keys:
if crt_net[k].size() != load_net[k].size():
logger.warning(f'Size different, ignore [{k}]: crt_net: '
f'{crt_net[k].shape}; load_net: {load_net[k].shape}')
load_net[k + '.ignore'] = load_net.pop(k)
def load_network(self, net, load_path, strict=True, param_key='params'):
"""Load network.
Args:
load_path (str): The path of networks to be loaded.
net (nn.Module): Network.
strict (bool): Whether strictly loaded.
param_key (str): The parameter key of loaded network. If set to
None, use the root 'path'.
Default: 'params'.
"""
logger = get_root_logger()
net = self.get_bare_model(net)
load_net = torch.load(load_path, map_location=lambda storage, loc: storage)
if param_key is not None:
if param_key not in load_net and 'params' in load_net:
param_key = 'params'
logger.info('Loading: params_ema does not exist, use params.')
load_net = load_net[param_key]
logger.info(f'Loading {net.__class__.__name__} model from {load_path}, with param key: [{param_key}].')
# remove unnecessary 'module.'
for k, v in deepcopy(load_net).items():
if k.startswith('module.'):
load_net[k[7:]] = v
load_net.pop(k)
self._print_different_keys_loading(net, load_net, strict)
net.load_state_dict(load_net, strict=strict)
@master_only
def save_training_state(self, epoch, current_iter):
"""Save training states during training, which will be used for
resuming.
Args:
epoch (int): Current epoch.
current_iter (int): Current iteration.
"""
if current_iter != -1:
state = {'epoch': epoch, 'iter': current_iter, 'optimizers': [], 'schedulers': []}
for o in self.optimizers:
state['optimizers'].append(o.state_dict())
for s in self.schedulers:
state['schedulers'].append(s.state_dict())
save_filename = f'{current_iter}.state'
save_path = os.path.join(self.opt['path']['training_states'], save_filename)
# avoid occasional writing errors
retry = 3
while retry > 0:
try:
torch.save(state, save_path)
except Exception as e:
logger = get_root_logger()
logger.warning(f'Save training state error: {e}, remaining retry times: {retry - 1}')
time.sleep(1)
else:
break
finally:
retry -= 1
if retry == 0:
logger.warning(f'Still cannot save {save_path}. Just ignore it.')
# raise IOError(f'Cannot save {save_path}.')
def resume_training(self, resume_state):
"""Reload the optimizers and schedulers for resumed training.
Args:
resume_state (dict): Resume state.
"""
resume_optimizers = resume_state['optimizers']
resume_schedulers = resume_state['schedulers']
assert len(resume_optimizers) == len(self.optimizers), 'Wrong lengths of optimizers'
assert len(resume_schedulers) == len(self.schedulers), 'Wrong lengths of schedulers'
for i, o in enumerate(resume_optimizers):
self.optimizers[i].load_state_dict(o)
for i, s in enumerate(resume_schedulers):
self.schedulers[i].load_state_dict(s)
def reduce_loss_dict(self, loss_dict):
"""reduce loss dict.
In distributed training, it averages the losses among different GPUs .
Args:
loss_dict (OrderedDict): Loss dict.
"""
with torch.no_grad():
if self.opt['dist']:
keys = []
losses = []
for name, value in loss_dict.items():
keys.append(name)
losses.append(value)
losses = torch.stack(losses, 0)
torch.distributed.reduce(losses, dst=0)
if self.opt['rank'] == 0:
losses /= self.opt['world_size']
loss_dict = {key: loss for key, loss in zip(keys, losses)}
log_dict = OrderedDict()
for name, value in loss_dict.items():
log_dict[name] = value.mean().item()
return log_dict