diff --git a/Rede_Neural_Avaliacao.ipynb b/Rede_Neural_Avaliacao.ipynb
deleted file mode 100644
index e9129a2..0000000
--- a/Rede_Neural_Avaliacao.ipynb
+++ /dev/null
@@ -1,515 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "view-in-github",
- "colab_type": "text"
- },
- "source": [
- ""
- ]
- },
- {
- "cell_type": "markdown",
- "id": "f151b7dd",
- "metadata": {
- "id": "f151b7dd"
- },
- "source": [
- "# Avaliação de Redes Neurais\n",
- "Este notebook implementa o desenvolvimento de uma Rede Neural de acordo com os critérios estabelecidos:\n",
- "- Preparação dos dados\n",
- "- Escolha da arquitetura\n",
- "- Seleção de hiperparâmetros\n",
- "- Divisão de dados\n",
- "- Métricas de avaliação\n",
- "- Análise crítica e conclusões\n",
- "\n",
- "O dataset utilizado é o Iris Dataset, um problema clássico de classificação multiclasse."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "id": "40696229",
- "metadata": {
- "id": "40696229"
- },
- "outputs": [],
- "source": [
- "\n",
- "# Importando bibliotecas necessárias\n",
- "\n",
- "Comentários:\n",
- "\n",
- "#import keras: A biblioteca principal para construir redes neurais com Keras.\n",
- "#from sklearn.model_selection import train_test_split: Utilizada para dividir os dados em conjuntos de treinamento e teste.\n",
- "#import matplotlib.pyplot as plt: Para visualização das métricas de treinamento e teste.\n",
- "#from keras.models import Sequential: O modelo usado é o Sequential, que é adequado para redes neurais simples.\n",
- "#from keras.layers import Dense: Usada para adicionar camadas densas ao modelo, a principal camada da rede neural.\n",
- "\n",
- "import numpy as np\n",
- "import pandas as pd\n",
- "import matplotlib.pyplot as plt\n",
- "import seaborn as sns\n",
- "from sklearn.model_selection import train_test_split\n",
- "from sklearn.preprocessing import StandardScaler\n",
- "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score\n",
- "\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "id": "73dd53b3",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 1000
- },
- "id": "73dd53b3",
- "outputId": "6c563cd7-5a3c-4d17-98f6-b8109ee9f552"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Informações do dataset:\n",
- "\n",
- "RangeIndex: 150 entries, 0 to 149\n",
- "Data columns (total 5 columns):\n",
- " # Column Non-Null Count Dtype \n",
- "--- ------ -------------- ----- \n",
- " 0 sepal length (cm) 150 non-null float64\n",
- " 1 sepal width (cm) 150 non-null float64\n",
- " 2 petal length (cm) 150 non-null float64\n",
- " 3 petal width (cm) 150 non-null float64\n",
- " 4 target 150 non-null int64 \n",
- "dtypes: float64(4), int64(1)\n",
- "memory usage: 6.0 KB\n",
- "None\n",
- "\n",
- "Primeiros registros:\n",
- " sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \\\n",
- "0 5.1 3.5 1.4 0.2 \n",
- "1 4.9 3.0 1.4 0.2 \n",
- "2 4.7 3.2 1.3 0.2 \n",
- "3 4.6 3.1 1.5 0.2 \n",
- "4 5.0 3.6 1.4 0.2 \n",
- "\n",
- " target \n",
- "0 0 \n",
- "1 0 \n",
- "2 0 \n",
- "3 0 \n",
- "4 0 \n",
- "\n",
- "Valores ausentes por coluna:\n",
- "sepal length (cm) 0\n",
- "sepal width (cm) 0\n",
- "petal length (cm) 0\n",
- "petal width (cm) 0\n",
- "target 0\n",
- "dtype: int64\n",
- "\n",
- "Estatísticas descritivas:\n",
- " sepal length (cm) sepal width (cm) petal length (cm) \\\n",
- "count 150.000000 150.000000 150.000000 \n",
- "mean 5.843333 3.057333 3.758000 \n",
- "std 0.828066 0.435866 1.765298 \n",
- "min 4.300000 2.000000 1.000000 \n",
- "25% 5.100000 2.800000 1.600000 \n",
- "50% 5.800000 3.000000 4.350000 \n",
- "75% 6.400000 3.300000 5.100000 \n",
- "max 7.900000 4.400000 6.900000 \n",
- "\n",
- " petal width (cm) target \n",
- "count 150.000000 150.000000 \n",
- "mean 1.199333 1.000000 \n",
- "std 0.762238 0.819232 \n",
- "min 0.100000 0.000000 \n",
- "25% 0.300000 0.000000 \n",
- "50% 1.300000 1.000000 \n",
- "75% 1.800000 2.000000 \n",
- "max 2.500000 2.000000 \n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "