-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·407 lines (330 loc) · 18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import sys
from argparse import ArgumentParser
import random
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1' # only relevant to my own environment
from tqdm import tqdm
import numpy as np
import pdb
from glob import glob
import pandas as pd
from pathlib import Path
import time
from collections import OrderedDict
import random
import pandas as pd
import importlib
import shutil
import torch
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
from torch.utils.data import SubsetRandomSampler
from torch.autograd import Variable
from weight_init import weight_init
from drum_dataloader import drum_dataloader
from metrics_manager import metrics_manager
from rhythm_can.constants import *
from rhythm_can.utils import *
MAX_LOSS_RATIO = 3
def opt_global_inti():
parser = ArgumentParser()
#data
# parser.add_argument('--dataset_root', type=str, default="./data/matrices_drum_gm_clean.npz", help="dataset path")
parser.add_argument('--dataset_root', type=str, default="./data/matrices_drum_gm_clean_no_fill.npz", help="dataset path")
parser.add_argument('--num_workers', type=int, help='number of data loading workers', default=32)
parser.add_argument('--noise_len', type=int, default = 100,help='length of noise vector')
parser.add_argument('--shuffle', type=lambda x: (str(x).lower() == 'true'),default=True ,help="if shuffle the dataset")
# parser.add_argument('--train_size', type=float,default=0.9 ,help="represent the proportion of the dataset to include in the train split")
#model parameters
parser.add_argument('--model', type=str,default='conditioned_gan' ,help="[conditioned_gan,..]")
parser.add_argument('--kernal', type=str, default='Transformer', help='type of recurrent net (LSTM, Transformer)')
#optimizer parameters
parser.add_argument('--d_init_lr', type=float,default= 0.0001,help="discriminator optimizer initial learning rate")
# parser.add_argument('--d_step_size', type=int,default=300 ,help="how many epochs to update the lr")#for LSTM
parser.add_argument('--d_step_size', type=int,default=100 ,help="how many epochs to update the lr")#for Transformer
parser.add_argument('--d_gamma', type=float,default=0.5 ,help="decay_rate")
parser.add_argument('--g_init_lr', type=str,default=0.001,help="generator optimizer initial learning rate")
# parser.add_argument('--g_step_size', type=int,default=300,help="how many epochs to update the lr"))#for LSTM
parser.add_argument('--g_step_size', type=int,default=100,help="how many epochs to update the lr")#for Transformer
parser.add_argument('--g_gamma', type=float,default=0.5,help="decay_rate")
# parser.add_argument('--synchonization', type=str,default='BN' ,help="[BN,BN_syn,Instance]")
#training parameters
parser.add_argument('--apex', type=lambda x: (str(x).lower() == 'true'),default=False ,help="apexFF16")#Not implement yet
parser.add_argument('--cuda', type=lambda x: (str(x).lower() == 'true'),default=True ,help="Using GPU or Not")
parser.add_argument('--num_gpu', type=int,default=1,help="num_gpu")
parser.add_argument("--batch_size", type=int, default=32, help="size of the batches")
parser.add_argument('--epoch_max', type=int,default=1001,help="epoch_max")
parser.add_argument('--K_unrolled_d', type=int,default=5,help="train Discriminator (K_unrolled) times per epoch")
parser.add_argument('--K_unrolled_g', type=int,default=1,help="train Generator (K_unrolled) times per epoch")
parser.add_argument('--debug', type=lambda x: (str(x).lower() == 'true'),default=False,help="is task for debugging?False for load entire dataset")
parser.add_argument('--save_perEpoch', type=int,default=200,help="save_perEpoch")
parser.add_argument('--vis_perEpoch', type=int,default=10,help="vis_perEpoch")
parser.add_argument('--save_fig', type=lambda x: (str(x).lower() == 'true'),default=True,help="Save the sample plot during the testing")
parser.add_argument('--show_fig', type=lambda x: (str(x).lower() == 'true'),default=False,help="show the sample plot during the testing")
#wandb config(optional)
parser.add_argument('--wandb', type=lambda x: (str(x).lower() == 'true'),default=False ,help="Use wandb or not")
parser.add_argument('--wandb_history', type=lambda x: (str(x).lower() == 'true'),default=False ,help="load wandb history")
parser.add_argument('--wandb_id', type=str,default='',help="")
parser.add_argument('--wandb_file', type=str,default='',help="")
parser.add_argument('--unsave_epoch', type=int,default=0,help="")
parser.add_argument('--load_pretrain', type=str,default='',help="root load_pretrain")
parser.add_argument('--wd_project', type=str,default="Creative_GAN",help="")
args = parser.parse_args()
return args
def save_model(package,root):
torch.save(package,root)
def setSeed(seed = 2):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def convert_state_dict(state_dict):
if not next(iter(state_dict)).startswith("module."):
return state_dict # abort if dict is not a DataParallel model_state
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
return new_state_dict
def creating_new_model(opt):
print('----------------------Creating model----------------------')
opt.time = time.ctime()
opt.epoch_ckpt = 0
opt.d_loss = 0
opt.g_loss = 0
module_name = 'model.'+opt.model
MODEL = importlib.import_module(module_name)
discriminator,generator = MODEL.get_model(NB_GENRES = opt.NB_GENRES,
noise_len= opt.noise_len,
len_seq= opt.len_seq,
nb_notes=opt.nb_notes,
kernal =opt.kernal)
# generator.apply(weight_init)
# discriminator.apply(weight_init)
f_loss = MODEL.get_loss(cuda = opt.cuda)
print('generator and discriminator models are successfully loaded')
print('----------------------Model Info----------------------')
print('Root of prestrain model: ', '[No Prestrained loaded]')
print('Model: ', opt.model)
print('Trained Date: ',opt.time)
print('----------------------Configure optimizer and scheduler----------------------')
experiment_dir = Path('ckpt/')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath(opt.model+"_"+opt.kernal)
experiment_dir.mkdir(exist_ok=True)
shutil.copy('model/%s.py' % opt.model, str(experiment_dir))
shutil.move(os.path.join(str(experiment_dir), '%s.py'% opt.model),
os.path.join(str(experiment_dir), 'model.py'))
experiment_dir = experiment_dir.joinpath('saves')
experiment_dir.mkdir(exist_ok=True)
opt.save_root = str(experiment_dir)
print('APEX: ',opt.apex)
print('CUDA: ',opt.cuda)
if(opt.apex==True):#APEX not is implmented yet
model = apex.parallel.convert_syncbn_model(model)
generator.cuda()
discriminator.cuda()
optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999))
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)
model, optimizer = amp.initialize(model, optimizer, opt_level="O2")
model = torch.nn.DataParallel(model,device_ids =[0,1])
else:
if(opt.cuda):
discriminator.cuda()
generator.cuda()
optimizer_d = optim.Adam(discriminator.parameters(), lr=opt.d_init_lr,betas=(0.9, 0.999),eps=1e-07)
optimizer_g = optim.Adam(generator.parameters(), lr=opt.g_init_lr,betas=(0.9, 0.999),eps=1e-07)
scheduler_d = optim.lr_scheduler.StepLR(optimizer_d, step_size=opt.d_step_size,gamma = opt.d_gamma)
scheduler_g = optim.lr_scheduler.StepLR(optimizer_g, step_size=opt.g_step_size,gamma = opt.g_gamma)
if(opt.num_gpu>1):
discriminator = torch.nn.DataParallel(discriminator)
generator = torch.nn.DataParallel(generator)
else:
discriminator.cpu()
generator.cpu()
optimizer_d = optim.Adam(discriminator.parameters(), lr=opt.d_init_lr,betas=(0.9, 0.999),eps=1e-07)
optimizer_g = optim.Adam(generator.parameters(), lr=opt.g_init_lr,betas=(0.9, 0.999),eps=1e-07)
scheduler_d = optim.lr_scheduler.StepLR(optimizer_d, step_size=opt.d_step_size,gamma = opt.d_gamma)
scheduler_g = optim.lr_scheduler.StepLR(optimizer_g, step_size=opt.g_step_size,gamma = opt.g_gamma)
return opt,generator,discriminator,f_loss,optimizer_d,scheduler_d,optimizer_g,scheduler_g
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def main():
# setSeed(10)
opt = opt_global_inti()
if(opt.cuda):
opt.device = 'cuda'
else:
opt.device = 'cpu'
if(opt.cuda):
num_gpu = torch.cuda.device_count()
print("num gpu avaible:",num_gpu)
print("opt.num_gpu :",opt.num_gpu )
assert num_gpu == opt.num_gpu,"opt.num_gpu NOT equals torch.cuda.device_count()"
if(opt.wandb):
import wandb
print('----------------------Load Dataset----------------------')
print('Root of dataset: ', opt.dataset_root)
print('debug: ', opt.debug)
drum_dataset = drum_dataloader(root = opt.dataset_root)
print("length of Data: ",len(drum_dataset))
print('----------------------Music Info----------------------')
print("DRUM_CLASSES:", DRUM_CLASSES)
print("# of drum instruments:", nb_notes)
print("dimentionality of random input z:", len_input)
print("resolution of one bar:", resolution*4) # how many grids in one bar
print("length of rhythm pattern to be generated:", len_seq, "beats" )
opt.DRUM_CLASSES = DRUM_CLASSES
opt.nb_notes = nb_notes
opt.len_input = len_input
opt.resolution = resolution*4
opt.len_seq = len_seq
GENRES = np.load(opt.dataset_root)['genres']
# GENRES:['breakbeat' 'dnb' 'downtempo' 'garage' 'house' 'jungle' 'old_skool' 'techno' 'trance']
opt.NB_GENRES = len(GENRES)
if(opt.load_pretrain!=''):
opt,generator,discriminator,f_loss,optimizer_d,scheduler_d,optimizer_g,scheduler_g = load_pretrained(opt)#Not implement yet
else:
opt,generator,discriminator,f_loss,optimizer_d,scheduler_d,optimizer_g,scheduler_g = creating_new_model(opt)
print('----------------------Prepareing Training----------------------')
# metrics_list = ['discriminator_loss','generator_loss','generator_acc','time_complexicity','storage_complexicity']
metrics_list = ['discriminator_loss','generator_loss']
manager_test = metrics_manager(metrics_list)
manager_train = metrics_manager(metrics_list)
if(opt.wandb):
wandb.init(project=opt.wd_project,name=opt.model,resume=False)
if(opt.wandb_history == False):
best_value = 0
else:
temp = wandb.restore('best_model.pth',run_path = opt.wandb_id)#Continue to pretrain [Not implement Yet]
best_value = torch.load(temp.name)['generator_loss']#Continue to pretrain [Not implement Yet]
wandb.config.update(opt)
if opt.epoch_ckpt == 0:
opt.unsave_epoch = 0
else:
opt.epoch_ckpt = opt.epoch_ckpt+1 #Continue to train the pretrain [Not implement Yet]
train_d = True
train_g = True
print("wandb",opt.wandb)
print("train_d",train_d)
print("train_g",train_g)
print("epoch_max",opt.epoch_max)
print("kernal",opt.kernal)
print("save_fig",opt.save_fig)
print("show_fig",opt.show_fig)
for epoch in range(opt.epoch_ckpt,opt.epoch_max):
generator.train()
generator.train()
manager_train.reset()
nb_steps = int(len(drum_dataset)/opt.batch_size)
for _ in range(nb_steps):
#Train D
if(train_d):
m_d_loss = 0.0
for _ in range(opt.K_unrolled_d):
subset_indices = np.random.randint(low = 0, high= len(drum_dataset), size=opt.batch_size)
drum,label = drum_dataset.__getitem__(subset_indices)
drum,label = drum.to(opt.device),label.to(opt.device)
valid = Variable(torch.FloatTensor(opt.batch_size, 1).fill_(1.0), requires_grad=False).to(opt.device)* 0.9 # one-sided soft labeling
fake = Variable(torch.FloatTensor(opt.batch_size, 1).fill_(0.0), requires_grad=False).to(opt.device)
optimizer_d.zero_grad()
d_pred_real = discriminator(drum,label)
d_loss_real = f_loss(d_pred_real, valid)
d_loss_real.backward()
optimizer_d.step()
optimizer_d.zero_grad()
noise = np.random.normal(0.0, 1, size=(opt.batch_size,opt.noise_len))
noise = torch.FloatTensor(noise).to(opt.device)
drum_fake = generator(noise,label)
d_pred_fake = discriminator(drum_fake.detach(),label) # detach to avoid training G on these labels
d_loss_fake = f_loss(d_pred_fake, fake)
d_loss_fake.backward()
optimizer_d.step()
d_loss = (d_loss_fake + d_loss_real) / 2
m_d_loss += d_loss.item()
m_d_loss /= float(opt.K_unrolled_d)
manager_train.update('discriminator_loss',m_d_loss)
#Train G
if(train_g):
m_g_loss = 0.0
for p in discriminator.parameters():
p.requires_grad = False
for _ in range(opt.K_unrolled_g):
optimizer_g.zero_grad()
noise = np.random.normal(0.0, 1, size=(opt.batch_size,opt.noise_len))
noise = torch.FloatTensor(noise).to(opt.device)
label_random = torch.LongTensor(np.random.randint(0, opt.NB_GENRES, (opt.batch_size,1))).to(opt.device)
valid = Variable(torch.FloatTensor(opt.batch_size, 1).fill_(1.0), requires_grad=False).to(opt.device)
drum_fake = generator(noise,label_random)
d_pred_fake = discriminator(drum_fake,label_random)
g_loss = f_loss(d_pred_fake, valid)
m_g_loss += g_loss.item()
g_loss.backward()
optimizer_g.step()
for p in discriminator.parameters():
p.requires_grad = True
m_g_loss /= float(opt.K_unrolled_g)
manager_train.update('generator_loss',m_g_loss)
if train_d and train_g:
if(m_g_loss != 0 and m_d_loss != 0):
if m_g_loss / m_d_loss > MAX_LOSS_RATIO:
train_d = False
# print ("Pausing D")
elif m_d_loss / m_g_loss > MAX_LOSS_RATIO:
train_g = False
# print ("Pausing G")
else:
if(m_g_loss == 0):
train_g = False
if(m_d_loss == 0):
train_d = False
else:
train_d = True
train_g = True
# scheduler_d.step()
# scheduler_g.step()
summery_dict = manager_train.summary()
print("epoch:",epoch)
print("m_d_loss:",summery_dict['discriminator_loss']," m_g_loss:",summery_dict['generator_loss'])
manager_train.reset()
#================================Visualize sample==============================================================
if(epoch%opt.vis_perEpoch == 0):
noise = np.random.normal(0.0, 1, size=(opt.batch_size,opt.noise_len))
noise = torch.FloatTensor(noise).to(opt.device)
label_random = torch.LongTensor(np.random.randint(0, opt.NB_GENRES, (opt.batch_size,1))).to(opt.device)
drum_generated = generator(noise,label_random)
drum_generated = drum_generated[0,:,:]
drum_generated = drum_generated.cpu().data.numpy()
signature = {'epoch':epoch,'genre':GENRES[label_random[0,0]]}
plot_drum_matrix(drum_generated,save_fig = opt.save_fig,show_fig = opt.show_fig,signature = signature)
# play_drum_matrix(drum1)
#================================Visualize sample==============================================================
#================================Save the models==============================================================
if(epoch%opt.save_perEpoch == 0):
package = dict()
package['discriminator'] = discriminator.state_dict()
package['scheduler_d'] = scheduler_d
package['optimizer_d'] = optimizer_d
package['generator'] = generator.state_dict()
package['scheduler_g'] = scheduler_g
package['optimizer_g'] = optimizer_g
package['epoch'] = epoch
opt_temp = vars(opt)
for k in opt_temp:
package[k] = opt_temp[k]
for k in summery_dict:
package[k] = summery_dict[k]
save_root = opt.save_root+'/d_loss%.4f_g_loss%.4f_Epoch%s.pth'%(package['discriminator_loss'],package['generator_loss'],package['epoch'])
torch.save(package,save_root)
#================================Save the models==============================================================
if(opt.wandb):
wandb.log(summery_dict)
if(opt.debug == True):
pdb.set_trace()
if __name__ == '__main__':
main()