forked from Harsh-Avinash/Dynamic-Realtime-Animation-Control
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOperator.py
185 lines (138 loc) · 8.52 KB
/
Operator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import bpy
import cv2
import time
import numpy
class OpenCVAnimOperator(bpy.types.Operator):
"""Operator which runs its self from a timer"""
bl_idname = "wm.opencv_operator"
bl_label = "OpenCV Animation Operator"
face_detect_path = cv2.data.haarcascades + "haarcascade_frontalface_default.xml"
landmark_model_path = "C:\\Users\\Joe\\Documents\\AnimationUsingPython\\data\\lbfmodel.yaml"
fm = cv2.face.createFacemarkLBF()
fm.loadModel(landmark_model_path)
cas = cv2.CascadeClassifier(face_detect_path)
_timer = None
_cap = None
stop = False
width = 640
height = 480
model_points = numpy.array([(0.0, 0.0, 0.0), (0.0, -330.0, -65.0), (-225.0, 170.0, -135.0), (225.0, 170.0, -135.0), (-150.0, -150.0, -125.0), (150.0, -150.0, -125.0)], dtype = numpy.float32)
camera_matrix = numpy.array( [[height, 0.0, width/2], [0.0, height, height/2], [0.0, 0.0, 1.0]], dtype = numpy.float32 )
def smooth_value(self, name, length, value):
if not hasattr(self, 'smooth'):
self.smooth = {}
if not name in self.smooth:
self.smooth[name] = numpy.array([value])
else:
self.smooth[name] = numpy.insert(arr=self.smooth[name], obj=0, values=value)
if self.smooth[name].size > length:
self.smooth[name] = numpy.delete(self.smooth[name], self.smooth[name].size-1, 0)
sum = 0
for val in self.smooth[name]:
sum += val
return sum / self.smooth[name].size
def get_range(self, name, value):
if not hasattr(self, 'range'):
self.range = {}
if not name in self.range:
self.range[name] = numpy.array([value, value])
else:
self.range[name] = numpy.array([min(value, self.range[name][0]), max(value, self.range[name][1])] )
val_range = self.range[name][1] - self.range[name][0]
if val_range != 0:
return (value - self.range[name][0]) / val_range
else:
return 0.0
def modal(self, context, event):
if (event.type in {'RIGHTMOUSE', 'ESC'}) or self.stop == True:
self.cancel(context)
return {'CANCELLED'}
if event.type == 'TIMER':
self.init_camera()
_, image = self._cap.read()
faces = self.cas.detectMultiScale(image,
scaleFactor=1.05,
minNeighbors=3,
flags=cv2.CASCADE_SCALE_IMAGE,
minSize=(int(self.width/5), int(self.width/5)))
if type(faces) is numpy.ndarray and faces.size > 0:
biggestFace = numpy.zeros(shape=(1,4))
for face in faces:
if face[2] > biggestFace[0][2]:
print(face)
biggestFace[0] = face
_, landmarks = self.fm.fit(image, faces=biggestFace)
for mark in landmarks:
shape = mark[0]
image_points = numpy.array([shape[30], shape[8], shape[36], shape[45], shape[48], shape[54]], dtype = numpy.float32)
dist_coeffs = numpy.zeros((4,1))
if hasattr(self, 'rotation_vector'):
(success, self.rotation_vector, self.translation_vector) = cv2.solvePnP(self.model_points,
image_points, self.camera_matrix, dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE,
rvec=self.rotation_vector, tvec=self.translation_vector,
useExtrinsicGuess=True)
else:
(success, self.rotation_vector, self.translation_vector) = cv2.solvePnP(self.model_points,
image_points, self.camera_matrix, dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE,
useExtrinsicGuess=False)
if not hasattr(self, 'first_angle'):
self.first_angle = numpy.copy(self.rotation_vector)
bones = bpy.data.objects["RIG-Vincent"].pose.bones
bones["head_fk"].rotation_euler[0] = self.smooth_value("h_x", 5, (self.rotation_vector[0] - self.first_angle[0])) / 1
bones["head_fk"].rotation_euler[2] = self.smooth_value("h_y", 5, -(self.rotation_vector[1] - self.first_angle[1])) / 1.5
bones["head_fk"].rotation_euler[1] = self.smooth_value("h_z", 5, (self.rotation_vector[2] - self.first_angle[2])) / 1.3
bones["head_fk"].keyframe_insert(data_path="rotation_euler", index=-1)
bones["mouth_ctrl"].location[2] = self.smooth_value("m_h", 2, -self.get_range("mouth_height", numpy.linalg.norm(shape[62] - shape[66])) * 0.06 )
bones["mouth_ctrl"].location[0] = self.smooth_value("m_w", 2, (self.get_range("mouth_width", numpy.linalg.norm(shape[54] - shape[48])) - 0.5) * -0.04)
bones["mouth_ctrl"].keyframe_insert(data_path="location", index=-1)
bones["brow_ctrl_L"].location[2] = self.smooth_value("b_l", 3, (self.get_range("brow_left", numpy.linalg.norm(shape[19] - shape[27])) -0.5) * 0.04)
bones["brow_ctrl_R"].location[2] = self.smooth_value("b_r", 3, (self.get_range("brow_right", numpy.linalg.norm(shape[24] - shape[27])) -0.5) * 0.04)
bones["brow_ctrl_L"].keyframe_insert(data_path="location", index=2)
bones["brow_ctrl_R"].keyframe_insert(data_path="location", index=2)
l_open = self.smooth_value("e_l", 2, self.get_range("l_open", -numpy.linalg.norm(shape[48] - shape[44])) )
r_open = self.smooth_value("e_r", 2, self.get_range("r_open", -numpy.linalg.norm(shape[41] - shape[39])) )
eyes_open = (l_open + r_open) / 2.0
bones["eyelid_up_ctrl_R"].location[2] = -eyes_open * 0.025 + 0.005
bones["eyelid_low_ctrl_R"].location[2] = eyes_open * 0.025 - 0.005
bones["eyelid_up_ctrl_L"].location[2] = -eyes_open * 0.025 + 0.005
bones["eyelid_low_ctrl_L"].location[2] = eyes_open * 0.025 - 0.005
bones["eyelid_up_ctrl_R"].keyframe_insert(data_path="location", index=2)
bones["eyelid_low_ctrl_R"].keyframe_insert(data_path="location", index=2)
bones["eyelid_up_ctrl_L"].keyframe_insert(data_path="location", index=2)
bones["eyelid_low_ctrl_L"].keyframe_insert(data_path="location", index=2)
for (x, y) in shape:
cv2.circle(image, (int(x), int(y)), 2, (0, 255, 255), -1)
for (x,y,w,h) in faces:
cv2.rectangle(image,(x,y),(x+w,y+h),(255,0,0),1)
cv2.imshow("Output", image)
cv2.waitKey(1)
return {'PASS_THROUGH'}
def init_camera(self):
if self._cap == None:
self._cap = cv2.VideoCapture(0)
self._cap.set(cv2.CAP_PROP_FRAME_WIDTH, self.width)
self._cap.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height)
self._cap.set(cv2.CAP_PROP_BUFFERSIZE, 1)
time.sleep(1.0)
def stop_playback(self, scene):
print(format(scene.frame_current) + " / " + format(scene.frame_end))
if scene.frame_current == scene.frame_end:
bpy.ops.screen.animation_cancel(restore_frame=False)
def execute(self, context):
bpy.app.handlers.frame_change_pre.append(self.stop_playback)
wm = context.window_manager
self._timer = wm.event_timer_add(0.01, window=context.window)
wm.modal_handler_add(self)
return {'RUNNING_MODAL'}
def cancel(self, context):
wm = context.window_manager
wm.event_timer_remove(self._timer)
cv2.destroyAllWindows()
self._cap.release()
self._cap = None
def register():
bpy.utils.register_class(OpenCVAnimOperator)
def unregister():
bpy.utils.unregister_class(OpenCVAnimOperator)
if __name__ == "__main__":
register()