-
Notifications
You must be signed in to change notification settings - Fork 4
/
run_experiment.py
59 lines (48 loc) · 1.99 KB
/
run_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from functools import partial
from pathlib import Path
from typing import Callable
# import dotenv
import hydra
from omegaconf import DictConfig, OmegaConf
# load environment variables from `.env` file if it exists
# recursively searches for `.env` in all folders starting from work dir
# dotenv.load_dotenv(override=True)
@hydra.main(version_base="1.2", config_path="config/", config_name="config.yaml")
def main(config: DictConfig):
# Imports should be nested inside @hydra.main to optimize tab completion
# Read more here: https://github.com/facebookresearch/hydra/issues/934
from unxpass import utils
from unxpass.components.base import UnxpassComponent
from unxpass.config import logger
from unxpass.datasets import PassesDataset
# A couple of optional utilities:
# - disabling python warnings
# - easier access to debug mode
# - forcing debug friendly configuration
# You can safely get rid of this line if you don't want those
utils.extras(config)
# Pretty print config using Rich library
if config.get("print_config"):
utils.print_config(config, resolve=True)
# Set seed
if config.get("seed"):
utils.set_seeds(config.seed)
# Train model
logger.info("Instantiating training dataset")
dataset_train: Callable = partial(
PassesDataset, path=Path("stores") / "datasets" / "default" / "train"
)
logger.info(f"Instantiating model component <{config.component._target_}>")
component: UnxpassComponent = hydra.utils.instantiate(config.component, _convert_="partial")
# Setup callbacks
train_cfg = OmegaConf.to_object(config.get("train_cfg", DictConfig({})))
utils.instantiate_callbacks(train_cfg)
utils.instantiate_loggers(train_cfg)
logger.info("⌛ Starting training!")
result = component.train(
dataset_train, optimized_metric=config.get("optimized_metric"), **train_cfg
)
logger.info("✅ Finished training.")
return result
if __name__ == "__main__":
main()