Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add files via upload #7

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
299 changes: 299 additions & 0 deletions content/notebooks/H-atom-4c.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,299 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "90e862bb-783a-4f97-a227-8f6e0b4012b8",
"metadata": {},
"source": [
"# The Dirac equation for the Hydrogen atom\n",
"\n",
"In this notebook we will illustrate how one can solve the Dirac equation for a Hydrogen atom using the Multiwavelet framework provided by VAMPyR\n",
"\n",
"The Dirac equation can be coincisely written as follows:\n",
"\n",
"\\begin{equation}\n",
"(\\beta m c^2+ c \\boldsymbol{\\alpha} \\cdot \\mathbf{p} + V) \\phi = \\epsilon \\phi \n",
"\\end{equation}\n",
"\n",
"where $\\phi = (\\phi^{L\\alpha}, \\phi^{L\\beta}, \\phi^{S\\alpha}, \\phi^{S\\beta})^t$ represents a 4-component spinor, $\\boldsymbol{\\alpha} = \n",
"\\begin{pmatrix}\n",
"0_2 & \\boldsymbol{\\sigma} \\\\\n",
"\\boldsymbol{\\sigma} & 0_2 & \n",
"\\end{pmatrix}\n",
"$ and\n",
"$\\beta = \n",
"\\begin{pmatrix}\n",
"1_2 & 0_2 \\\\\n",
"0_2 & -1_2\n",
"\\end{pmatrix}\n",
"$ are the 4x4 Dirac matrices, $\\boldsymbol{\\sigma}$ is a cartesian vector collecting the three 2x2 Pauli matrices, $\\mathbf{p}$ is the momentum operator, $c$ is the speed of light, $m$ is the electron mass and $V$ is the nuclear potential.\n",
"\n",
"As for the non-relativistic case, the equation is first rewritten in its integral formulation:\n",
"$$\\phi = \\frac{1}{2mc^2}(\\beta m c^2+ c \\boldsymbol{\\alpha} \\cdot \\mathbf{p} + \\epsilon) \\left[ G_\\mu \\star (V \\psi) \\right]$$\n",
"\n",
"where $G_\\mu(x) = \\frac{e^{-\\mu |x|}}{4 \\pi |x|}$ is the Helmholtz Green's kernel and $\\mu = \\sqrt{\\frac{m^2c^4-\\epsilon}{mc^2}}$. An initial guess can be obtained by taking a Slater orbital or a Gaussian function for the $\\psi^{L\\alpha}$ component and then applying the restricted kinetic balance:\n",
"\n",
"$$\n",
"\\begin{pmatrix}\n",
"\\phi^{S\\alpha} \\\\\n",
"\\phi^{S\\beta}\n",
"\\end{pmatrix}\n",
"= \\frac{1}{2c}\\boldsymbol{\\sigma} \\cdot \\mathbf{p} \n",
"\\begin{pmatrix}\n",
"\\phi^{L\\alpha} \\\\\n",
"0\n",
"\\end{pmatrix}\n",
"$$\n",
"The guess obtained is then plugged into the integral form of the Dirac equation, which can then be iterated until convergence"
]
},
{
"cell_type": "markdown",
"id": "54c75006-0358-42c5-9075-37a5b8a909ba",
"metadata": {},
"source": [
"We start by loading the relevant packages: the 3d version of `vampyr`, `numpy`, the `complex_function` class which deals with complex funtions and the `orbital` class which deals with 4-component spinors. Each complex function is handled as a pair of `function_tree`s and each spinor is handled as a 4c vector of complex functions. The `nuclear_potential` package is self-explanatory"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "37e0e6b2-886e-4415-8612-d2a652f24c4f",
"metadata": {},
"outputs": [],
"source": [
"from vampyr import vampyr3d as vp\n",
"from orbital4c import orbital as orb\n",
"from orbital4c import nuclear_potential as nucpot\n",
"from orbital4c import complex_fcn as cf\n",
"import numpy as np"
]
},
{
"cell_type": "markdown",
"id": "7fbe4360-9936-47d4-bb6f-d51bb3b34b69",
"metadata": {},
"source": [
"As a reference, the exact Dirac energy for the ground state Hydrogen atom is computed in the function below."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "0ef3d827-810b-4411-8ba3-bd63271033e4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Exact Energy -0.5000066565989982\n"
]
}
],
"source": [
"def analytic_1s(light_speed, n, k, Z):\n",
" alpha = 1/light_speed\n",
" gamma = orb.compute_gamma(k,Z,alpha)\n",
" tmp1 = n - np.abs(k) + gamma\n",
" tmp2 = Z * alpha / tmp1\n",
" tmp3 = 1 + tmp2**2\n",
" return light_speed**2 / np.sqrt(tmp3)\n",
"\n",
"light_speed = 137.03599913900001\n",
"alpha = 1/light_speed\n",
"k = -1\n",
"l = 0\n",
"n = 1\n",
"m = 0.5\n",
"Z = 1\n",
"atom = \"H\"\n",
"\n",
"energy_1s = analytic_1s(light_speed, n, k, Z)\n",
"print('Exact Energy',energy_1s - light_speed**2, flush = True)"
]
},
{
"cell_type": "markdown",
"id": "6277d776-2236-496a-bdd5-41929d11ac3d",
"metadata": {},
"source": [
"The `MultiResolutionAnalysis` object defining the simulation box is constructed and passed to the classes for complex functions and spinors"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "5ac41574-6f43-411d-841f-f8fdf0749b66",
"metadata": {},
"outputs": [],
"source": [
"mra = vp.MultiResolutionAnalysis(box=[-30,30], order=6)\n",
"prec = 1.0e-4\n",
"origin = [0.1, 0.2, 0.3] # origin moved to avoid placing the nuclar charge on a node\n",
"\n",
"orb.orbital4c.light_speed = light_speed\n",
"orb.orbital4c.mra = mra\n",
"cf.complex_fcn.mra = mra"
]
},
{
"cell_type": "markdown",
"id": "d5abdbe4-ba5b-49d3-ae7e-febab5ced4fe",
"metadata": {},
"source": [
"We construct a starting guess by taking a simple Gaussian function and initialize the real part of the $\\phi^{L\\alpha}$ component of the spinor with it. Thereafter the restricted kinetic balance is employed. This is implemented in the `init_small_components` method of the `orbital` class"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "95826623-b759-4318-afc5-e0c225cb5f1d",
"metadata": {},
"outputs": [],
"source": [
"a_coeff = 3.0\n",
"b_coeff = np.sqrt(a_coeff/np.pi)**3\n",
"gauss = vp.GaussFunc(b_coeff, a_coeff, origin)\n",
"gauss_tree = vp.FunctionTree(mra)\n",
"vp.advanced.build_grid(out=gauss_tree, inp=gauss)\n",
"vp.advanced.project(prec=prec, out=gauss_tree, inp=gauss)\n",
"gauss_tree.normalize()\n",
"\n",
"spinor_H = orb.orbital4c()\n",
"La_comp = cf.complex_fcn()\n",
"La_comp.copy_fcns(real = gauss_tree)\n",
"spinor_H.copy_components(La = La_comp)\n",
"spinor_H.init_small_components(prec/10)\n",
"spinor_H.normalize()"
]
},
{
"cell_type": "markdown",
"id": "f6a40ddd-7933-46ee-8128-96caf89f3682",
"metadata": {},
"source": [
"The nuclear potential is defined and projected onto the `V_tree`"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "4f0cda6f-217c-4941-8ce5-fa52576c2d98",
"metadata": {},
"outputs": [],
"source": [
"Peps = vp.ScalingProjector(mra, prec)\n",
"f = lambda x: nucpot.coulomb_HFYGB(x, origin, Z, prec)\n",
"V_tree = Peps(f)\n",
"\n",
"default_der = 'BS'"
]
},
{
"cell_type": "markdown",
"id": "1678bc97-d85d-4a48-9aea-13901631534d",
"metadata": {},
"source": [
"The orbital is optimized by iterating the integral version of the Dirac equation as follows:\n",
"1. Application of the Dirac Hamiltonian $f^n = \\hat{h}_D \\phi^n = (\\beta m c^2+ c \\boldsymbol{\\alpha} \\cdot \\mathbf{p}) \\phi^n$\n",
"2. Application of the potnetial operator $g^n = \\hat{V} \\phi^n$\n",
"3. Sum $h^n = f^n + g^n$\n",
"4. Expectation value of the energy $\\left\\langle \\phi^n | h^n \\right\\rangle$\n",
"5. Calculation of the Helmholtz parameter $\\mu$\n",
"6. Convolution with the Helmholtz kernel $t^n = G_\\mu \\star g^n$\n",
"7. application of the shifted Dirac Hamiltonian $\\tilde{\\phi}^{n+1} = (\\hat{h}_D + \\epsilon) t^n$\n",
"8. normalization of the new iterate\n",
"9. calculation of the change in the orbital $\\delta \\phi^n = \\phi^{n+1}-\\phi^n$\n",
"\n",
"Once the orbital error is below the requested threshold the iteration is interrupted and the final energy is computed."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "40a443b6-33f4-4771-8b06-ccd12c9da35d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Energy -0.14180720307558659\n",
"Error 0.3648353655184581\n",
"Energy -0.49611934473068686\n",
"Error 0.0024839139737050653\n",
"Energy -0.4997319277244969\n",
"Error 0.00023304055836475225\n",
"Energy -0.49998214000152075\n",
"Error 2.3987883028320866e-05\n",
"Final Energy -0.5000042447172746\n",
"Exact Energy -0.5000066565989982\n",
"Difference -2.411881723674014e-06\n"
]
}
],
"source": [
"orbital_error = 1\n",
"while orbital_error > prec:\n",
" # 1. Application of the Dirac Hamiltonian\n",
" hd_psi = orb.apply_dirac_hamiltonian(spinor_H, prec, der = default_der)\n",
" # 2. Application of the potnetial operator\n",
" v_psi = orb.apply_potential(-1.0, V_tree, spinor_H, prec)\n",
" # 3. Sum\n",
" add_psi = hd_psi + v_psi\n",
" # 4. Expectation value of the energy\n",
" energy = (spinor_H.dot(add_psi)).real\n",
" print('Energy',energy-light_speed**2)\n",
" # 5. Calculation of the Helmholtz parameter\n",
" mu = orb.calc_dirac_mu(energy, light_speed)\n",
" # 6. Convolution with the Helmholtz kernel\n",
" tmp = orb.apply_helmholtz(v_psi, mu, prec)\n",
" tmp.crop(prec/10)\n",
" # 7. application of the shifted Dirac Hamiltonian\n",
" new_orbital = orb.apply_dirac_hamiltonian(tmp, prec, energy, der = default_der) \n",
" new_orbital.crop(prec/10)\n",
" # 8. normalization of the new iterate\n",
" new_orbital.normalize()\n",
" delta_psi = new_orbital - spinor_H\n",
" # 9. calculation of the change in the orbital\n",
" orbital_error = (delta_psi.dot(delta_psi)).real\n",
" print('Error',orbital_error, flush = True)\n",
" spinor_H = new_orbital\n",
"\n",
"# Computing the final energy\n",
"hd_psi = orb.apply_dirac_hamiltonian(spinor_H, prec, der = default_der)\n",
"v_psi = orb.apply_potential(-1.0, V_tree, spinor_H, prec)\n",
"add_psi = hd_psi + v_psi\n",
"energy = (spinor_H.dot(add_psi)).real\n",
"print('Final Energy',energy - light_speed**2)\n",
"\n",
"energy_1s = analytic_1s(light_speed, n, k, Z)\n",
"\n",
"print('Exact Energy',energy_1s - light_speed**2)\n",
"print('Difference',energy_1s - energy)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
84 changes: 84 additions & 0 deletions content/notebooks/H-test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
from vampyr import vampyr3d as vp
from orbital4c import orbital as orb
from orbital4c import nuclear_potential as nucpot
from orbital4c import complex_fcn as cf
import numpy as np

def analytic_1s(light_speed, n, k, Z):
alpha = 1/light_speed
gamma = orb.compute_gamma(k,Z,alpha)
tmp1 = n - np.abs(k) + gamma
tmp2 = Z * alpha / tmp1
tmp3 = 1 + tmp2**2
return light_speed**2 / np.sqrt(tmp3)

light_speed = 137.03599913900001
alpha = 1/light_speed
k = -1
l = 0
n = 1
m = 0.5
Z = 1
atom = "H"

energy_1s = analytic_1s(light_speed, n, k, Z)
print('Exact Energy',energy_1s - light_speed**2, flush = True)

mra = vp.MultiResolutionAnalysis(box=[-30,30], order=6)
prec = 1.0e-4
origin = [0.1, 0.2, 0.3] # origin moved to avoid placing the nuclar charge on a node

orb.orbital4c.light_speed = light_speed
orb.orbital4c.mra = mra
cf.complex_fcn.mra = mra

a_coeff = 3.0
b_coeff = np.sqrt(a_coeff/np.pi)**3
gauss = vp.GaussFunc(b_coeff, a_coeff, origin)
gauss_tree = vp.FunctionTree(mra)
vp.advanced.build_grid(out=gauss_tree, inp=gauss)
vp.advanced.project(prec=prec, out=gauss_tree, inp=gauss)
gauss_tree.normalize()

spinor_H = orb.orbital4c()
La_comp = cf.complex_fcn()
La_comp.copy_fcns(real = gauss_tree)
spinor_H.copy_components(La = La_comp)
spinor_H.init_small_components(prec/10)
spinor_H.normalize()

Peps = vp.ScalingProjector(mra, prec)
f = lambda x: nucpot.coulomb_HFYGB(x, origin, Z, prec)
V_tree = Peps(f)

print('V', V_tree)

default_der = 'BS'

orbital_error = 1
while orbital_error > prec:
hd_psi = orb.apply_dirac_hamiltonian(spinor_H, prec, der = default_der)
v_psi = orb.apply_potential(-1.0, V_tree, spinor_H, prec)
add_psi = hd_psi + v_psi
energy = (spinor_H.dot(add_psi)).real
print('Energy',energy-light_speed**2)
mu = orb.calc_dirac_mu(energy, light_speed)
tmp = orb.apply_helmholtz(v_psi, mu, prec)
tmp.crop(prec/10)
new_orbital = orb.apply_dirac_hamiltonian(tmp, prec, energy, der = default_der)
new_orbital.crop(prec/10)
new_orbital.normalize()
delta_psi = new_orbital - spinor_H
orbital_error = (delta_psi.dot(delta_psi)).real
print('Error',orbital_error, flush = True)
spinor_H = new_orbital

hd_psi = orb.apply_dirac_hamiltonian(spinor_H, prec, der = default_der)
v_psi = orb.apply_potential(-1.0, V_tree, spinor_H, prec)
add_psi = hd_psi + v_psi
energy = (spinor_H.dot(add_psi)).real
print('Final Energy',energy - light_speed**2)
energy_1s = analytic_1s(light_speed, n, k, Z)

print('Exact Energy',energy_1s - light_speed**2)
print('Difference',energy_1s - energy)
Loading