-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_generation_and_evaluation.py
47 lines (37 loc) · 1.79 KB
/
run_generation_and_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import sys
import src.evaluation_general
# retrieve path, model, and analysis to run
directory = sys.argv[1]
model = sys.argv[2]
analysis = sys.argv[3]
if model in ['CopulaGAN','CTGAN', 'TVAE', 'DP-CGAN']:
if analysis == 'epochs':
# initiate evaluation
evaluation = src.evaluation_general.DataEvaluation(directory=directory)
evaluation.generator_evaluate_epochs(models_to_evaluate=[model])
if analysis == 'embedding_dim':
# initiate evaluation
evaluation = src.evaluation_general.DataEvaluation(directory=directory)
evaluation.generator_evaluate_embedding_dim(models_to_evaluate=[model])
if analysis == 'batch_size':
# initiate evaluation
evaluation = src.evaluation_general.DataEvaluation(directory=directory)
evaluation.generator_evaluate_batch_size(models_to_evaluate=[model])
if analysis == 'log_frequency':
# initiate evaluation
evaluation = src.evaluation_general.DataEvaluation(directory=directory)
evaluation.generator_evaluate_log_frequency(models_to_evaluate=[model])
if model in ['GaussianCopula', 'CopulaGAN']:
if analysis == 'distribution':
# initiate evaluation
evaluation = src.evaluation_general.DataEvaluation(directory=directory)
evaluation.generator_evaluate_distribution(models_to_evaluate=[model])
if analysis == 'n_output':
# initiate evaluation
evaluation = src.evaluation_general.DataEvaluation(directory=directory)
evaluation.generator_evaluate_n_output(models_to_evaluate=[model], save_model=True, default_model=True)
if analysis == 'n_input':
# initiate evaluation
evaluation = src.evaluation_general.DataEvaluation(directory=directory)
evaluation.generator_evaluate_n_input_random(models_to_evaluate=[model], default_model=True)
exit()