-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_online.py
522 lines (406 loc) · 18.9 KB
/
run_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
import numpy as np
import json
import time
import datetime
import random
import nibabel as nib
from shutil import copyfile
from tensorflow.keras import losses
import models
import utils
import data_augmentation
def run_once(f):
"""
Wrapper for functions that should only run once every run.
Parameters
----------
f : function
Function to be ran.
Returns
-------
wrapper : boolean
"""
def wrapper(*args, **kwargs):
if not wrapper.has_run:
wrapper.has_run = True
return f(*args, **kwargs)
wrapper.has_run = False
return wrapper
class DiceMetric(tf.keras.metrics.Metric):
def __init__(self, name='dice_coefficient', **kwargs):
super(DiceMetric, self).__init__(name=name, **kwargs)
self.dice_score = self.add_weight(name='dsc', initializer='zeros')
def update_state(self, y_true, y_pred, sample_weight=None):
# smooth = 0.000001
smooth = 1
union = tf.reduce_sum(y_true, axis=[1, 2, 3]) + tf.reduce_sum(y_pred, axis=[1, 2, 3])
intersection = tf.reduce_sum(y_true * y_pred, axis=[1, 2, 3])
score = tf.reduce_mean((2. * intersection + smooth) / (union + smooth), axis=0)
self.dice_score.assign(score)
def result(self):
return self.dice_score
def reset_states(self):
self.dice_score.assign(0.0)
def dice_loss(y_true, y_pred):
smooth = 1
union = tf.reduce_sum(y_true, axis=[1, 2, 3]) + tf.reduce_sum(y_pred, axis=[1, 2, 3])
intersection = tf.reduce_sum(y_true * y_pred, axis=[1, 2, 3])
score = tf.reduce_mean((2. * intersection + smooth) / (union + smooth), axis=0)
return 1 - score
def soft_dice_loss(y_true, y_pred, epsilon=1e-6):
"""Soft dice loss calculation for arbitrary batch size, number of classes,
and number of spatial dimensions.
Assumes the `channels_last` format.
# Arguments
y_true: b x X x Y( x Z...) x c One hot encoding of ground truth
y_pred: b x X x Y( x Z...) x c Network output, must sum to 1 over c channel (such as after softmax)
epsilon: Used for numerical stability to avoid divide by zero errors
"""
# skip the batch and class axis for calculating Dice score
axes = tuple(range(1, len(y_pred.shape)-1))
numerator = 2. * np.sum(y_pred * y_true, axes)
denominator = np.sum(np.square(y_pred) + np.square(y_true), axes)
return 1 - np.mean(numerator / (denominator + epsilon)) # average over classes and batch
def tversky_loss(y_true, y_pred):
alpha = 0.5
beta = 0.5
ones = tf.ones(tf.shape(y_true))
#ones = K.ones(K.shape(y_true))
p0 = y_pred # proba that voxels are class i
p1 = ones - y_pred # proba that voxels are not class i
g0 = y_true
g1 = ones - y_true
num = tf.math.reduce_sum(p0 * g0, axis=(0, 1, 2, 3))
den = num + alpha * tf.math.reduce_sum(p0 * g1, axis=(0, 1, 2, 3)) + beta * tf.math.reduce_sum(p1 * g0, axis=(0, 1, 2, 3))
# num = K.sum(p0*g0, (0,1,2,3))
# den = num + alpha*K.sum(p0*g1,(0,1,2,3)) + beta*K.sum(p1*g0,(0,1,2,3))
T = tf.math.reduce_sum(num/den)
Ncl = tf.cast(tf.shape(y_true)[-1], dtype='float32')
# T = K.sum(num/den) # when summing over classes, T has dynamic range [0 Ncl]
# Ncl = K.cast(K.shape(y_true)[-1], 'float32')
return Ncl-T
def dice_score(y_true, y_pred, ignore_background=True, square=False):
if ignore_background:
y_true = y_true[:, :, :, 1:]
y_pred = y_pred[:, :, :, 1:]
y_pred_t = tf.where(tf.greater(y_pred, 0.15), 0, 1)
y_pred_t = tf.dtypes.cast(y_pred_t, tf.float32)
y_true = tf.dtypes.cast(y_true, tf.float32)
axes = (0, 1, 2)
eps = 1e-7
num = (2 * tf.reduce_sum(y_true * y_pred, axis=axes) + eps)
denom = tf.reduce_sum(y_true, axis=axes) + tf.reduce_sum(y_pred, axis=axes) + eps
score = tf.reduce_mean(num / denom)
return score
def dice_loss2(y_true, y_pred, ignore_background=False, square=False):
if ignore_background:
y_true = y_true[:, :, :, 1:]
y_pred = y_pred[:, :, :, 1:]
y_pred_t = tf.where(tf.greater(y_pred, 0.15), 0, 1)
y_pred_t = tf.dtypes.cast(y_pred_t, tf.float32)
y_true = tf.dtypes.cast(y_true, tf.float32)
axes = (0, 1, 2)
eps = 1e-7
num = (2 * tf.reduce_sum(y_true * y_pred, axis=axes) + eps)
denom = tf.reduce_sum(y_true, axis=axes) + tf.reduce_sum(y_pred, axis=axes) + eps
score = tf.reduce_mean(num / denom)
return 1 - score
def bce(y_true, y_pred):
binary_cross_entropy = tf.keras.losses.BinaryCrossentropy()
return binary_cross_entropy(y_true, y_pred)
def dice_bce(y_true, y_pred):
d_l = dice_loss2(y_true, y_pred)
bce_l = bce(y_true, y_pred)
return d_l + bce_l
def sort_slices(path, name):
pos_dict = {}
neg_dict = {}
slice_dict = {}
patients = os.listdir(path)
for patient in patients:
# patient = patients[0]
patient_path = os.path.join(path, patient)
ct_path = os.path.join(patient_path, 'CT')
gt_path = os.path.join(patient_path, 'GT')
gt_lung_path = os.path.join(gt_path, 'Lung')
gt_gtv_path = os.path.join(gt_path, 'GTV')
ct = np.zeros([512, 512, len(os.listdir(ct_path))])
gt = np.zeros([512, 512, len(os.listdir(ct_path))])
for i, content in enumerate(os.listdir(ct_path)):
slice = nib.load(os.path.join(ct_path, content)).get_fdata()
ct[:, :, i] = slice
for i, content in enumerate(os.listdir(gt_gtv_path)):
gt_slice = nib.load(os.path.join(gt_gtv_path, content)).get_fdata()
gt[:, :, i] = gt_slice
if np.max(gt) > 0:
gt_pos = []
gt_neg = []
gt_slices = []
for layer in range(0, len(os.listdir(ct_path))):
# ct_patch = nib.load(os.path.join(ct_path, str(layer) + '_ct.nii.gz')).get_fdata()
gt_patch_gtv = nib.load(os.path.join(gt_gtv_path, str(layer) + '_gtv.nii.gz')).get_fdata()
# pet_patch = nib.load(os.path.join(pet_path, str(layer) + '_pet.nii.gz')).get_fdata()
if np.max(gt_patch_gtv) == 1:
gt_slices.append(os.path.join(ct_path, str(layer) + '.nii.gz') + ',' + os.path.join(gt_gtv_path, str(layer) + '_gtv.nii.gz') + ',' + os.path.join(gt_lung_path, str(layer) + '_lung.nii.gz') + ', ' + '1')
else:
gt_slices.append(os.path.join(ct_path, str(layer) + '.nii.gz') + ',' + os.path.join(gt_gtv_path, str(layer) + '_gtv.nii.gz') + ',' + os.path.join(gt_lung_path, str(layer) + '_lung.nii.gz') + ', ' + '0')
else:
print(f'Patient: {patient} has no GTV in image, max value: {np.max(gt)}, skipping...')
pos_dict[patient] = gt_pos
neg_dict[patient] = gt_neg
slice_dict[patient] = gt_slices
with open(name, 'w') as fp:
json.dump(slice_dict, fp)
def early_stopping(loss_list, min_delta=0.005, patience=20):
"""
Parameters
----------
loss_list : list
List containing loss values for every evaluation.
min_delta : float
Float serving as minimum difference between loss values before early stopping is considered.
patience : int
Training will not be stopped before int(patience) number of evaluations have taken place.
Returns
-------
"""
# TODO: Changed to list(loss_list)
if len(list(loss_list)) // patience < 2:
return False
mean_previous = np.mean(loss_list[::-1][patience:2 * patience])
mean_recent = np.mean(loss_list[::-1][:patience])
delta_abs = np.abs(mean_recent - mean_previous) # abs change
delta_abs = np.abs(delta_abs / mean_previous) # relative change
if delta_abs < min_delta:
print('Stopping early...')
return True
else:
return False
@run_once
def _start_graph_tensorflow():
"""
Starts the tensorboard graph. Allows for the tracking of loss curves, accuracy and architecture visualization.
"""
tf.summary.trace_on(graph=True, profiler=True)
@run_once
def _end_graph_tensorflow(self, log_dir):
"""
Parameters
----------
self : tf.writer
train_summary_writer.
log_dir : str
Path to directory where updates should be stored.
Returns
-------
"""
with self.as_default():
tf.summary.trace_export(name="graph", step=0, profiler_outdir=log_dir)
def get_batch_full(ct_slices, params):
# ct_path = os.path.join(patient_path, 'CT')
# gt_path = os.path.join(patient_path, 'GT')
# pet_path = os.path.join(patient_path, 'PT')
ct = np.zeros(shape=[params.dict['batch_size'], 512, 512, params.dict['patch_shape'][2]])
gt = np.zeros(shape=[params.dict['batch_size'], 512, 512, 1])
for layer in range(0, params.dict['batch_size']):
while True:
random_case = random.choice(list(ct_slices))
if len(ct_slices[random_case]) != 0:
break
else:
print(str(random_case) + ' Length: ' + str(len(ct_slices[random_case])))
rand_num = random.randint(0, 2)
# print(str(random_case) + ' Length: ' + str(len(ct_slices[random_case])))
if rand_num == 0:
while True:
random_layer = random.randint(0, len(ct_slices[random_case]) - 1 - (params.dict['patch_shape'][2] // 2))
selected_slice = ct_slices[random_case][random_layer]
output = selected_slice.split(',')
if int(output[-1]) == 1:
break
else:
random_layer = random.randint(0, len(ct_slices[random_case]) - 1 - (params.dict['patch_shape'][2] // 2))
selected_slice = ct_slices[random_case][random_layer]
output = selected_slice.split(',')
min_layer = random_layer - params.dict['patch_shape'][2] // 2
gt_patch = nib.load(output[1]).get_fdata()
ct_patch = np.zeros([params.dict['patch_shape'][0],
params.dict['patch_shape'][1],
params.dict['patch_shape'][2]])
for z in range(0, params.dict['patch_shape'][-1]):
selected_slice = ct_slices[random_case][min_layer + z]
output = selected_slice.split(',')
ct_patch[:, :, z] = nib.load(output[0]).get_fdata()
if random.randint(0, 1) == 1:
num_augments = np.random.randint(1, params.dict['number_of_augmentations'] + 1)
ct_patch, gt_patch = data_augmentation.apply_augmentations(ct_patch,
gt_patch,
num_augments)
ct[layer, :, :, :] = ct_patch
gt[layer, :, :, 0] = gt_patch
gt = tf.one_hot(np.uint8(np.squeeze(gt, axis=-1)), params.dict['num_classes'])
return ct, gt
def main():
@tf.function
def train_on_batch(im_src, gt_src):
"""
Manages and updates parameters for training.
Parameters
----------
im_src : np.ndarray
gt_src : np.ndarray
pet_src : np.ndarray
Returns
-------
"""
with tf.GradientTape() as tape:
predictions = model(inputs=[im_src], training=True)
regularization_loss = tf.math.add_n(model.losses)
#print()
#print(np.shape(predictions))
#print()
#print(np.shape(gt_src))
loss_value = loss_function(gt_src, predictions)
total_loss = regularization_loss + loss_value
grads = tape.gradient(total_loss, model.trainable_weights)
optimizer_function.apply_gradients(zip(grads, model.trainable_weights))
train_loss(total_loss)
return predictions
@tf.function
def validate_on_batch(im_src, gt_src):
"""
Manages validation.
Parameters
----------
im_src : np.ndarray
gt_src : np.ndarray
pet_src : np.ndarray
Returns
-------
"""
predictions = model(inputs=[im_src], training=False)
regularization_loss = tf.math.add_n(model.losses)
loss_value = loss_function(gt_src, predictions)
total_loss = regularization_loss + loss_value
validation_loss(total_loss)
return predictions
param_path = os.getcwd() + '/params.json'
params = utils.Params(param_path)
sort_slices('/home/leroy/app/data/Train/',
'slices_training_800200.json')
sort_slices('/home/leroy/app/data/Validation/',
'slices_validation_800200.json')
# Define loss function
loss_list = []
# loss_function = losses.CategoricalCrossentropy()
# loss_function = dice_loss2
loss_function = dice_bce
# Define optimizer with learning rate
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(params.dict['learning_rate'],
decay_steps=params.dict['decay_steps'],
decay_rate=params.dict['decay_rate'],
staircase=True)
optimizer_function = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
# optimizer_function = tf.keras.optimizers.Adam(params.dict['learning_rate'])
# Define model
model = models.mod_resnet(params,
params.dict['num_classes'],
optimizer=optimizer_function,
loss=loss_function)
# print(model.summary)
# Define evaluation metrics
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = dice_score
validation_loss = tf.keras.metrics.Mean(name='validation_loss')
validation_accuracy = dice_score
# Create variables for various paths used for storing training information
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
if not os.path.exists(params.dict['log_path']):
os.mkdir(params.dict['log_path'])
train_log_dir = params.dict['log_path'] + '/gradient_tape/' + current_time + '/train'
val_log_dir = params.dict['log_path'] + '/gradient_tape/' + current_time + '/val'
saved_model_path = params.dict['log_path'] + '/gradient_tape/' + current_time + '/saved_models/'
saved_weights_path = params.dict['log_path'] + '/gradient_tape/' + current_time + '/saved_weights/'
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
val_summary_writer = tf.summary.create_file_writer(val_log_dir)
os.mkdir(saved_model_path)
os.mkdir(saved_weights_path)
copyfile(os.getcwd() + '/params.json',
params.dict['log_path'] + '/gradient_tape/' + current_time + '/params.json')
copyfile(os.getcwd() + '/data_augmentation.py',
params.dict['log_path'] + '/gradient_tape/' + current_time + '/data_augmentation.py')
copyfile(os.getcwd() + '/run_online.py',
params.dict['log_path'] + '/gradient_tape/' + current_time + '/run_online.py')
copyfile(os.getcwd() + '/utils.py',
params.dict['log_path'] + '/gradient_tape/' + current_time + '/utils.py')
copyfile(os.getcwd() + '/models.py',
params.dict['log_path'] + '/gradient_tape/' + current_time + '/models.py')
# Load training and validation data
train_slices = utils.read_slices('slices_training_800200.json')
validation_slices = utils.read_slices('slices_validation_800200.json')
# Start training loop
for iteration in range(0, params.dict['num_steps'] + 1):
# print(iteration)
_start_graph_tensorflow()
ct_batch, gt_batch = get_batch_full(train_slices, params)
train_pred = train_on_batch(ct_batch, gt_batch)
_end_graph_tensorflow(train_summary_writer, train_log_dir)
# Evaluation step during training.
if iteration % params.dict['train_eval_step'] == 0:
# Write training information to training log
with train_summary_writer.as_default():
# train_dice = train_accuracy(gt_batch, train_pred).numpy()
train_dice = train_accuracy(gt_batch, train_pred)
tf.summary.scalar('loss', train_loss.result(), step=iteration)
tf.summary.scalar('accuracy', train_dice, step=iteration)
template = 'Iteration {}, Loss: {:.5}, Dice: {:.5}'
print(template.format(iteration + 1,
train_loss.result(),
train_dice))
# Evaluation step for validation.
if iteration % params.dict['val_eval_step'] == 0:
ct_batch_val, gt_batch_val = get_batch_full(validation_slices, params)
val_pred = validate_on_batch(ct_batch_val, gt_batch_val)
# Write validation information to log
with val_summary_writer.as_default():
# validation_dice = validation_accuracy(gt_batch_val, val_pred).numpy()
validation_dice = validation_accuracy(gt_batch_val, val_pred)
tf.summary.scalar('loss', validation_loss.result(), step=iteration)
tf.summary.scalar('accuracy', validation_dice, step=iteration)
loss_list.append(validation_loss.result())
template = 'Iteration {}, Validation Loss: {:.5}, Validation Dice: {:.5}'
print(template.format(iteration + 1,
validation_loss.result(),
validation_dice))
# Earling stopping when loss in the past 'patience' train_eval_steps
# is smaller than 'min_delta'. Breaks loop.
# early_stop = early_stopping(loss_list, min_delta=0.01, patience=10)
# if early_stop:
# print("Early stopping signal received at iteration = %d/%d" % (iteration, params.dict['num_steps']))
# print("Terminating training ")
# model.save(os.path.join(saved_model_path,
# 'model_' + str(iteration)))
# model.save_weights(os.path.join(saved_weights_path,
# 'model_weights' + str(iteration) + '.h5'))
# break
# Save the model at predefined step numbers.
if iteration % params.dict['save_model_step'] == 0:
model.save(os.path.join(saved_model_path,
'model_' + str(iteration)))
model.save_weights(os.path.join(saved_weights_path,
'model_weights' + str(iteration) + '.h5'))
if __name__ == '__main__':
# Small check for GPU usage or CPU usage. CUDA_VISIBLE_DEVICES selects a
# specific GPU card. Usefull when multiple people are training on the
# same server.
# CUDA_VISIBLE_DEVICES = 0
if tf.test.gpu_device_name():
print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
else:
print("Running on CPU. Please install GPU version of TF")
current_time = time.time()
main()
print(time.time() - current_time)