-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
executable file
·33 lines (28 loc) · 985 Bytes
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch
import torch.nn as nn
from torch.utils.data import Dataset
import h5py
import numpy as np
class dSpritesDataset(Dataset):
def __init__(self):
#f = h5py.File(
# 'dsprites-dataset-master/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.hdf5')
f = np.load('dsprites-dataset-master/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz')
idxs = torch.randperm(737280)[:10000].numpy()
idxs = np.sort(idxs)
#print('shit')
#__imgs = f['imgs'][idxs]
#print('ok')
self.imgs = torch.tensor(
f['imgs'][idxs],
dtype=torch.float
).reshape((-1, 1, 64, 64)).to('cuda:0')
self.latents = torch.tensor(f['latents_values'][idxs])
self.latents_classes = torch.tensor(f['latents_classes'][idxs])
f.close()
def __len__(self):
return len(self.imgs)
def __getitem__(self, idx):
return self.imgs[idx]
def get_similar(self, idx):
pass