-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathitc_condition_side_analysis.py
49 lines (37 loc) · 1.36 KB
/
itc_condition_side_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
# import glob
import mne
import pandas as pd
from my_settings import (epochs_folder, tf_folder, result_dir)
method = "dSPM"
subjects_select = [
"0005", "0006", "0007", "0008", "0009", "0010", "0011", "0015", "0016",
"0017", "0020", "0021", "0022", "0024", "0025"
]
epochs = mne.read_epochs(epochs_folder + "0005_target-epo.fif", preload=False)
times = epochs.times
conditions = ["ctl", "ent"]
sides = ["right", "left"]
ROIS = ["rh", "lh"]
from_time = np.abs(times + 0.08).argmin()
to_time = np.abs(times - 0.02).argmin()
df = pd.DataFrame()
for subject in subjects_select:
for condition in conditions:
for side in sides:
for roi in ROIS:
dat = np.load(tf_folder +
"%s_itc_%s_%s_%s_LOBE.OCCIPITAL-%s_target.npy" %
(subject, condition, side, method, roi))
value = dat[:, :, from_time:to_time].mean(axis=0).mean(
axis=0).mean(axis=0)
row = pd.DataFrame([{
"subject": subject,
"condition": condition,
"side": side,
"roi": roi,
"itc": value
}])
df = df.append(row, ignore_index=True)
df.to_csv(
result_dir + "itc_condition_side_mean_%s_lobes.csv" % method, index=False)