-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsk_predict_condition_ali_grads.py
46 lines (36 loc) · 1.38 KB
/
sk_predict_condition_ali_grads.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
import pandas as pd
from my_settings import (tf_folder, subjects_select)
from sklearn.ensemble import AdaBoostClassifier
from sklearn.cross_validation import StratifiedShuffleSplit, cross_val_score
from sklearn.grid_search import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
ctl_left = []
ctl_right = []
ent_left = []
ent_right = []
for subject in subjects_select:
data = np.load(tf_folder + "%s_ali.npy" % subject)
ctl_left.append(data[0, :])
ctl_right.append(data[1, :])
ent_left.append(data[2, :])
ent_right.append(data[3, :])
ctl_left = np.asarray(ctl_left)
ctl_right = np.asarray(ctl_right)
ent_left = np.asarray(ent_left)
ent_right = np.asarray(ent_right)
X = np.vstack((ctl_left, ctl_right, ent_left, ent_right))
y = np.concatenate((np.zeros(len(ctl_left)), np.ones(len(ctl_right)), np.ones(
len(ent_left) * 2), np.ones(len(ent_right) * 3)))
cv = StratifiedShuffleSplit(y, n_iter=10)
ada_params = {
"adaboostclassifier__n_estimators": np.arange(1, 50, 1),
"adaboostclassifier__learning_rate": np.arange(0.01, 1, 0.1)
}
ada = AdaBoostClassifier
scaler_pipe = make_pipeline(StandardScaler(), AdaBoostClassifier())
grid = GridSearchCV(scaler_pipe, param_grid=ada_params, cv=cv)
grid.fit(X, y)
ada = grid.best_estimator_
scores = cross_val_score(ada, X, y, cv=cv, scoring="accuracy")